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Abstract. The Feistel structure is well-known as a good structure for
building block ciphers, due to its property of invertibility. It can be made
non-invertible by fixing the left half of the input to 0, and by discarding
the left half of the output bits. It then becomes suitable as a hash function
construction. This paper uses the structure to build a hash function
called F-Hash, which is immune to recent attack styles. Generally the
security of such structures is discussed using Random Oracle Models. In
this paper, a more precise evaluation method, based upon conditional
probability, is given.
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1 Introduction

Most hash functions, including MD5[15] and SHA-1[14] are based upon compres-
sion functions iterated using the Merkle-Damg̊ard structure [10, 22] with fixed
IVs [35]. Since MD5 and SHA-1 were attacked by Wang et. al [6, 41, 42], more
attention has been paid to the area of hash functions, with the intention of
strengthening these hash functions or finding new, resilient hash functions.

The Wang attacks are based upon differential cryptanalysis, first known to
academics in the early nineties [5]. Attacks against block ciphers and hash func-
tions are very similar, as witnessed by the use of block cipher cryptanalysis
techniques against hash functions [4, 26]. Increasing attention has been paid to
designing hash functions using the same technology as block ciphers [4], as that
technology is well-established.

One such technology is the Feistel structure, which is frequently used to build
block ciphers using a 2n → 2n invertible transformation. By fixing the leftmost
n bits of the input to 0, and by outputting the rightmost n bits, the Feistel
structure becomes a non-invertible n to n transformation that is suitable for
building hash functions. We call this the FL-structure (Feistel-like structure). If
the round function of the FL structure is chosen in the same way as the round
function of the Feistel-based block cipher, then the new construction, when using
more than two rounds, inherits many of the properties of the corresponding
block cipher, with the exception of invertibility. The benefit of the FL structure
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is that it leverages the extensive analysis conducted on the Feistel structure.
Therefore we think that the non-invertibility of the FL structure qualifies it as
a good component for building hash compression functions to resist pre-image
and collision attacks.

This paper discusses building dedicated hash functions using Feistel struc-
ture, including a complete hash function based on the FL structure, which we
name F-Hash. We give a proof of security of this hash function, and show that for
robust underlying block ciphers, the hash function is immune against all known
attacks. Using the same round function and key schedule, we can build a MAC
– F-MAC – and block encryption mode – FBC.

In this paper, we give a new evaluation model to quantify the security of
structures based upon conditional probability. We discuss the influence of the
compression function’s conditional probability on the entire construction’s con-
ditional probability. This informs us that the outputs of F-Hash are uniformly
distributed for any fixed IV and random message, or for any selected message and
random IV, if only the compression function has the following properties: that
the function is immune against adaptive chosen plaintext and adaptive chosen-
key attacks and that the distribution of the function’s inputs and outputs are
uniform.

It is basic requirement upon the block cipher that the distribution of input
and output are independent. Patarin [27–31] provided security proofs for the
Feistel Structure, and Piret [32, 33] gave proofs of round functions with random
permutations. Similar conclusions were also given by Vaudenay [39, 40]. Luby
and Rackoff [21] introduced a method that permitted the assessment of security
of some block cipher constructions. The limitations of these proofs are that
although they discuss immunity against adaptive chosen plaintext attacks, they
neglect adaptive chosen-key attacks. For F-Hash, we should consider security
against chosen-key attacks. In this paper we give a proof that if the Feistel
cipher is immune against adaptive chosen plaintext attacks and the key schedule
algorithm is sufficiently non-linear, then we can build a secure F-hash.

In Section 2, we give Feistel constructions and define the new hash function,
MACs and block cipher encryption modes. In Section 3, we provide security
proofs. In Section 4, we provide a discussion and conclusion.

2 The Feistel Constructions

A Feistel structure is a general way of constructing block ciphers from simple
functions. The original idea was invented by Horst Feistel [11] for use with block
ciphers. The security of the Feistel structure is not obvious but comprehensive
analysis of DES [13] has shown that it is a good way to construct ciphers. No
weakness has been found in the Feistel structure itself. In this section, we present
some constructions derived from the Feistel structure, but first introduce the
structure itself.
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2.1 The Feistel Compression Function

Let In be the set {0, 1}n where a, b ∈ In, and a‖b ∈ I2n and |a| = n. The
key schedule algorithm is ψ(k) and k(i)are the round keys, such that k(0) = k,
k(i) = ψ(k(i−1)), i ≥ 1. The round function of the block cipher is f : In×In → In
1. The round output y = f(k(i), x), also denoted by fk(i) . Then with ◦ denoting
composition of a function, a Feistel block cipher is denoted by EFe : In× I2n →
I2n, where:
EFe(k, x′‖x)

def
= ΨR(f)(x′‖x) = Ψ(fk(R)) ◦ Ψ(fk(R−1)) ◦ . . . ◦ Ψ(fk(1)(x′‖x)),

y′‖y def
= Ψ(fk)(x′‖x) =

{
y′ = x

y = x′ ⊕ fk(x) such that x′, x, y′, y ∈ In; (x′‖x)L

and (x′‖x)R: and the leftmost and rightmost n bits of binary sequence x′‖x,
respectively. Also 0̃ is an n-bit string with all bits equal to 0.

Also define an SPN block cipher ESp : In × In → In, such that ESp(k, x) =
f(kR′ ) ◦ fk(R′−1) ◦ . . . ◦ fk(1)(x). Let Fc : In × In → In be Feistel-Like Struc-
tured Function with round function, Fc(k, x) = (EFe(k, 0̃‖x))R; Fc−1 : Feistel-
Structured function with one round fewer than Fc, and E−1 be the inverse of E,
where E is a permutation.

Remark 1. Unless otherwise noted, EFe, ESp, Fc and Fc−1 have same key sched-
ule algorithm ψ(k) and round function f . The round function f is a permutation.
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Fig. 1. Contrast Between Feistel Structure and FL-Structure

Definition 1 (FL Structure). Let function Fc : In × In → In, if Fc(k, x) =
ΨR(f)(x′‖x) = Ψ(fk(R)) ◦ Ψ(fk(R−1)) ◦ . . . ◦ Ψ(fk(1)(0̃‖x))R, then we call func-
tion Fc the FL-Function (Feistel Like function) and the entire structure FL-
Structure(Feistel Like Structure). This is shown in Figure 1.

1 We assume that the key length κ = n, with padding if required.
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2.2 F-HASH Function

Let z = H(m,x): the hash function, where m be message and x be initial value;
message2 m ∈ In·∗, mi be message block with mi ∈ In, m = m∗‖m∗−1‖ . . . ‖m1,
m∗ ⊆ m; A selected m be denoted mi ∈ In·t, t ≥ 1; y = F (xm, xh): the
hash compression function, where xh be chaining value, xm be message block;
z = HM (m,x): iterated hash with M-D construction, if m = mt‖ . . . ‖m1, then
z = F (mt, F (mt−1, . . . F (m1, x) . . .)) with compression function y = F (xm, xh);
Message Padding: adding zero at the end of Message3.

Definition 2 (Feistel Compression Function). If the function Fc : In ×
In → In is used as compression function of iterated hash with format y =
Fc(xm, xh), where xh is the chaining value, we call this function the Feistel
Compression Function.
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Fig. 2. F-HASH Function

Definition 3 (F-HASH). Let F-HASH HF : In·∗ × In → In, z̃ = HF (m,x),
m ∈ In·t is defined as

h0 = x

hi = Fc(mi, hi−1), (i = 1, . . . , t)

2 When message block is used as key, the message block length be κ.
3 That is to make thing simple. In realized design, we should select a length related

padding
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h′i = Fc−1(mi, hi−1), (i = 1, . . . , t)

z̃ = ESp(
t⊕

i=1

h′i, ht).

Lemma 1. y′‖y = EFe(xm, 0̃‖xh) ⇔ y′ = Fc−1(xm, xh), y = Fc(xm, xh)

In fact, we have h′i‖hi = EFe(mi, 0̃‖hi−1), (i = 1, . . . , t). The figure illustra-
tion of F-HASH is given in Fig 2.

3 Security Proof of F-HASH

The securities of F-HASH, F-MAC are based on security of Feistel Block cipher
and the security of the structure.

In this section, we give the security proofs of compression function and the
structure, where the security of compression function is totally based upon secu-
rity of the Feistel block cipher. Then we give the security proof of the structure.

Let X be a random variable which takes on a finite set S of values x ∈ S

with probability PX(x)
def
= P (X = x). Also, let X ′, Y, Y ′, Z and Z̃ be random

variables which take on finite sets of values.

Theorem 1 (Derived Probability). Let function y = G(m,x), G : In·t ×
In → In, t ∈ N, let the distributions of independent random variable M and X
are PX(x) and PM (m), let function χG(m,x)(y) is defined as that

χG(m,x)(y)
def
=

{
1 y = G(m,x)
0 y 6= G(m,x)

Then the distribution of random variable Y can be derived from X and M by

PY (y)
def
= PY (y = G(M, X))

=
∑

x∈In

∑

m∈In·t

PXM (x,m)χG(m,x)(y)

=
∑

x∈In

∑

m∈In·t

PX(x)PM (m)χG(m,x)(y)

we call the probability of Y , the derived probability of M and X.

For any y ∈ In, if does not exist PY (y), then we have PY (y)
def
= 0.

Definition 4 (Conditional probability). Directed followed Theorem 1, the
conditional probability is defined as follows

1. PY |M=m0(y0) =
∑

x∈In
PX(x)χG(y0,m0, x);

2. PY |X=x0(y0) =
∑

m∈In·t PM (m)χG(y0,m, x0);
3. PY |X=x0,M=m0(y0) = χG(y0,m0, x0).

Remark 2. If X and M are uniformly distributed, which means PM (m) = 1
2n·t ,

PX(x) = 1
2n , we use notation of PẎ (y), that is also holds in the conditional

probability.
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3.1 Security of Feistel Compression Function

Since the proof of chosen plain-text attack on Feistel block cipher is known
and chosen key attack on Feistel block cipher is uncertain. And the chosen-key
attack on Feistel block cipher can be converted to a chosen chaining value attack
on Feistel compression function. The motivation of this section is that, if there
exist a secure Feistel block cipher, immune against adaptive chosen plaintext ,
then there exist a secure Feistel compression function, immune against adaptive
chosen message attack and adaptive chosen chaining attack.

We give following assumption for EFe, which is based upon the known results
of Feistel structured block cipher.

Assumption 1 For EFe and ESp

1. The ciphers are immune against chosen plaintext attack and chosen cipher-
text attack, and the chosen plaintext and adaptive chosen plaintext attack
have same complexity;

2. The distributions of plaintext and ciphertext of those ciphers are independent
for each constant key,

3. The best way to find weak keys (EFe(k, x′‖x) = EFe(k′, x′‖x)) of EFe and
ESp is exhaustive key search attack based on birthday paradox;

4. No weakness are found in EFe and ESp.

Remark 3. Let y′‖y = EFe(k, x‖x′), the item 2 of Assumption 1 can be written
as follows

PY ′‖Y,M |K=k(y′‖y, m) = PY ′‖Y |K=k(y′‖y)PM |K=k(m)
= PY ′|K=k(y′)PY |K=k(y)PM (m)

So we have

PY,M |K=k(y, m) = PY |K=k(y)PM (m)
PY ′,M |K=k(y′,m) = PY ′|K=k(y′)PM (m).

Remark 4. There exist Feistel block ciphers, which satisfy Assumption 1, or else
we can build some attack on the cipher. Of cause no weakness just means immune
against known attack.

Assumption 2 If EFe satisfies Assumption 1, then replacing the key schedule
algorithm with k(i) def

= ψ(ki−1)⊕k, k(0) = k, the new EFe still satisfies Assump-
tion 1.

Remark 5. In the proof of security of Feistel structure[27–30], the compression
function is assumed as pseudo random function. If the ψ(k) is pseudo random
function, then ψ(k) ⊕ k is still a pseudo random function. The Assumption 2
implies the key schedule algorithm ψ(k) has property of that does not exit i, j

with ψ(k(i)
{j}) ≡ k{j}.
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Theorem 2. Let the round function f be the format of f(k(i), x) = f(x⊕ k(i)),
if EFe satisfies Assumption 1 and Assumption 2, then there exist FL-function
ỹ = F̃c(k, x) and ỹ′ = F̃c−1(k, x) satisfying following properties

1. F̃c is immune against adaptive chosen chaining value attack and adaptive
chosen message block attack4;

2. the distributions of Ỹ and Xm are independent for each constant xh and the
distributions of Ỹ and Xh are independent for each constant xm, that are
also hold for Ỹ ′ ;

3. There are no weakness in F̃c and F̃c−1
5.

Proof. Firstly, we give a conclusion of that. If EFe has rounds r, key schedule
algorithm ψ(k) and round function f(k(i), x) = f(x)⊕ k(i), then we have

EFe(k0, k̃‖x⊕ k̃)R ⊕ k̃ = F̃c(k̃, x) (1)

where the key schedule algorithm of F̃c is k̃(i) = ψ(k(i)
0 ) ⊕ k̃. The proof of

Equation (1) is follows
When r = 1

(Ψ(f
k
(1)
0

)(k̃‖x⊕ k̃))R = k̃ ⊕ f(x⊕ k̃ ⊕ ψ(k(1)
0 ))

= 0̃⊕ f(x⊕ (ψ(k(0)
0 )⊕ k̃))⊕ k̃

= (Ψ(f
k
(1)
0 ⊕k̃

)(0̃‖x⊕))R ⊕ k̃

Assume that for r < k, the equation is true then

(Ψ(f
k
(r)
0
◦ . . . ◦ f

k
(1)
0

)(k̃‖x⊕ k̃))R

= (Ψ(f
k
(r−2)
0 ⊕k̃

◦ . . . ◦ f
k
(1)
0 ⊕k̃

)(0̃‖x))R ⊕ k̃

⊕f((Ψ(f
k
(r−1)
0 ⊕k̃

◦ . . . ◦ f
k
(1)
0 ⊕k̃

)(0̃‖x))R ⊕ k̃ ⊕ k
(r)
0 )

= (Ψ(f
k
(r−2)
0 ⊕k̃

◦ . . . ◦ f
k
(1)
0 ⊕k̃

)(0̃‖x))R

⊕f((Ψ(f
k
(r−1)
0 ⊕k̃

◦ . . . ◦ f
k
(1)
0 ⊕k̃

)(0̃‖x))R ⊕ (k̃ ⊕ k
(r)
0 ))⊕ k̃

= (Ψ(f
k
(r)
0 ⊕k̃

◦ . . . ◦ f
k
(1)
0 ⊕k̃

)(0̃‖x))R ⊕ k̃.

Secondly, We give the proof of that, if EFe satisfy Assumption 1, then F̃c satisfy
the item 1,2 and 3. Since F̃c’s message block and chaining value equivalence to
the left and right most n bits plaintext of EFe with a fixed key, respectively,
output of F̃c equivalence to the right-most n bits ciphertext of EFe with the
fixed key, then we can get the conclusion directly. ut
4 The definition of adaptive chosen chaining attack or message block attack is parallel

to adaptive chosen plaintext attack or adaptive chosen key attack upon block cipher.
5 No weakness means can not find the inner relation between output and chaining

value or output and message block.
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We also can get following theorem.

Theorem 3. Let the round function f be the format of f(k(i), x) = f(x⊕ k(i)),
if Fc and Fc−1 satisfies item 1,2 and 3 of Theorem 2, then there exist a Feistel
block cipher satisfy item 1,2 and 4 of Assumption 1

Proof. The proof is analog to the proof of Theorem 2. Since we have

Fc(k, x) = ẼFe(k, x′0‖x⊕ x′0)
R ⊕ x′0 (2)

where the key schedule algorithm of ẼFe is x
′(i)
0 = ψ(k(i)) ⊕ x′0. The proof can

be given similar to equation (1), we omit it. ut

3.2 The Output Distribution of F-HASH

This subsection gives the output distribution of F-hash for selected massage and
selected initial value. The conclusions are that, the output distribution of F-
Hash for selected message or selected initial value is near to that of compression
function. So, if can build a secure Feistel compression function, then that can
guaranteers the output distribution of the F-HASH.

Firstly, we give some basic notation and definition, which will be used in the
output probability distribution of F-HASH. Let G : Iκ × Im → In, y = G(k, x)
then:
{(y, k, x)} def

= {(y, k, x)|k ∈ Iκ, x ∈ Im, y ∈ In};
{(y, k, x)}G def

= {(y, k, x)|(y, k, x) ∈ {(y, k, x)}, G(k, x) = y};
{((y0, k, x)}G def

= {((y0, k, x)|(y, k, x) ∈ {(y, k, x)}G, y = y0};
{(y, k, x)}G

x∈Λ

def
= {(y, k, x)|(y, k, x) ∈ {(y, k, x)}G, x ∈ Λ};

{{((y0, k, x)}G}y0∈Λ
def
=

⋃
y0∈Λ

{{((y0, k, x)}G}.

S1
def
= max

xm0 ,y0
#{(y0, xm0 , xh)}Fc−1 ; S2

def
= max

xh0 ,y0
#{(y0, xm, xh0)}Fc−1 ;

S3
def
= max

y0
#{(y′0‖y0, xm, x′h0

‖xh0)}EF e

; T1
def
= max

xm0 ,y0
#{(y0, xm0 , xh)}Fc ;

T2
def
= max

xh0 ,y0
#{(y0, xm, xh0)}Fc ; T3

def
= max

y0
#{(y0, xm, xh)}Fc .

Remark 6. Iterated hash function H(m,x), we consider the x can be all value in

In, because we can redefine a hash function H(m‖x, IV ) = H(m,F (x, IV ))
def
=

H ′(m,x′), the attack on H ′ may be an attack on H, in selected hash IV is
constant.

Let z̃ = ESp(u, z), z = HM (m,x) = h∗, h0 = x, u = Oh(m,x)
def
=

t⊕
i=1

h′i,

hi = Fc(mi, hi−1), h′i = Fc−1(mi, hi−1), m = m∗‖ . . . ‖m0, x and m are independent

and uniformly distributed in In and
t⋃

i=1

In·i, respectively.
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Lemma 2. If the compression function Fc(xm, xh) satisfy item 2 of Theorem
2 and i ≥ 2, then u, z, hi and h′i are independent from each other, where i ∈
[1, t− 1] for hi and i ∈ [1, t] for h′i.

Proof. That is direct conclusion of Theorem 2. ut
Theorem 4. If the compression function Fc(xm, xh) satisfy item 2 of Theorem
2, then F-HASH z̃ = HF (m,x), z = HM (m,x) have

1. PŻ|M=m(z) ≤ 2−nT
|m|
n

1 ;
2. PŻ|X=x(z) ≤ 2−nT2;
3. P ˙

Z̃|M=m
(z̃) ≤ 2−nS1;

4. P ˙
Z̃|X=x

(z̃) ≤ 2−nS2.

Proof. The proof of Theorem 5 is given by deduction theory.

1. When t = 1

PŻ|M=m(z) ≤ max
m0,z0

∑

x∈In

PX(x)χFc(m0,x)(z0)

= max
m0,z0

∑

i∈[1,2n]

2−n#{(m0, xi, z0)}Fc ≤ 2−nT1

Suppose t < l, the inequality is true. When t = l

PŻ|M=m(z) = PŻ|M=ml‖m′(z) =
∑

x∈In

PX(x)χFc(ml,HM (m,x))(z)

=
∑

x∈In

∑

u∈In

1
2n
· χFc(ml,u)(z) · χHM (m′,x)(u)

=
∑

u∈In

∑

x∈In

1
2n
· χFc(ml,u)(z) · χHM (m′,x)(u)

=
∑

u∈In

(χFc(ml,u)(z) ·
∑

x∈In

1
2n

χHM (m′,x)(u))

=
∑

u∈In

χFc(ml,u)(z) · PU̇ |M ′=m′(u)

≤ 2−nT l−1
1

∑

u∈In

χFc(ml,u)(z) ≤ 2−nT l−1
1 T1 = 2−nT l

1

2. When t = 1

PŻ|X=x(z) ≤ max
x0,z0

∑
m

PM (m)χFc(m,x0)(z0)

= max
x0,z0

∑

i

2−n#{(mi, x0, z0)}Fc ≤ 2−nT2
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When t > 1

PŻ|X=x(z) =
∑

m∈∪l
i=1In·i

PM (m)PŻ|M=m,X=x(z)

=
∑

ml∈In

∑

m′∈∪l−1
i=1In·i

PM ′(m′)PMl
(ml)

PŻ|M=m,X=xP (z = Fc(ml,H
M (m′, x)))

=
∑

ml∈In

∑

m′∈∪l−1
i=1In·i

∑

u∈In

PM ′(m′)PMl
(ml) · χFc(ml,u)(z) · χHM (m′,x)(u)

=
∑

u∈In

∑

ml∈In

PMl
(ml) · χFc(ml,u)(z)

∑

m′∈∪l−1
i=1In·i

PM ′(m′) · χHM (m′,x)(u)

=
∑

u∈In

PŻ|U=u(z)PU̇ |X=x(u)

≤ 2−nT2

∑

u∈In

PU̇ |X=x(z) = 2−nT2

3. ∀ t ≥ 1

P ˙
Z̃|M=m

(z̃) = P ˙
Z̃|M=m

(z̃ = ESp(u, z), u = Oh(m,x), z = HM (m,x))

=
∑

x,u,z∈In

PX(x)χESp(z,u)(z̃)χHM (z,m, x)χOh(m,x)(u)

=
∑

u,z∈In

χESp(z,u)(z̃)
∑

x∈In

PX(x)χHM (z,m, x)

∑

x∈In

PX(x)χOh(m,x)(u)

=
∑

u,z∈In

χESp(z,u)(z̃)PU̇ |M=m(u)PŻ|M=m(z)

≤ max
u0

PU̇ |M=m(u0)2n
∑

z

PŻ|M=m(z)
∑

u

2−nχESp(z,u)(z̃)

= max
u0

PU̇ |M=m(u0)2n
∑

z

PŻ|M=m(z)PZ̃|Z=z(z̃)

≤ max
u0

PU̇ |M=m(u0)max
z0,z̃0

2nPZ̃|Z=z0
(z̃0)

∑
z

PŻ|M=m(z)

= max
u0

PU̇ |M=m(u0)
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And also

PU̇ |M=m(u) =
∑

x∈In

PX(x)PU |M=m,X=x(u = h′1 ⊕
t⊕

i=2

h′i)

=
∑

x∈In

PX(x)PU |M=m′‖m1,X=x(u = v ⊕ h′1, v =
t⊕

i=2

h′i)

=
∑

x∈In

∑

v∈In

PX(x)PUV |M=m′‖m1,X=x(u = v ⊕ h′1, v =
t⊕

i=2

h′i)

=
∑

x∈In

∑

v∈In

PX(x)PU |M1=m1,X=x(u = h′1 ⊕ v)

PV |M ′=m′,X=x(v =
t⊕

i=2

h′i)

=
∑

v∈In

PU |M1=m1(u = h′t ⊕ v)PV |M ′=m′(v =
t⊕

i=2

h′i)

= max PU |M1=m1(u)
∑

v

PV |M ′=m′(v =
t⊕

i=2

h′i) ≤
S1

2n

4. ∀ t ≥ 1

P ˙
Z̃|X=x

(z̃) = P ˙
Z̃|X=x

(z̃ = ESp(u, z), u = Oh(m,x), z = HM (m,x))

=
∑

u,z∈In

∑

m∈∪t
i=1In·i

PM (m)PZ̃|U̇=u,Z=z(z̃)

PU̇,Ż|M=m,X=x(u = Oh(m,x), z = HM (m,x))

Since PM (x) = 2−
∑t

i
i·n and u, z are independent

=
∑

u,z∈In

χESp(z,u)(z̃)

∑

m∈∪t
i=1In·i

PM (m)PU̇ |M=m,X=x(u = Oh(m,x))

∑

m∈∪t
i=1In·i

PM (m)PŻ|M=m,X=x(z = HM (m,x))

=
∑

u,z∈In

χESp(z,u)(z̃)PU̇ |X=x(u)PŻ|X=x(z)

≤ max
u0

PU̇ |X=x(u0)2n
∑

z

PŻ|X=x(z)
∑

u

2−nP ˙
Z̃|U=u,Z=z

(z̃)

= max
u0

PU̇ |X=x(u0)2n
∑

z

PŻ|X=x(z)P ˙
Z̃|Z=z

(z̃)
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≤ max
u0

PU̇ |X=x(u0)max
z0,z̃0

2nP ˙
Z̃|Z=z0

(z̃0)
∑

z

PŻ|X=x(z)

= max
u0

PU̇ |X=x(u0)

And also

PU̇ |X=x(u) =
∑

m∈∪t
i=1In·i

PM (m)PU |M=m,X=x(u = h′1 ⊕
t⊕

i=2

h′i)

=
∑

m∈∪t
i=1In·i

PM (m)PU |M=m′‖m1,X=x(u = v ⊕ h′1, v =
t⊕

i=2

h′i)

=
∑

m∈∪t
i=1In·i

PM (m)PUV |M=m′‖m1,X=x(u = v ⊕ h′1, V =
t⊕

i=2

h′i)

=
∑

m∈∪t
i=1In·i

∑

v∈In

PM (m)PU |M1=m1,X=x(u = h′1 ⊕ v)

PV |M ′=m′,X=x(v =
t⊕

i=2

h′i)

=
∑

v∈In

∑

mt∈In

PMt(mt)PU |M1=m1,X=x(u = h′1 ⊕ v)

∑

m′∈∪t−1
i=1In·i

PV |M ′=m′,X=x(v =
t⊕

i=2

h′i)

=
∑

v∈In

PU |X=x(u = h′1 ⊕ v)PV |X=x(v =
t⊕

i=2

h′i)

= max
u0

PU |X=x(u0)
∑

v

PV |X=x(v =
t⊕

i=2

h′i) ≤
S2

2n

ut

3.3 Immunity Against Collision Attack and Preimage Attack

This section gives security of F-HASH against collision attack and preimage at-
tack. The conclusion of this part is based on theorem of [24] that, if the compres-
sion function is immune against adaptive chosen message attack and adaptive
chosen chaining value attack, and the output distribution of the iterated hash
structure is given, then the hash is secure.

Definition 5. The definitions about the advantage of A in finding Primage and
Collision of function H are as follows, write Ãdv(A)

def
= max{Adv(A)} where the

maximum is get the luckiest adversary’s advantage, Adv(q)
def
= max{Adv(A)},
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where the maximum is taken over adversaries that ask at most q queries. If F
is invertible with F−1, then A can ask queries of F and F−1, the whole search
space is whole space.

– Fixed Start Preimage Attack

ÃdvFixP
H (A) = max

y0,x0
Pr[y0 ∈ In, x0 ∈ In;ω ← AF,H : ω ∈ {(z0,m, x0)}H ]

– Fixed Start Collision Attack

ÃdvFixC
H (A) = max

y0,x0
Pr[x0 ∈ In;ω, ω′ ← AF,H :

ω, ω′ ∈ σ, σ ∈ {{(z0,m, x0)}H}z0∈In
]

Theorem 5. Let Fc and Fc−1 satisfy Theorem 2, then F-HASH z̃ = HF (m,x)
has

– ÃdvFixP
HF (q) ≤ max{2q S2

2n , q S1
2n };

– ÃdvFixC
HF (q) ≤ max{q(q − 1)S2

2n , q S1
2n }.

Proof. Fc and Fc−1 satisfy Item 2 of Theorem 2, the best way of finding collision
or preimage attack is exhaustive search. Fc and Fc−1 satisfy Item 2 of Theorem
2, then output distribution satisfy Theorem 4, we have the conclusion from
Theorem18 of [24]. ut

3.4 Other Attacks on F-HASH

The other attacks on F-HASH needs more discussion, there are some.

Multi Collision[18] Suppose that multi collision is possible, for each inner
collision HM (mi+1,H

M (mi‖ . . . ‖m1, x0)) = HM (m′
i+1,H

M (m′
i‖ . . . ‖m′

1, x0)),
i ∈ [1, t], if the inner collision can make true collision requires Oh(m, IV ) =
Oh(m′, IV ). That does not always hold when the inner collision occurs. In fact
it will happen with high probability when |mi| = n.

Extension Attack[35] If the extension collision is possible, when there ex-
ists an inner collision HM (m,x0) = HM (m′, x0), the extension should be with
Oh(m′′‖m, IV ) = Oh(m′′‖m′, IV ), as the complexity of finding Oh(m′′‖m, IV ) =
Oh(m′′‖m′, IV ) is O(2

√
n). When the collision is final collision HF (m,x) =

HF (m′, x), not a inner collision, the extension attack is impossible.

Fixed Point Attack The requirement of success of the fixed point attack is sim-
ilar to that of a multi collision attack, which requires Oh(m, IV ) = Oh(m′, IV )
and the fixed block length should be |mi| = n.
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4 Discussions and Conclusions

Our security discussion of F-HASH is based on the security of Feistel Block
cipher, and we assume the Fesitel block cipher is secure. This section we give
more discussion on the realized design of Feistel compression function.

4.1 The Value of T1,T2,S1 and S2

This subsection, we discuss the upper bound of T1,T2,S1 and S2.
Let g : I2n → I2n, y‖y′ = g(x‖x′) be a random permutation, then we have[3]

PY ′|X′=x0(y = g(x0)) = 2−2n

then y = (g(x′0‖x))R is random function. Let f(x0, x)
def
= (g(x′0‖x))R

PY R|X=x0(y = f(x′0‖x0)) = 2−n

then we have[3]

PY R|X1=x1,X2=x2(y = f(x′0‖x1), y = f(x′0‖x2)) =
{

2−2n x1 6= x2

2−n x1 = x2

In block cipher EFe, for each fixed key, if we can not distinguish the EFe from
a Pseudo-random permutation, then we have

P (T1 = k) = 2−k·n2n, P (S1 = k) = 2−k·n2n, k ∈ N

If the Fc is selected as Equation 1, then we have

P (T2 = k) = 2−k·n2n, P (S2 = k) = 2−k·n2n, k ∈ N

If for each x′0‖x0, we can not distinguish EFe(k, x′0‖x0) from a random function
then we have

P (T2 = k) = 2−k·n2n, P (S2 = k) = 2−k·n2n, k ∈ N.

From above discussion, we known the upper bound of T1,T2,S1 and S2, but
those values are only with maximum probability of equals 1, which is need more
discussion. But the more discussion on those values are also required in block
cipher design.

4.2 Round function and Key Schedule Algorithm

In the proof of Theorem 2, we find that x′ can be moved into the key schedule
algorithm and for the whole discussion we assume the round function f is per-
mutation. The most common design of round function with permutation is SPN
structure. The SP structure is used in Feistel structure can result in the linear
part can be moved into the previous rotund or the posterior round[23], so we
prefer the round function with SPS(SBox-Linear part-Sbox) structure.

The key schedule algorithm ψ(k) is assumed not to be a linear transformation.
We prefer the key schedule algorithm itself is pseudo random function, which
has been discussed in PhD paper of Rijmen[36].
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4.3 The Round Number of Fc Function

The block cipher of Feistel structure is require more round than that of SPN
structured block cipher with same round function and key schedule algorithm.
On that condition, the block cipher with Feistel structure has double size that
of SPN Block cipher.

The Feistel Compression function and SPN block cipher with same round
function and key schedule algorithm have same block size. In fact, the require-
ment of Feistel compression function to build F-HASH require same block size
as SPN block cipher.

4.4 The Motivation of ESP Cipher

The motivation of last compression of F-HASH is to randomize the output dis-
tribution of the hash. without that part, the F-HASH become a iterated hash
with Merkle-Damag̊ard structure.

4.5 Contrast with Other Structures

The output distribution of F-HASH is near to uniformly distribution. 3C also
have such property, if we can select a good compression function. Those part of
discussion can see the paper[24]. The most outstanding of this structure is that,
the security of structure and realized hash relies on the security of basement of
block cipher.

4.6 Conclusion

In this paper we present a new way to construct hash function. Security of FL-
Function relies on the security of Feistel structured block cipher’s round function
and key schedule algorithm. And the design of FL-function require higher design
criteria than that of block cipher. All design principle of block cipher can be used
in design of hash function. If we can design a secure hash function based on FL-
structure then we can design a more secure block cipher.

Acknowledgement The previous two sections of this version are rewritten by
Dr.Matt Henricksen. He also gives many suggestions on reordering the remaining
sections. And also, more comments will be gotten from him. Thanks to Matt
Henricksen for editing and structural suggestions.
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A F1-MAC and F2-MAC

In this subsection two MAC structures are given which have a similar structure
to F-HASH, figure illustration is Fig 3.
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Fig. 3. F1-MAC and F2-MAC

Definition 6 (F1-MAC). Let MF1 : In × In·∗ × In → In, F-MAC is defined
as z̃ = MF1(k, m, x), m ∈ In·t

h0 = x

h′i‖hi = EFe(k, mi‖hi−1), (i = 1, . . . , t)

z̃ = ESp(
t⊕

i=1

h′i, ht).

Definition 7 (F2-MAC). Let MF2 : In × In·∗ × In → In, F-MAC is defined
as z̃ = MF2(k, m, x), m ∈ In·t

h0 = x

h′i‖hi = EFe(k, mi‖hi−1), (i = 1, . . . , t)
z̃ = ESp(h′t, ht).

The F1-MAC is a MAC similar to F-HASH. The F2-MAC is a MAC similar
to FBC mode.

B FBC Encrypt Mode

In this subsection we give a encrypt on mode based on the Feistel structure,
called FBC(Feistel Block Chaining), figure illustration is Fig. 4.

Definition 8 (FBC Mode). Let EFBC : In × In·t × In → In·(t+1), c =
EFBC(k, m, x) is defined as

h0 = x
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ci‖hi = EFe(k, mi‖hi−1), (i = 1, . . . , t)
c = ht‖ct‖ct−1‖ . . . ‖c1.


