Unified Point Addition Formulse and
Side-Channel Attacks

Douglas Stebila'** and Nicolas Thériault?

! Institute for Quantum Computing,
University of Waterloo, Waterloo, ON, Canada,
dstebila@iqgc.ca
2 Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, ON, Canada,
ntheriau@math.uwaterloo.ca

Abstract. The successful application to elliptic curve cryptography of
side-channel attacks, in which information about the secret key can be
recovered from the observation of side channels like power consumption
or timing, has motivated the recent development of unified formulee for
elliptic curve point operations. In this paper, we give a version of a
previously-developed family of unified point addition formulse that uses
projective coordinates for improved efficiency. We discuss the applica-
bility of a recent attack by Walter on this family of projective formulse
and describe how the field arithmetic can be implemented to obtain fully
unified formulee and avoid this type of attack.

Keywords: elliptic-curve cryptography, side-channel attacks, unified
point addition formulae, projective coordinates.

1 Introduction

The study of elliptic curves in cryptography [1, 2] has been ongoing for a number
of years. Elliptic curve cryptography offers higher security per key bit compared
to other public key cryptosystems and the smaller key size is more suitable for
implementation on small devices such as smart cards. More recently, a new class
of attacks has been discovered, called side-channel attacks [3], which use infor-
mation observed during the execution of the algorithm to help determine the
secret key. There are two classes of side-channel attacks: simple side-channel
attacks, which analyze the trace of a single execution of a cryptographic proto-
col, and differential side-channel attacks, which compare the traces of multiple
executions of a protocol.

The central operation in an elliptic curve cryptosystem is the point multipli-
cation operation, in which a point is multiplied by a scalar. The basic method for

* This work was performed while the author was a visiting researcher at Sun Microsys-
tems Laboratories, with additional support from NSERC, ORDCF, CIAR, CFI, and
MITACS.

implementing point multiplication is the double-and-add technique, which uses
a binary representation of the scalar and performs a sequence of point additions
and point doublings depending on the bits of the scalar. The double-and-add
technique is given in Fig. 1.

Input: Point P, integer k = 31" ki2', kn—1 = 1.
Output: Point Q = kP.

1. QP

2. for i = n — 2 down to 0 do
2.1. Q — 20

2.2. if k, =1then Q — P+ Q
3. end for

Fig. 1. Double-and-add point multiplication algorithm

In double-and-add point multiplication, a point doubling is done for every bit
of the key k, but a point addition is done only when a bit of the key is 1. If, in a
side-channel analysis, a point addition is distinguishable from a point doubling,
then the bits of the secret key can be determined; this has been demonstrated ex-
perimentally using timing and power analysis [3, 4]. Techniques for counteracting
this problem include: performing dummy operations, such as a point addition,
each iteration [5]; using alternate point multiplication algorithms, such as Mont-
gomery point multiplication [6]; using alternate curve parameterizations, such as
the Jacobi or Hessian forms; and unifying the algorithms for point addition and
point doubling so that they use the same sequence of field operations and hence
are indistinguishable; it is this last technique that we address in this paper.

A unified formula for point addition and point doubling, in which point addi-
tion and point doubling use the same sequence of field operations, was first given
by Brier and Joye [7] in affine and projective form. Walter [8] demonstrated a
theoretical side-channel attack on the formula of Brier and Joye that, instead
of exploiting any irregularity in the sequence of field operations performed, ex-
ploits an irregularity in the implementation of the field operations themselves in
the context of the unified point addition formula. A subsequent paper of Brier,
Déchene, and Joye [10] offers an infinite family of unified point addition formulae
in affine form.

In this paper, we give a projective version of the unified point addition for-
mula of Brier, Déchene, and Joye. Whereas Walter’s attack used the occurrence
of the conditional subtraction in a Montgomery field multiplication, we note that
a conditional addition (in any field representation) is also an integral step of field
subtraction. A typical algorithm for computing prime field subtraction is given
in Fig. 2; the conditional addition is step 2.3

3 Similarly, a field addition contains a conditional subtraction, however our techniques
of Sec. 5 do not make use of this conditional subtraction.

We find that the ability to detect the occurrence of the conditional addition
in field subtractions in both the affine and projective form decreases the amount
of work necessary to recover the key. In the projective case in Montgomery
representation, the effect is substantial when combined with Walter’s original
attack, and in some cases the key for a 192-bit elliptic curve over a prime field can
be recovered in about 2 hours. From this observation we conclude that a secure
implementation requires constant-runtime field operations, not just unified point
arithmetic.

We also provide some performance results for the various unified formulse
and discuss the applicability of timing attacks. It appears that even though uni-
fied point addition and unified point doubling algorithms have slightly different
runtime, the timing difference is not large enough to be exploited.

Input: Integers a,b,q such that 0 <a,b<q—1.
Output: Integer ¢ such that c=a —b mod gand 0 <c < qg— 1.

1. c—a—>b
2. if c<0then c<—c+gq

Fig. 2. Field subtraction algorithm

This paper is organized as follows: Section 2 provides a short introduction to
elliptic curve cryptography. In Sec. 3, we describe the unified formula of Brier
and Joye and describe an attack by Walter. In Sec. 4, we describe the family of
unified formulz in affine coordinates given by Brier, Déchene, and Joye and give
our derivation of the formula for projective coordinates. In Sec. 5, we present an
extension of Walter’s attack, analyze its effect on the formulee and discuss coun-
termeasures. Section 6 contains performance results and discusses the possibility
of timing attacks on double-and-add projective unified point multiplication.

Throughout the body of this paper, we derive formulz only for elliptic curves
over prime fields. Formulz and results for elliptic curves over binary fields are
given in the appendix. We have omitted the discussion of curves over binary
fields from the main text because the attacks of Sec. 5 do not apply.

2 Background

For a field IK, the Weierstrafl form of an elliptic curve is given by the equation
E ik cy Farzy + asy = 2 + asx® + asx + ag (1)

For fields of characteristic other than 2 or 3, the equation of the curve can be

simplified to

v =a4+ar+b . (2)

The set of points on the curve, joined with the point at infinity O, forms an
abelian group, denoted E(IK); the point at infinity serves as the identity element
in the group. Two points P = (z1,y1) and @ = (x2,y2), P # @Q, can be added
to obtain a third point P + Q = (z3,ys), where

1‘3:/\2—l‘1—$2 (3)
ys = AMz1 — 23) — 11 (4)
=TT
e i p=Q

2y1

Because A is defined differently depending on whether or not P = @, the formula
for point addition differs from the formula for point doubling.

The formula given above uses affine coordinates. The formula for A requires
an inversion, which can be computationally expensive in practice. This has mo-
tivated the development of formulee using projective coordinates. In this case, a
point is represented by three coordinates, P = (X,Y, Z), with « = X/Z and
y = Y/Z. The denominator is carried through all of the point additions and
point doublings comprising a point multiplication, and only at the end is the in-
version Z~! computed to return the final result to affine coordinates. While this
technique may require more field operations such as multiplications or squarings
in each point addition or doubling, it may be more efficient provided the cost
of inversion is higher than the cost of the additional field multiplications and
squarings.

3 Unified Formula of Brier and Joye

The formula for A in (5) when P # 4@ cannot be used for point doubling
because 1 = x5 in that case and the denominator is 0. Starting with the point
addition form of A, Brier and Joye [7] use a series of algebraic manipulations to
obtain a form of A that is defined for both point addition and point doubling:

(v1 +22)? — 122+ a
Y1+ y2

A=

, ifyr +y2 #0 . (6)

This formula for A is only defined when y; +y2 # 0. Brier and Joye subsequently
derive a projective formula for point addition using this unified value of A\, with
v = Xi/Zi,yi = Yi/Zi:

X3 =2FW , Y3=R(G—2W)—L?, Z3=2F, (7)
where U1 = XlZQ,UQ = X2Z1,Sl = leQ,SQ = i/vQZl,Z = 21227T = U1 +

Uy, M =8, +8,F = ZM,L = MF,G = TL R = T? — U1Uy + aZ?, and
W = R?—@. This formula requires 13 field multiplications and 5 field squarings.

3.1 Walter’s Side-Channel Attack

Walter’s side-channel attack [8] is a theoretical attack that assumes the oc-
currence of a conditional subtraction in a Montgomery modular multiplication
operation can be detected. This attack should be considered successful if a non-
negligible proportion of the keys can be computed significantly faster than an
attack on the whole keyspace. We will see that in some cases, the attack becomes
practical as a (relatively) high proportion of keys can be found with (relatively)
few computations.

Montgomery’s modular reduction technique [6] replaces the modular reduc-
tion step after each multiplication with a less expensive step, leaving a result
that is not completely reduced. This partial results can be used again in further
operations, with the expensive modular reduction step being left for the end.
Though Montgomery’s technique is not efficient for a single modular multiplica-
tion, it is effective when amortized over a long sequence of operations, such as a
point multiplication.

Montgomery multiplication is implemented as follows (c.f. [11]). Let ¢ be
an odd prime, and let R > ¢ with ged(R,q) = 1; it is often convenient to
choose R = 2", where W is the word size of the computer architecture. For an
input z < Rq, Montgomery reduction gives zR~! mod ¢. Montgomery modular
multiplication is given by Fig. 3.

Input: Integers ¢, R,z ¢ with ¢ = —¢~' mod R, R > ¢, 0 < z < Ry.
Output: Integer ¢ such that ¢ = zR™' mod ¢, 0 < ¢ < q.

1. c+ (z+ (2¢ mod R)q)R™!
2. ifc>qgthenc«—c—gq

Fig. 3. Montgomery modular multiplication algorithm

Walter considers the effect of being able to detect the conditional subtraction
in step 2 of Fig. 3 in a point multiplication using the unified formula of Brier
and Joye. In the projective formula of (7), for a point doubling, the computa-
tions of U; and U, are identical, as are the computations of S; and S;. For a
point doubling, the occurrence of a conditional subtraction in the Montgomery
multiplication for U; must be the same as that for Us. Thus, if a conditional
subtraction is observed in the computation of one of U; or Us but not the other,
then a point doubling could not have occurred and the operation must be a
point addition. (The same argument allows the computations of S; and Sy to
distinguish a point addition.)

We must now determine the probability pqis; of distinguishing a point ad-
dition from a point doubling. Walter showed [8, (4)] that, in the multiplication
multiplication of two independent randomly distributed residues X and Y with
uniformly distributed Z, the probability of a conditional subtraction occurring is

Psub = iq2_Wt, where ¢ is the prime and 2="* is chosen as in the description of
Montgomery modular multiplication above. In practice, g is often very close to
2"t 50 psu, ~ 1/4. For this value, the probability that a conditional subtraction
occurs in the computation of one of Uy, Us but not the other (and similarly for
Sy and Ss) is

3

Pdiff = 2psub(1 - psub) ~ g . (8)

Hence, the probability that the occurrence of conditional subtractions in the
computations of Uy, Us, S1, and Sy can be used to distinguish a point addition
from a point doubling is

39
Pdist — 1-— (1 — pdiff)2 ~ — =~ 0.61 . (9)

64
It is possible to improve this value in certain cases. Walter considers the
following scenario: If, over a number of samples of point multiplications, the
input point is randomly distributed, then in about one out of 512 samples there
will be a input point of the form P = (%6(1, %q, i—gq). For a point of this special
form, the probability that a point addition can be distinguished from a point

doubling is
188703

Pdist =~ M ~0.72 . (10)

In the sequence of operations in a double-and-add point multiplication algo-
rithm, the position of a point addition determines the point doublings on either
side of it. Let n be the size in bits of the prime field. Given pgist, the total number
of determined operations is:

g(n - 1)pdist - (TL - 2) (;pdmt) . (11)

Walter provides a worked example for the NIST 192-bit prime curve [12].
For this curve, the prime is of a special form g = 2'°2 — 2% — 1 and the natural
choice for Montgomery multiplication is 2W* = 2192 s0 ¢2="* is very close to
1. Using paist in (10), the total number of determined operations given by (11)
is approximately 181.6 out of an expected total of %(n — 1) = 286.5 operations,
leaving 104.9 unknown operations. Of these, approximately 1 (n—1)(1 — paist) =
26.8 are point additions. Walter concludes that a brute-force search through this
space of possible keys requires an expected (12064_'89) ~ 2868 point multiplications.

Walter’s analysis provides additional means of decreasing the key space to
be searched, including substring restrictions on the possible sequence of point
additions and point doublings; furthermore, for the point addition operations
which were not distinguished, some combinations of conditional subtractions
are more likely than others, and this can also reduce the key space. These two
techniques allow the size of the effective keyspace in the example to be reduced
to below 2°6.

The probabilistic analysis given above does not give the best estimate of the

number of determined operations. In experiments, Walter [8] found that, with

a set of 512 samples, it is most efficient to just pick the sample that has the
most number of distinguished point additions. This approach, combined with
the substring restrictions given above, can give effective keyspaces for a 192-bit
prime curve of size just 2'76, which can be easily searched.

4 Unified Formula of Brier, Déchene, and Joye

4.1 Affine Coordinates

The unified point addition formula of Brier and Joye from the previous section
is defined when y; + y2 # 0, which always holds in the case of point doubling,
but it is not applicable to all possible point additions. Izu and Tagaki [9] showed
that in some settings these special cases of the point addition could be used to
reveal the key. This concern lead Brier, Déchéne, and Joye [10] to develop an
infinite family of unified point addition formulae which are defined for all points.
Let m = m(z1,y1; ¥2,y2) be an arbitrary polynomial, and define
m = m(x1,y1; T2, y2) = m(x2,y2;21,y1). Recall that we are only concerned with
elliptic curves over prime fields. Let

xT xT 27w xT a — m .
A, = { e szyzi(i—iiyﬁn = ; ifyr+y2 + (21 —22)m #0 (12)
m 1+x2) —z1x2tat(y2—y1)n . ~
. xszrszrx(inwS}ﬁ% .)m’ ify +y2 + (Ig - wl)m #0
These formula are defined for all points except those which satisfy
y1+ya+ (1 —x2)m=0=y; +ya + (k2 —x1)M . (13)
If z1 = x9, then y; = —yo and hence) = —P, so the addition formula is not

needed. If x1 # x5, then m 4+ m = 0. Thus, if we require that m satisfies the
condition

[(m+m=0)= (21 =22)] , (14)

then)\, is well-defined. There is an infinite family of equations satisfying this
condition:
mp = (:L‘l — I'Q)Qk . (15)

For efficiency purposes, we can choose m = my = 1. In this case, we get the
following unified formula for A:

(@) —mas a4 (—1)°(yr — y2)
A== y1+y2 + (—1)°(z1 — z2) s Yy (=1) (@1 —22) 7(?2)

where 6 = 0 when y; + y2 + 1 — 22 # 0 and § = 1 otherwise.
Unified point addition using A = A; requires 2 field multiplications, 2 field
squarings, and 1 field inversion.

4.2 Projective Coordinates

To mitigate the high cost of field inversion compared to the cost of field multi-
plication, points are expressed in projective coordinates so that field inversion
need only be done once per point multiplication rather than at each intermediate
point addition or point doubling.

We now obtain a projective form of the unified point addition formula given
by A as defined in (16). We begin by noting that since P + @Q = @ + P, the
value for y in (4) is symmetric and hence 2ys = A(x1 + z2 — 2x3) — (y1 + Y2)-
Letting x; = X;/Z, y; = Y;/Z and completing the square in the numerator of A,
we obtain:

X3 =2FW , Y3=R(G—-2W)—LFM , Zy=2F°, (17)

where Ul = Xle,UQ = XQZl,Sl = Y1Z2,SQ = nZl,Z = Z1Z27T = U1 +
Up, M = Sy + 85,V = (=1)°(Uy = Uz), N = (=1)°(S1 — S2),E = M + V,F =
ZE,L=FE,G=LT,R=T?-UUy+Z(aZ+N),and W = R?—G. Note that
6 =0 when S; + S5 +U; — Uy # 0 and § = 1 otherwise. This formula requires
16 field multiplications and 3 field squarings.*

5 Extending Walter’s Attack

5.1 Conditional Modular Reduction Attack

Walter’s original attack in Sec. 3.1 assumed that the conditional subtraction at
the end of Montgomery multiplication could be detected. We extend this idea
by assuming that the conditional subtraction (or addition) at the end of a field
addition (or subtraction) can be detected. For field subtraction as given in Fig. 2,
the conditional addition is step 2.°

We will observe later in this section that there are some modular subtractions
in the unified point addition algorithms where, in the case of a point doubling,
the arguments are equal and hence the result of the subtraction is zero, i.e. when
a = b we are computing a —b mod g as a — b = 0. In this case, a conditional
addition in field subtraction is never performed. However, if we observe the
occurrence of a conditional addition for the operation a — b, then it must be that
b > a and hence the operation in question must be a point addition.

4 The multiplication by (—1)6 in the computation of V and N can be implemented
with conditional branching (if statement).

® In implementation, this is common. For example, the OpenSSL [13] library provides
a function BN_mod_sub_quick which performs exactly the operations in Fig. 2, and
similarly for field addition. When reduction is done using the Extended Euclidean
Algorithm, as in OpenSSL’s BN_mod_sub function, and the value to be reduced is
strictly between —q and q, the sequence of steps performed is effectively the same
as Fig. 2 and includes a conditional addition.

5.2 Effect on affine formul= of Sec. 4.1

The affine formulae of Brier, Déchéne, and Joye in (16) requires the computa-
tion of y; — y2 and x1 — xo. If all of the coordinates are distributed uniformly at
random, then the probability that a conditional addition is necessary in the com-
putation of y; —y2 is 1/2, and similarly for 21 — zo. In this case, the probability
that a point addition can be distinguished is paiss = 1 — (1 — 1/2)2 = 3/4.

We first note that even when additions and doublings cannot be distin-
guished, a side channel attack will reveal the number of operations performed in
the point multiplication. If the key length is known, then knowing the number
of operations gives the number of additions (since the number of doublings is
fixed by the key length). To simplify the analysis, we will consider only keys of
the most common length. This does not mean that the attack cannot work for
other key lengths, but rather that it is more difficult to bound the work required
to determine the key.

If ¢ is between 3-2"~! and 3- 2", then the most common key length is r and
occurs for p;—, > 1/3 of the keys (integers) between 0 and ¢. This probability is
maximal if ¢ is close to 2”1, in which case pj—, ~ 1/2 of the keys have length
r. If there are k additions of which k; are not identified, then we can consider
the key-space to search as the set of sequences of r — k “zeros” and k; “ones”.
These sequences are combined with the identified additions of the double and
add sequence to give a list of possible keys (the substring structure will often
remove a number of sequences). The number of possible keys is then bounded
by (“ifkl), which in turn is bounded by (,:1).

If we assume that all keys of length r are possible (which is true if ¢ >
2"~1 —1), the probaiblity that a key of length 7 uses k additions is (). Given
a key with k additions, the probability that k; of them are not identified is
(k}‘;)(pdist)k‘kl(l — paist)**. The probability that exactly k; additions are not
identified in a key of length r is therefore

~ (r\1(k k—k k
- o is H1- is !
Pk, E <k> o <k1)(pd)" (1 = paist)
18 k1 r— k —
- E pd t ((1) pdlst)k k1

_<1 pdm () ’“<k1> ;
=) (passr)
k1 i—0

K2

(1= paist)™ (7 —k
= 1 i T 1
or kl (+ Pd st)

_ r 1- DPdist 1 1 ~+ Ddist Tk (18)
kq 2 2 '

Although the average number of unidentified addition is (1 — paist)r/2 = /8,
some keys will have fewer additions remaining to be identified.

For our 192-bit prime field example curve, we have » = 191 and we get an
average of 23.9 additions remaining to be identified, so the search space is still
quite large. However, the analysis has been done assuming that the additions in
a point multiplication are independent. This may not be strictly true as x; and
y1 (the z and y coordinates of the base point) are the same for all the additions.

In one-eighth of point multiplications kP, the xz-coordinate of the base point
P will take on a value between 0 and %q and will have an average value of 1—16(].
We take the notation that in the double-and-add point multiplication algorithm
the fixed base point P is the first argument to the unified point addition formula.
In the computation of 1 — x5 in (16), over the course of a point multiplication
xo will be uniformly distributed and thus it is expected for }—g of the point
addition operations that xs > x; and a conditional addition occurs. We do not
put any condition on the y-coordinate of P and assume that the size of y; can be
considered independent from the size of x;. In this case, the probability that a
point addition can be distinguished is the probability that a conditional addition
occurs in either the computation of 1 — x5 or y; — yo:

15 1 31
pdist—1_<1_16> (1—2>—32 (19)

Using paist in (19), the expected number of additions remaining to be identified
decreases to 2.99. We can then conclude that a significant proportions of keys
of length r will be left with at 3 or fewer unidentified additions (using the
distribution in (18), we find that 1 in ~ 24.6 of all keys satisfy that condition).
The number of possible keys is then bounded (loosely) by (121) ~ 220-1,

With point multiplication using the modified Jacobian wNAF algorithm with
w = b, the fastest point multiplication technique listed in Table 2, it would
take 116.5 minutes on an 900 MHz UltraSPARC III to search a keyspace of size
220-1 Hankerson, Menezes, and Vanstone [11, §3.7] provide a survey of point

multiplication algorithms with even faster performance.

5.3 Effect on projective formulze of Sec. 4.2

Just as for affine formulee, there are two operations in the projective formulae of
(17) where we can take advantage of the ability to detect a conditional addition
in a field subtraction. Without loss of generality, suppose § = 0. Consider the
calculations V- = U; — Us and N = S; — S3. In the case of a point doubling,
Ui = Uy and S7 = S5, so no conditional addition will occur in the calculation
of either V' or N. However, in the case of a point addition, U; and Uy will be
uniformly distributed over 0O, ..., p—1 and so with probability p,qq = %, Us < Us
and a conditional addition is needed in the computation of V' = U; — Uy (sim-
ilarly for N = S; — Ss). Moreover, the occurrence of a conditional addition in
the computation of V' is independent of the occurrence for N. If a conditional
addition is observed in at least one of these computations, then the operation is
known to be a point addition, revealing the key bit. The probability of distin-
guishing a point addition is again 1 — (1 — paqa)? = 3/4. It should be noted that

10

taking advantage of base points of a special form is not possible here as Uy, Us,
S1 and S5 all depend on both of the points of the addition, so the probabilities
of identifying point additions are independent from each other.

If the field is implemented using Montgomery representation, Walter’s orig-
inal attack [8] on detecting conditional subtractions in Montgomery reductions
still applies to this projective formula. The detection of a conditional subtraction
is used to distinguish a point addition from a point doubling in the computation
of Uy as compared to Us, and of S; as compared to Ss. We can combine the two
sources of information (conditional additions in the field subtractions and dif-
ferences in conditional subtractions in the Montgomery reductions) to increase
the probability of success.

We now have four different conditional events which distinguish a point ad-
dition from a point doubling:

1. conditional subtraction in computation of one of Uy, U but not the other,
2. conditional subtraction in computation of one of S,.So but not the other,
3. conditional addition in computation of N = U; — Us, and

4. conditional addition in computation of V = 57 — Ss.

Each of these events occurs independently, so the total probability of distin-
guishing a point addition from a point doubling is

paist = 1 — (1 — pada)*(1 — paier)® (20)

If we assume no special knowledge on the base point of the point multipli-
cation, i.e. paaa = 1/2 and paig ~ 3/8, we get paiss ~ 231/256 ~ 0.902. From
the distribution obtained in (18), we have an average of ~ 0.049r unidentified
additions.

If we look for base points of a special form as in Walter’s attack for the
formulz of Brier and Joye, the increase in the probability of success is relatively
small. With a point of the form ~ (%q, 1—16q, %q), we get paig ~ 0.93 and the
expected number of unidentified addition decreases to ~ 0.035r. This decrease is
small considering that we have to restrict ourselves to 1 in 512 point. In this case,
it is much more practical to consider all base points and take advantage of the
variability. For example, for a field of 192 bits, 15.4% of all point multiplications
have 6 or less unidentified additions, while the special base points (1 in 512)
have 6.7 unidentified additions on average.

Table 1 gives estimates for the attack at various field sizes. At each field
size, we give the average number of additions remaining to be identified. We
also evaluate the costs of the attack when we give a bound on the maximum
number of additions remaining to be identified (we chose 3 and 6 as examples)
before the key is attacked. In each case, we give the expected number of point
multiplications that must be observed before finding such a key and a (loose)
upper bound on the size of the remaining keyspace. We assume that general
points are considered, so pgist =~ 0.902, and that all keys have size r. To take
other key sizes into account, the expected number of keys required should be
multiplied by a factor between 2 and 3 (depending on the ratio ¢/2") if keys of
length other than r are assume to give a failure.

11

Table 1. Expected number of operations using conditional modular reduction attack,
using pdist as in (20).

field size in bits (r+1) 160 192 224 256 384 512

average missing additions: 7.76 9.33 10.89 12.45 18.70 24.95

at most 3 unidentified additions:
expected number of keys required: 21.8 66.6 217 746 2171 9252
bound on the keyspace: 9193 920.1 920.8 9214 9231 5244

at most 6 unidentified additions:
expected number of keys required: 2.96 5.82 12.8 30.9 2109 9178
bound on the keyspace: 9342 9359 9372 9384 9dl9 oddad

Just as in Walter’s analysis [8] it is possible to decrease the key space remain-
ing to be searched, for example by using substring restrictions on the possible
sequence of point additions and point doublings.

5.4 Countermeasures to the Conditional Modular Reduction Attack

The success of the Conditional Modular Reduction attack depends on informa-
tion leaked on the size of intermediate values which is observed based on the
field subtraction having a conditional addition. If the field subtraction were to
have constant runtime, for example by inserting a dummy addition to offset
the conditional addition, then the attack would not apply. However, inserting
dummy operations may increase the susceptibility of the algorithm to differential
side-channel attacks.

Another countermeasure would be to replace an operation a—b mod ¢ with a
sequence of instructions that determines which of a and b is larger, subtracts the
smaller from the larger, and then flips the sign of the result. In most software
implementations, the sign of a number is stored in a different register than
the value of the number, so flipping the sign of a number is a single machine
instruction; the difficulty is now in detecting a single instruction compared to a
multi-precision integer addition.

A third countermeasure consist in taking the field reductions (both Mont-
gomery reductions and addition/subtraction of a multiple of ¢) as independent
operations from the multiplications, squarings, additions and subtractions and
rewrite the unified formulae in consequence. This means we will accept that some
of the values used during the computations may be greater than ¢. Although this
approach removes any danger of an attack based on variations in the field arith-
metic, it may have a negative impact on the efficiency, in particular when the
field size is close to a multiple of the word size.

At this point we should also note that choosing 6 = 0 or 6 = 1 requires the
comparison of two field elements, so at least these two must be fully reduced.
Since repeated operations or even a change from addition to subtraction could

12

potentially lead to an attack, we choose § to ensure that %(ml +xo+yr +y2) #
Ty _s instead of y; +yo + (—1)? (21 — 22) # 0 (the two conditions are equivalent,
but the computations required for the first test are more uniform).

For simplicity, we will assume the field is in Montgomery representation.
We distinguish Montgomery reductions (denoted MontRed(-)) and g-reduction
where multiples of ¢ are added/subtracted (denoted reduce(-)). To avoid all
possible extensions of the attack, we prefer to err on the side of caution and
implement the field operations as follows:

— Products (and squares) are not reduced unless stated.

— Sums are not reduced unless stated.

— Subtractions never contain a conditional addition (a fixed multiple of ¢ is
always added to the first operand before doing the subtraction).

— If an integer is to be g-reduced, then it is at least as large as q.

— For the affine formula, inversion accepts any integer between 1 and 6q — 1
and coprime to ¢ and returns an integer between 1 and ¢ — 1.

— Montgomery reductions are allowed to return an output between 0 and 2¢—1.
They accept inputs between 0 and 6¢* for affine coordinates (R > 6q) and
between 0 and 16¢> for projective coordinates (R > 16q).

— The multiples of ¢ used in the formulae are pre-computed.

For the affine formula, we get the algorithm in Fig. 4. For the projective
formula, we let the X, Y and Z coordinates be in the range [0,2¢ — 1] and
obtain the algorithm in Fig. 5. Note that by construction (z; + x2)2 > x1T3, SO
the pre-reduction result in step 8 of the affine formula is indeed positive (similarly
for step 14 in the projective formula)

Input: Points P = (z1,¥y1) and Q = (z2,¥2), P # Q.
Output: Point (z3,y3) = P + Q.

E—x1+uy1+y2+ 22

if £ is odd, then F «— E + 3¢, else F' +— E + 2¢q
G — reduce(F/2)

if G # 2, then § < 0, else § — 1
H«— F — 2.%2,5

I—H ! modgq

J— 21+ 22

K «— MontRed(J2 — 1 - T2)

L «— reduce(2q + K + a + Y146 — y2—5)
A= MontRed(L - I)

M « MontRed(\?)

x3 «— reduce(3q + M — x1 — x2)

N — MontRed(\ - (¢ + x1 — x3))

ys— 29+ N —uy

N e

== = = = O
N = o

Fig. 4. Affine coordinates uniform point addition formula

13

Input: Points P = (X1,Y1,71) and Q = (X»,Y2,22), P # Q.
Output: Point (X3,Y3,7Z3) = P+ Q.

1. [71<—X1'Z2,U2<—X2'Zl,5¥1<—Y1~Z2,S'2<—Y2-Zl

2. T=01+0,

3. M — MontRed(S: + Sz +T)

4. if M is odd, then V «— M + 3q, else V «— M + 2q

5. C — reduce(V/2)

6. B — reduce(p + MontRed(Us))

7. if C'# B, then 6 < 0, else § — 1

8. E — V — MontRed(2Us_s)

9. Z — MontRed(Z - Zs), T — MontRed(T)

10. F — MontRed(Z - E), Uy — MontRed(U,), Uy — MontRed(U>)

11. L — MontRed(F - E)

12. G «— MontRed(L - T)

13. K «— 2q+ MontRed(a - Z + S14s5) — MontRed(Sa_s)

14. R« MontRed(Z - K +T? — U, - Us)

15. H — MontRed(R?)

16. W — reduce(3¢ + H — G)

17. X3 <« MontRed((2F) - W)

18. J «— MontRed(F?)

19. Z3 «— MontRed((2F) - J)

20. N «— MontRed(F - M)

21. Y3 < 29 — MontRed(R- (2¢+2W —G)+ L-N)

Fig. 5. Projective coordinates uniform point addition formula

6 Timing

The timings in this section were performed on a 900 MHz UltraSPARC III using
the multi-precision integer and elliptic curve libraries from NSS 3.9 [14] with no
optimized assembly code. To obtain high-resolution timings, we used the Solaris
hrtime C library, which has a resolution of 100ns. We use the 160-bit prime
field curve secp160r2 [15].

On our test system, the average time of a 160-bit prime field modular sub-
traction a —b mod ¢ when a > b is about 320ns. When a < b, and hence when
a conditional addition is required, the average time is about 550 ns.

Table 2 gives performance timings for point operations using the unified point
addition and doubling formulse given in this paper as well as other schemes.
Point multiplications for all fomulse except Jacobian projective and modified
Jacobian wNAF use the double-and-add technique. The timings in the table are
the average of 10° operations.

Table 3 gives average timings and standard deviations for point additions
and point doublings in the course of a single point multiplication. The results

14

Table 2. Average point operation timings for secp160r2 curve.

Formula Addition Doubling Multiplication
BDJ affine, m =1 126.5us 126.2 us 29.03 ms
BDJ projective 58.9 us 58.5 us 13.99 ms
BJ projective 49.8 us 49.5 us 11.76 ms
Affine 115.7pus 118.4 us 27.89 ms
Jacobian projective 7.95ms
Modified Jacobian wNAF, w =5 6.22 ms

were obtained by recording the time of each addition or doubling in a single
point multiplication using the double-and-add algorithm.

Table 3. Individual point operation timings from a single point multiplication for
secpl60r2 curve.

Formulae Operation Average Standard Deviation

unified addition 126.528 us 4.094 pus =~ 3.2%
BDJ affine, m =1 unified doubling 126.155 pus 3.700 us ~ 2.9%

difference 0.373 us ~ 0.3%

unified addition 58.992 us 0.474 ps ~ 0.8%
BDJ projective unified doubling 59.307 us 0.448 us ~ 0.75%

difference 0.315 us =~ 0.53%

In the top half of Table 3, timings are given for point addition and doubling
using the affine formule of Brier, Déchéne, and Joye. A unified doubling takes
slightly less time than a unified addition on average, but difference between the
two operations (0.3%) is one-tenth the size of the standard deviation of either
operation, so the timings of the two operations cannot be reliably distinguished.

In the bottom half of Table 3, timings are given for point addition and dou-
bling using the projective formulae developed in Sec. 4.2. A unified doubling takes
slightly more time (0.53%) than a unified addition. The standard deviation of
either operation, at 0.8% for addition and 0.75% for doubling, is less than twice
difference.

For the affine formulae, unified addition is slower than unified doubling, but
the situation is reversed for the projective formulse. This phenomenon may be
particular to the compiler and processor used.

For both the affine and projective formulse of Brier, Décheéne, and Joye in
Table 3, the average difference in timing between a point addition and point
doubling is too small compared the standard deviation to be of practical use

15

on its own. However, we do not dismiss the fact that this information may be
helpful when combined with other side-channel information.

Acknowledgments

We are grateful to I. Déchene for her insight on unified formulse and other helpful
comments. We also thank N. Gura of Sun Microsystems Laboratories for his
advise on how to perform high-resolution timings on Solaris. D.S. is grateful
of the hospitality of S. Chang of Sun Microsystems Laboratories where he was
resident during this research.

16

References

10.

11.

12.

13.

14.

15.

16.

. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)

203-209

Miller, V.: Use of elliptic curves in cryptography. In Williams, H.C., ed.: Advances
in Cryptology — Proc. CRYTPO ’85. Volume 218 of LNCS., Springer-Verlag (1986)
417-428

Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Koblitz, N., ed.: Advances in Cryptology — Proc. CRYPTO ’96.
Volume 1109 of LNCS., Springer-Verlag (1996) 104-113

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In Wiener, M., ed.:
Advances in Cryptology — Proc. CRYPTO ’99. Volume 1666 of LNCS., Springer-
Verlag (1999) 388-397

Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Cetin K. Kog, Paar, C., eds.: Cryptographic Hardware and Embed-
ded Systems (CHES) ’99. Volume 1717 of LNCS., Springer-Verlag (1999) 292-302
Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44 (1985) 519-521

Brier, E., Joye, M.: Weierstra$} elliptic curves and side-channel attacks. In Nac-
cache, D., Paillier, P., eds.: Public Key Cryptography — PKC 2002. Volume 2274
of LNCS., Springer-Verlag (2002) 335-345

Walter, C.D.: Simple power analysis of unified code for ECC double and add. In
Joye, M., Quisquater, J.J., eds.: Crytpographic Hardware and Embedded Systems
(CHES) 2004. Volume 3156 of LNCS., Springer-Verlag (2004) 191-204

TIzu, T., Takagi, T.: On the Security of Brier-Joye’s Addition For-
mula for Weierstrass-form Elliptic Curves Technical Report, Technis-
che Universitdt Darmstadt, Available online: http://www.informatik.tu-
darmstadt.de/T1/Veroeffentlichung/ TR/

Brier, E., Déchene, 1., Joye, M.: Unified point addition formule for elliptic curve
cryptosystems. In Nedjah, N., de Macedo Mourelle, L., eds.: Embedded Cryp-
tographic Hardware: Methodologies and Architectures. Nova Science Publishers
(2004) 247-256

Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag (2004)

National Institute of Standards and Technology: Recommended el-
liptic curves for federal government wuse (1999) Available online:
http://csre.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf.

OpenSSL Project: OpenSSL v0.9.8 (2005) Available online:
http://www.openssl.org/.

Mozilla Foundation: Netscape Security Services (NSS) v3.9 (2005) Available online:
http://www.mozilla.org/projects/security/pki/nss/.

Certicom Research: SEC 2: Recommended elliptic curve domain parameters (2000)
Available online: http://www.secg.org/.

Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of elliptic
curve cryptography over binary fields. In Cetin K. Kog, Paar, C., eds.: Crytpo-
graphic Hardware and Embedded Systems (CHES) 2000. Volume 1965 of LNCS.,
Springer-Verlag (2000) 1-24

17

A Elliptic Curves over Binary Fields

A.1 Background

For fields of characteristic 2, the equation of an elliptic curve can be simplified
to:

Emx:y’+ay=a"+az®+0b . (21)

Two points P = (z1,y1) and @ = (x2,y2) can be added to obtain a third point
P+ Q = (x3,ys3), where

T35 =N 4+ Atz +12+0a (22)

ys = ANz1 +23) + 23 + 11 (23)

N =T

T+ %, if P=qQ

A.2 Unified Formula of Sec. 3

The unified form of A for point addition and doubling for curves over binary
fields is:

(z1 + 22)% + 1122 + a(z1 + 22) + 11
Y1+ Y2 + 22

A= , ifyr+ye+az2#0 . (25)
Point addition or doubling using the affine form requires 1 inversion, 4 multi-
plications, and 2 squarings; using a projective form requires 20 multiplications
and 3 squarings. In practice, a binary field inversion has the same computational
cost as about 10 field multiplications [16], so the affine form is faster than the
projective form.

A.3 Unified Formulse of Sec. 4

Let
xT xr 2 xr1x alx xT m .
Am = { . 2)221;9221‘1/1221(2311:122))?;:(?}1+y2) l ’ if Yy1+y2+ 22+ (1’1 + l’g)m 7é 0
) zf;;y;;l&l:;;))%(yl+y2)m, fy1 +y2 + a1+ (21 +22)M #0
(26)
These formulae are defined for all points except those which satisfy
y1+y2 + 22+ (1 +22)m=0=1y1 +y2 + 21 + (¥1 + 22)01 . (27)

For efficiency purposes, we can choose m = mg = 0. In this case, we get the
following unified formula for A:

r1TyY 2
(z14z2) Fr1zatalzr+o2)tys (28>

T2+y1+y2 ’

(z1+x2)’Fxizota(zi+oo)dys -
)\:)\O_ Tyity B 1f171+y1+y2#0
ifxo+y1 +y2#0

Unified point addition using A = Ag requires 4 field multiplications, 2 field squar-
ings, and 1 field inversion.

18

A.4 TUnified Formulse of Sec. 4.2

We now obtain a projective form of the unified point addition formula given by
A as defined in (28). Letting x; = X;/Z;, y; = Y;/Z; and completing the square
in the numerator of A, we obtain:

Xs=FW , Ys=R(LU+W)+ X3+ HES , Z3;=FH , (29)

where U1 = X1Z2,U2 = XQZl,S] = Y1Z2,SQ = }/2217Z = 21227T = U1 +
UM =8+ 8,E=M+U5,F =Z7ZE L=FEG=LT,H=F?R=
T? + UyUs + Z(aT + S2_5), K = FR+ G + aH, and W = R? + K. Note that
0 = 0 when M # U; and § = 1 otherwise. These terms were derived using
ys = AM(x1 + x3) + 23+ y1 but by symmetry of point addition could have equally
been derived using y3 = A(z2 + x3) + 3 + yo.

This projective formula requires 19 field multiplications and 3 field squarings.
In practice, a binary field inversion has the same computational cost as about 10
field multiplications [16] so the affine form of the unified point addition formulae
is faster than the projective form.

A.5 Application of Attack of Sec. 5

For the projective formula for unified point addition for curves over binary fields
as given in (29), Walter’s attack does not apply nor does our extension in Sec. 5.1.
Walter’s original attack does not apply because field multiplication in binary
fields is not implemented using Montgomery multiplication. Our extension does
not apply because no modular reduction operations are necessary in field addi-
tion.

19

