
Generic On-line/Off-line Threshold Signatures

Chris Crutchfield, David Molnar, David Turner, and David Wagner

University of California, Berkeley
{cyc, dmolnar, dbturner, daw}@cs.berkeley.edu

Abstract. We present generic on-line/off-line threshold signatures, in
which the bulk of signature computation can take place “off-line” during
lulls in service requests [6]. Such precomputation can help systems using
threshold signatures quickly respond to requests. For example, tests of
the Pond distributed file system showed that computation of a threshold
RSA signature consumes roughly 86% of the time required to service
writes to small files [12]. We apply the “hash-sign-switch” paradigm of
Shamir and Tauman [16] and the distributed key generation protocol
of Gennaro et al. [7] to convert any existing secure threshold digital
signature scheme into a threshold on-line/off-line signature scheme. We
show that the straightforward attempt at proving security of the re-
sulting construction runs into a subtlety that does not arise for Shamir
and Tauman’s construction. We resolve the subtlety and prove our sig-
nature scheme secure against a static adversary in the partially syn-
chronous communication model under the one-more-discrete-logarithm
assumption [2]. The on-line phase of our scheme is efficient: comput-
ing a signature takes one round of communication and a few modular
multiplications in the common case.

Keywords: On-line/Off-line, Signature Schemes, Threshold Cryptogra-
phy, Chameleon Hash Functions, Bursty Traffic.

1 Introduction

We present generic on-line/off-line threshold signatures to improve the perfor-
mance of threshold signature schemes, and we show how to construct such signa-
tures from existing threshold signature schemes. In a threshold signature scheme,
given a group of n players, and a threshold t < n, no subset of the players of size
at most t can generate a signature. In other words, unlike standard signature
schemes — in which a single player must protect his or her secret key — at most
t of the n players in a threshold signature scheme may be compromised without
endangering the security of the signature scheme.

Threshold signatures have been applied in several areas to avoid concentrat-
ing trust in any single entity. For example, OceanStore [10, 12] is a large-scale
distributed data storage system that requires the computation of threshold sig-
natures by an “inner ring” of servers for performing a Byzantine agreement when
writing a file. Latency tests in Pond [12], the OceanStore prototype, show that
for a 4 KB write, 77.8 ms out of 90.2 ms total time to service the write operation

is spent on computing Shoup’s RSA threshold signature scheme [17]. Therefore,
computation is the dominant factor; although network communication and local
file system access contribute to the time, the bulk of the contribution to service
time comes from computing the threshold signatures [12].

Optimizing threshold signature computation is particularly important for
distributed file systems because small file writes are common [14]. For example,
Baker et al. found that for a file trace from the Sprite file system, 80% of all
sequential transfers were less than 2300 bytes in length [1]. For larger files in
Pond (2 MB), there is little change in the time spent computing the threshold
signature; instead, the time spent on writing the file dominates the threshold
signature time. Even so, because threshold signature computation takes up 86%
of the time to service a small write in Pond, optimizing this computation im-
proves the common case. Threshold signatures have also been applied as part of
other applications, such as distributed certificate authorities, so increasing their
performance can help these applications as well [20].

Our Approach. In an on-line/off-line scheme [6], servers can perform the bulk
of the computation in an off-line phase before even seeing the message to be
signed. The results of this precomputation are saved and then used in the on-
line phase when a message must be signed. Because distributed systems often
have “bursty” traffic, resources are available for such precomputation. For ex-
ample, during the day and evening, traffic is high, but during the night and
morning, traffic is low. Enabling threshold signatures to be computed off-line al-
lows systems such as OceanStore to build up a stockpile of precomputed values
while traffic is low. These values can be used to quickly sign messages later when
traffic is high. Furthermore, other distributed file systems have been observed
to have bursty traffic [15, 19], and so they can enjoy the benefits of our on-
line/off-line threshold signature scheme. Although there do exist on-line/off-line
schemes such as threshold DSS [8], our scheme has the advantage that any ex-
isting threshold signature scheme that is secure against random message attack
can be used with our on-line/off-line scheme to create a threshold scheme that
is secure against an adaptive chosen message attack.

The main idea of our scheme is to apply the “hash-sign-switch” paradigm of
Shamir and Tauman [16] to a threshold signature scheme. In this paradigm, we
make use of a chameleon hash function, which is a special type of two-argument
hash function CHHK(m, r) endowed with a public and secret key [9]. Knowledge
of the public key HK allows one to evaluate the hash function, while knowledge
of the secret key allows one to find collisions. Shamir and Tauman show that
any standard signature scheme can be converted to an on-line/off-line scheme
as follows: for the off-line phase, compute a standard signature on CHHK(a, r),
where a and r are chosen randomly. Then, at the on-line phase, given the message
m, use the secret key to find an r′ such that CHHK(m, r′) = CHHK(a, r). The
signature on CHHK(a, r) together with r′ then forms a signature on the message
m; in a sense, we “switch” m for the random value a. We refer to the signed value
of CHHK(a, r) as the signature stamp. If finding a collision in the chameleon

hash is more efficient than signing the message directly (as is the case for several
chameleon hash functions), this is a net performance win.

Overview of Our Construction. For our work, we focus on the specific
chameleon hash function CHHK(m, r) = grhm mod p with public key HK =
(p, g, h) and the secret key y is the discrete logarithm of h to the base g. We
show how to use the discrete logarithm distributed key generation algorithm of
Gennaro et al. [7] to perform chameleon hash key generation and computation
of the signature stamp. We then show an efficient distributed algorithm for find-
ing collisions with low overhead per player. We stress that no trusted dealer is
required by our scheme; given an underlying threshold signature scheme with
distributed key generation and distributed signing algorithms, we obtain a fully
distributed signature scheme.

We also show methods for guaranteeing the robustness of our scheme us-
ing zero-knowledge proofs for verification. We provide two variants. The first is
non-interactive and secure in the Random Oracle Model. The second uses an
observation of Damg̊ard and Dupont to obtain robustness at the cost of limited
interaction but is secure without random oracles [4]. In both cases, instead of
running verification each time a signature must be generated, we decide to forego
this step and be optimistic because, as observed in [4], the signature shares will
be correct almost always. If the signature created is not valid, then we can run
the verification procedure in order to expose the corrupted players. The full
details for our signature scheme appear in Sect. 3.

A Subtlety In The Proof. Surprisingly, the straightforward adaptation of
the proof of Shamir and Tauman for non-threshold on-line/off-line signature
schemes fails to establish security for our new on-line/off-line threshold scheme.
The subtlety is that in our scheme, the “signature stamp” value CHHK(m, r)
is disclosed to all players at the close of our off-line threshold phase, including
the adversary. While m and r are not disclosed, the output of the chameleon
hash must be broadcast to allow for “black-box” use of the underlying threshold
signature scheme in creating the stamp. As a result, any attempt at simulating
the adversary’s view of a signature query is “pinned down” by the value of the
chameleon hash encoded in the stamp. In contrast, Shamir and Tauman do not
reveal any chameleon hash values associated with a message to the adversary
until after a signing query for that message is made. Therefore, their reduction
is not “pinned down” in the same way and can easily answer adversary sign-
ing queries by simply evaluating the chameleon hash function on the queried
message. While this is not an attack on the threshold on-line/off-line scheme, it
shows that a new idea appears necessary to prove the scheme secure.

We resolve this subtlety by first introducing a new assumption for chameleon
hash functions, which we call the one-more-r assumption. Informally, the new
assumption says that given a sequence of random “challenge” outputs v1, . . . , vn

of the chameleon hash function, the adversary may adaptively pick values vi,
provide messages mi, and then learn ri such that CHHK(mi, ri) = vi. Then,

even given this extra information, the adversary has negligible advantage at
inverting the chameleon hash on any given challenge value not picked. We show
that this new assumption is sufficient to prove security of our scheme. Then we
justify the assumption in the case of the grhm mod p chameleon hash by showing
it is implied by the one-more-discrete-logarithm assumption of Bellare et al [2].
This establishes the security of our scheme based on a standard assumption. The
details for showing our scheme is existentially unforgeable and robust against a
static adversary are in Sect. 5.

Performance Results. We analyze the performance of our scheme in Sect. 6.
We show the cost of our off-line phase is dominated by the cost of the dis-
tributed discrete logarithm key generation protocol. While our off-line phase in
consequence requires several rounds of communication and computation, we ar-
gue that this overhead uses resources that would otherwise sit idle. If a new
request arrives at a server during a busy time, the servers can simply fall back
to directly computing a threshold signature.

Finally, we show that our optimistic on-line phase obtains a factor of O
(

k
t

)
improvement in computation compared to Shoup’s RSA threshold signature
scheme, where k is a security parameter, while also requiring only one round
of communication [17]. For example, with the parameters suggested for Pond,
this is a factor of 1024 improvement. Our scheme does, however, make a tradeoff
by incurring a larger cost in the off-line phase to obtain a quick on-line phase.

1.1 Previous Work

The first on-line/off-line signature scheme was developed by Even, Goldreich,
and Micali [6]. This scheme allowed for the conversion of any standard signature
scheme into a one-time on-line/off-line signature scheme. Their result, however,
increased the size of the signature by a quadratic factor. In order to mitigate
this, Shamir and Tauman [16] applied the results of Krawczyk and Rabin [9],
using chameleon hash functions to construct a one-time on-line/off-line signature
scheme that only increases the size of the signature by a factor of two. Although
smart cards appear to be an important application of on-line/off-line signatures
as noted in [6, 16], the application to bursty traffic has received little attention.

The origins of threshold signatures and threshold cryptography can be traced
back to Desmedt and Frankel [5]. Some examples of threshold signatures include
a robust threshold DSS signature scheme, which is an on-line/off-line scheme, by
Gennaro et al. [8], and a robust, non-interactive threshold RSA signature scheme
by Shoup [17]. The latter construction is the signature scheme implemented in
Pond [12], a prototype version of the OceanStore [10] design, and partly our
motivation for this paper.

1.2 Our Results

We compare our optimistic on-line/off-line threshold signature scheme with that
of Shoup’s signature scheme [17]. Shoup describes two variants of an RSA thresh-

Table 1. Comparison between Shoup’s Threshold RSA and our On-line/Off-line
Threshold Scheme where in this paper KDKG ∈ O(tk3)

Threshold Sig. Schemes: Shoup’s RSA Scheme Our On-line/Off-line Scheme

Key Generation O(k2nt log t + k3) + KRSA KOn/Off + KDKG

Off-line Phase None 3KDKG +O(k2) + τ

On-line Player O(k3) O(k2)

On-line Reconstruction O(tk3) O(t2k2)

On-line Rounds of Comm. 1 1

old signature scheme, and it is the first variant that we compare our scheme
against. In both schemes, let n be the number of players, t < n

3 be the thresh-
old1, and k ∈ N be a security parameter. Our construction requires 2t+1 players
to construct a signature and tolerates the participation of at most t corrupted
players. We analyze the bit complexity of both schemes using the following met-
rics and show the results in Table 1:

– Key Generation Complexity — Work done to perform key generation and
distributing private key shares among the players. Let KRSA denote the bit
complexity for generating the RSA public and private keys, let KOn/Off de-
note the bit complexity for generating public and private keys in our scheme,
and let KDKG denote the bit complexity for distributed key generation.

– Off-line Phase Complexity — Work done to perform precomputation, mean-
ing the computation performed for a signature before a message arrives.
Furthermore, let τ be the bit complexity for generating a standard threshold
signature.

– On-line Player Complexity — Work done by a player in computing its sig-
nature share when a message arrives. Note that all players compute their
signature share in parallel.

– On-line Reconstruction Complexity — Work done by the players in combin-
ing all of the signature shares and creating a signature.

– On-line Rounds of Communication — Number of rounds the players need to
generate a signature.

Note that Shoup’s RSA signature scheme is not considered to be an on-
line/off-line scheme because no precomputation is performed. Furthermore, an
optimistic version of Shoup’s scheme does not reduce its asymptotic complexity
in the on-line phase. Finally, referring to Table 1, we see that both schemes only
require one round of communication because all of the members of the group
do not have to wait for each other when a message m arrives; instead, they
can immediately compute their signature shares for m. Because we can set the
modulus in both schemes to be of the same size, we can compare fairly based on

1 Shoup’s RSA threshold signature scheme can actually tolerate a threshold of t < n
2

and only needs t + 1 players to generate a signature.

the bit complexity. A more complete analysis that includes robustness can be
found in Sect. 6.

2 Preliminaries

Definition 1 (Negligible Function). A function η : N → R is negligible if
for all c > 0, η(n) < 1

nc for all sufficiently large n.

Definition 2 (Discrete Logarithm Assumption). Let p = 2q+1 be a prime
where q is a random k-bit prime, and let g be a generator for a subgroup of Z∗

p

with order q. For all probabilistic polynomial time algorithms A, if x is chosen
uniformly at random from Zq and h = gx (mod p), then Pr[A(p, q, g, h) = x] ≤
η(k), where η is a negligible function.

Definition 3 (Chameleon Hash Function). Given a public key HK and
a private key or trapdoor TK, which are generated with respect to a security
parameter k, a message m ∈ M, and a random r ∈ R where M is the message
space, and R is some finite space, we denote a chameleon hash function [9] by
CHHK(m, r), which is a hash function with the following properties:

– Collision Resistance. Given any probabilistic polynomial time malicious
entityA that does not know the private key TK, but only the public key HK,
define its advantage to be the probability of finding (m1, r1) and (m2, r2)
such that CHHK(m1, r1) = CHHK(m2, r2). We require the advantage of A
to be negligible.

– Trapdoor Collisions. There exists a polynomial time algorithm A such
that on inputs the pair (HK,TK), a pair (m1, r1) ∈M×R, and a message
m2 ∈M, then A outputs r2 such that CHHK(m1, r1) = CHHK(m2, r2).

– Uniform Probability Distribution. If r1 ∈ R is distributed uniformly,
m1 ∈M, and (m2, r2) ∈M×R such that CHHK(m1, r1) = CHHK(m2, r2),
then r2 is computationally indistinguishable from uniform over R.

Throughout the rest of this paper, we will work with a particular family
of chameleon hash functions based on discrete logarithms. We do so because
the discrete logarithm-based hash function is best suited for using Lagrange
interpolation. There are also other chameleon hash functions, such as those based
on factoring, for example, but the mathematics involved in the interpolation
would not be as convenient.

Let k ∈ N be a security parameter. We begin by picking a k-bit Germain
prime p′ ∈ N, which has the property that p = 2p′ + 1 and p′ are both primes.
Although it is not known if there are infinitely many Germain primes, we will
assume that we can find one of the appropriate size. Let g′ be a generator for
Z∗

p. Now let Qp ⊂ Z∗
p denote the subgroup of quadratic residues generated by

g ≡ (g′)2 (mod p), so that |Qp| = p−1
2 = p′. Finally, pick the private key y ∈ Z∗

p′ .
Then we define our chameleon hash function CHHK : Zp′ × Zp′ → Qp to be

CHHK(m, r) = gr+ym ≡ grhm (mod p)

where h ≡ gy (mod p) and the public key is HK = (p, g, h). Although we choose
to work over the group Z∗

p, one could also work with ECC groups or any other
group of prime order.

Definition 4 (Signature Scheme). A signature scheme S is a triple of ran-
domized algorithms (Key-Gen, Sig, Ver) where:

– Key-Gen: 1∗ → PK × SK is a key generation algorithm such that on input
1k, where k ∈ N is a security parameter, it outputs (PK, SK), such that
PK ∈ PK, the set of all public verification keys, and SK ∈ SK, the set of
all secret keys.

– Sig : SK × M → SIGS is a signing algorithm such that M is the mes-
sage space and SIGS is the signature space. For shorthand, let SSK(m) =
Sig(SK, m) for all m ∈M.

– Ver : PK×M×SIGS → {Reject,Accept} is a verification algorithm such that
Ver(PK, m, σ) = Accept if and only if σ is a possible output of Sig(SK,m).
Again, for shorthand, let VPK(m,σ) = Ver(PK, m, σ) for all m ∈ M and
σ ∈ SIGS.

Definition 5 (Threshold Signature Scheme). Given a signature scheme
S = (Key-Gen, Sig, Ver), a threshold signature scheme T S for S is a triple of
randomized algorithms (Thresh-Key-Gen, Thresh-Sig, Ver) for a set of n players
P = {P1, P2, . . . , Pn} with threshold value t where:

– Thresh-Key-Gen is a distributed key generation algorithm used by the players
to create (PK, SK) ∈ PK×SK such that each Pi ∈ P receives a share SKi

of the secret key SK.
– Thresh-Sig is a distributed signing algorithm used by the players to create

a signature for a message m ∈ M such that the output of the algorithm is
SSK(m). This algorithm can be decomposed into two algorithms: signature
share generation and signature reconstruction.

In this paper, we assume that T S is simulatable, as defined in Gennaro et al. [8].
This means that there exists a simulator SIMT S

1 which, on input PK, simulates
the view of the adversary for a run of Thresh-Key-Gen that fixes the public key
to be PK. In addition, there exists a simulator SIMT S

2 for Thresh-Sig, such that
on input the public key PK, the message v, the signature σ of v, and the key
shares xi1 , xi2 , . . . , xit of the servers controlled by the adversary, simulates the
view of the adversary for a run of Thresh-Sig on v that produces σ.

Definition 6 (Signature Stamp). In an on-line/off-line signature scheme, we
call the precomputed signature from the off-line phase a signature stamp.

Definition 7 (Distributed Key Generation). A Distributed Key Genera-
tion (DKG) protocol is often used in threshold signature schemes in order to
construct the public key and private key. In a DKG protocol with n players,
the public key is made known to all players, whereas the private key is known

by none. Instead, each player receives a key share, from which they can — act-
ing in concert — recover the private key. A DKG protocol is, of course, fully
distributed, and requires no trusted dealer.

In this paper, we use a discrete logarithm-based DKG protocol (where the
private key is y and the public key is h = gy for some g), namely the New-DKG
protocol as defined by Gennaro et al. [7]. This protocol has the property that
there exists a simulator SIMDKG that on input h can simulate the interactions
of the DKG protocol with a set PA ⊂ P of players controlled by the adversary
A, where |PA| ≤ t, such that the resulting public key produced is fixed to be
h. In addition, as a result of this simulation, SIMDKG is able to recover the key
shares held by the adversary’s players PA.

3 An On-line/Off-line Threshold Signature Scheme

We shall construct an optimistic, generic on-line/off-line threshold signature
scheme T SOn/Off = (On/Off-Thresh-Key-Gen, Thresh-Sig-Off-line, Thresh-Sig-On-
line, Ver) that does not require the use of a trusted dealer, and we show how
existing threshold signature schemes can be used in performing a threshold com-
putation of the signature stamp off-line. Furthermore, we use the New-DKG pro-
tocol from Gennaro et al. [7].

3.1 Key Generation (Done once)

On/Off-Thresh-Key-Gen

Inputs: A threshold signature scheme T S = (Thresh-Key-Gen, Thresh-Sig,
Ver), a set of n players P = {P1, P2, . . . , Pn}, a threshold t < n

3 , and a
security parameter k ∈ N.
Public Output: A set of public keys.
Private Output: All players Pi ∈ P receive a set of private keys.

1. Run Thresh-Key-Gen on input 1k to obtain (PK, SK) ∈ PK × SK and
each Pi ∈ P receives the secret key share SKi.

2. Create a random k bit Germain prime p′ ∈ N, where p = 2p′ + 1 is also
a prime, and let g be a generator for Qp.

3. Use the DKG protocol to create h = gy, where y ∈ Zp′ is the secret key
and Pi ∈ P receives the share yi for a degree t polynomial py(x) ∈ Zp′ [x]
such that py(0) = y.

4. Check that n < p′ so that each player Pi ∈ P has index i ∈ Z∗
p′ . Other-

wise abort.
5. Publish the public keys (PK, HK = (p, g, h)). All players Pi ∈ P retain

(SKi, yi).

3.2 Off-line Phase (Done per message)

In the off-line phase, we will show how to construct the chameleon hash function
and create the signature stamp in a distributed manner.

Thresh-Sig-Off-line

Inputs: The same set of n players P and a threshold t < n
3 .

Private Output: A signature stamp.

1. Use the DKG protocol to create gr, where r ∈ Zp′ so that Pi receives
the share ri for another degree t polynomial pr(x) ∈ Zp′ [x] such that
pr(0) = r.

2. Use the DKG protocol to create hm where m ∈ Zp′ . Each player Pi

receives a share mi for a degree t polynomial pm(x) ∈ Zp′ [x] such that
pm(0) = m.

3. Finally, the DKG protocol is used to generate shares zi for each Pi ∈ P
of a degree 2t polynomial p0(x) ∈ Zp′ [x] such that p0(0) = 0.

4. Now gr and hm are both known to the players, so CHHK(r, m) = grhm

(mod p).
5. Use Thresh-Sig to compute the signature stamp SSK(CHHK(r, m)).

3.3 On-line Phase (Done per message)

Thresh-Sig-On-line

Inputs: A subset P ′ ⊂ P of size 2t + 1 and a message m′ ∈ Zp′ .
Public Output: A signature for m′.

1. For each Pi ∈ P ′, define col-1i = ri− yim
′ and col-2i = yimi + zi, which

are Pi’s share of the trapdoor collision. Then, Pi broadcasts the pair
(col-1i, col-2i) to all of the other players in P ′.

2. Define fi(x) to be fi(x) =
∏

Pj∈P′\{Pi}
j−x
j−i , as in the definition of La-

grange interpolation. Now use Lagrange interpolation on the shares to
compute the trapdoor collision

r′ =
∑

Pi∈P′

(col-1i + col-2i)fi(0)

=
∑

Pi∈P′

(ri + yimi + zi − yim
′)fi(0)

≡ r + ym− ym′ (mod p′).

3. In this way, the signature for message m′ is

(SSK(CHHK(m, r)),m′, r′).

Notice that the definition of col-2i requires adding the share zi. This is nec-
essary because we have to multiply the secrets y and m, so each player computes
yimi which becomes a share of a degree 2t polynomial that is not chosen uni-
formly at random; thus, adding the share zi will make the polynomial random.
Furthermore, this degree 2t polynomial is the reason for requiring t < n

3 .

3.4 Verification (Done per message)

Given the signature (σ,m′, r′), where σ ∈ SIGS, simply check that

VPK(CHHK(m′, r′), σ) = Accept

holds true, as in the standard signature scheme.

3.5 Signature Share Verification (Performed if necessary)

If VPK(CHHK(m′, r′), σ) = Reject, then some players are sending incorrect
shares. In order to ensure robustness, we must be able to construct a valid
signature. The näıve solution of trying all possible subsets of size 2t + 1 to con-
struct a valid signature is unacceptable because there are an exponential number
of such subsets. Instead, we will identify and remove the corrupted players. To
do so, we have each player in P check the validity of the pair (col-1i, col-2i) for
each player Pi ∈ P ′:

1. Verifying col-1i. Because gri and gyi are known values from the DKG pro-
tocol, we can compute for each Pi ∈ P ′, gri · (gyi)−m′

= gri−yim
′

(mod p)
and confirm that gcol-1i = gri−yim

′
as desired.

2. Verifying col-2i. Although we have access to gzi from the DKG protocol,
we do not have gyimi . Instead, what we will do is confirm that the discrete
logarithm of gcol-2ig−zi = gcol-2i−zi to the base gmi is equal to the discrete
logarithm of gyi to the base g. Now we can apply Chaum and Pedersen’s
ZKP for equality of discrete logarithms [3] with the Fiat-Shamir heuristic:
Let d = gyi , e = gmi , and f = gcol-2i−zi . Player Pi ∈ P ′ chooses r ∈ Zp′

uniformly at random and computes H(g, d, e, f, gr, er) = c, where H is
a random oracle and c is the challenge. Pi computes v = yic + r and
broadcasts the pair (c, v). Finally, all players compute and confirm that
H(g, d, e, f, gvd−c, evf−c) = c.

If any of the shares are deemed incorrect, then broadcast a complaint against
Pi. If there are at least t + 1 complaints, then clearly Pi must be corrupt since
with at most t malicious players, there can be at most t false complaints. Also,
if Pi is corrupt, there will always be enough honest players to generate at least
t + 1 complaints and Pi will surely be disqualified in this case. Once eliminated,
Pi is removed from P ′ and is replaced with a new player, thus resulting in a
new signature. As long as at most t players are corrupted, there will always be
enough honest players to create a valid signature.

4 Security Model

4.1 Security Definitions

We define two assumptions that we will use in our proof. The first is the one-
more-discrete-logarithm assumption introduced by Bellare et al. [2]

Definition 8 (One-More-Discrete-Logarithm Assumption). We let p =
2q + 1 be a prime where q is a random k-bit prime, and let g be a generator for
a subgroup of Z∗

p with order q. We let n : N → N be a function of k. Now let(
x1, x2, . . . , xn(k), xn(k)+1

)
be elements of Zq chosen uniformly at random, and

for each i ∈ {1, 2, . . . , n(k) + 1}, define zi = gxi (mod p). Now let the adversary
A have access to a discrete log oracle DLog such that if x ∈ Zq, z = gx (mod p),
then DLog(g, z) = x. In the one-more discrete-logarithm problem [2], ADLog

is given
(
z1, z2, . . . , zn(k)+1

)
and must output

(
x1, x2, . . . , xn(k)+1

)
by querying

DLog at most n(k) times. The assumption is Pr[ADLog(g, z1, z2, . . . , zn(k)+1) =(
x1, x2, . . . , xn(k)+1

)
] ≤ η(k), where η is a negligible function.

We define a similar assumption that is related to finding collisions in a
chameleon hash function. We will use this assumption to show our new scheme
is secure. In Sect. 5.2, we show that this assumption is implied by the one-more-
discrete-logarithm assumption for the chameleon hash function we use.

Definition 9 (One-More-R Assumption). As above, we let g be a gen-
erator for a subgroup of Z∗

p with order q, a k-bit prime. In addition, we let
k′ be randomly chosen from Zq and let h = gk′

. We let n : N → N be
a function of k. Now let

(
v1, v2, . . . , vn(k), vn(k)+1

)
be randomly chosen ele-

ments in the range of CHHK(·). Now we give the adversary A access to a
Get-An-R(v,m) oracle, such that if v is an output of the chameleon hash func-
tion and r = Get-An-R(v,m), then CHHK(m, r) = v. In the One-More-R prob-
lem, AGet-An-R is given

(
v1, v2, . . . , vn(k)+1

)
and with at most n(k) queries to

Get-An-R, must output
(
(m1, r1), (m2, r2), . . . , (mn(k)+1, rn(k)+1)

)
such that vi =

CHHK(mi, ri). The assumption is that Pr[AGet-An-R(g, h, v1, v2, . . . , vn(k)+1) =(
(m1, r1), (m2, r2), . . . , (mn(k)+1, rn(k)+1)

)
] ≤ η(k), where η is a negligible func-

tion.

4.2 Adversarial Model

We assume that there is a static adversary A that corrupts some subset of the
players in P before beginning the threshold signature scheme. Furthermore, we
can analyze two different types of static adversaries: one that compromises before
the off-line phase and the other compromises after the off-line phase terminates.
We assume the former case in our proof of existential unforgeability. As for
the communication model, we assume that all players are connected by secure
point-to-point channels. Furthermore, we will assume a partially synchronous
communication model during the key generation and off-line phases for the pur-
pose of using the DKG protocol of Gennaro et al. [7].

5 Proof of Security

5.1 Robustness

Theorem 1. Suppose that an adversary corrupts at most t < n
3 players. Then,

our on-line/off-line threshold signature scheme T SOn/Off is robust.

Proof. We need to show completeness, soundness, and zero knowledge simu-
latability of the signature share verification protocol when verifying col-2i from
player Pi ∈ P ′.

– Completeness: An honest player Pi ∈ P ′ should convince any verifier that
the protocol was followed with high probability. In fact, if the signature share
verification protocol is correctly followed, then the verifier will accept with
probability 1.

– Soundness: No corrupted player Pi ∈ P ′ should be able to fool any verifier
into accepting incorrect shares with high probability. Using the definitions
for e, d, and f from Sect. 3.5, we require that both

gvd−c ≡ gr (mod p)
evf−c ≡ er (mod p) .

Therefore, gvd−c ≡ gv−yic ≡ gr (mod p) if and only if v ≡ yic+ r (mod p′).
In addition, evf−c ≡ gmivg(col-2i−zi)(−c) ≡ (gmi)r (mod p), which implies
that miv − c(col-2i − zi) ≡ mir (mod p′). By using evf−c ≡ er (mod p)
from above, we see that miyic ≡ c(col-2i − zi) (mod p′). If c 6≡ 0 (mod p′),
then clearly col-2i is the correct share. If c ≡ 0 (mod p′), then col-2i may be
incorrect. By the Discrete Logarithm Assumption, no probabilistic polyno-
mial time adversary can produce such a v with non-negligible probability.

– Zero Knowledge Simulatability: No cheating verifier should learn any-
thing useful after running the protocol. We can easily construct a simulator
S which simulates the view of the verifier when verifying Pi’s col-2i. To do so,
S selects c and v uniformly at random and fixes H(g, d, e, f, gvd−c, evf−c)
to be c, since we are working in the Random Oracle model. Thus, S has
recreated the view of the verifier without knowing Pi’s secret key share yi,
so the signature share verification protocol has zero knowledge.

As a result, our on-line/off-line threshold signature scheme is robust. We sketch
an alternative approach without random oracles in Sect. 7. ut

5.2 Existential Unforgeability

The proof of existential unforgeability will be in a similar style to the proof in
Shamir and Tauman [16]. First we make use of the following Lemma to show
that our One-More-R assumption is implied by a standard assumption:

Lemma 1. Suppose that there exists an adversary B that breaks the One-More-
R assumption for the discrete logarithm chameleon hash with advantage greater
than ε. Then there exists an algorithm A that breaks the One-More-Discrete-Log
assumption with advantage greater than ε.

Proof. We let A respond to B’s queries in the One-More-R problem. A is given
as input g and

(
z1, z2, . . . , zn(k)+1

)
. Let A be described as follows:

1. Pick y uniformly at random in Zp′ .
2. Let h = gy, and initialize B with g and h.
3. For 1 ≤ i ≤ n(k) + 1, pick mi uniformly in Zp′ and let vi = zih

mi .
4. Send B the tuple

(
v1, v2, . . . , vn(k)+1

)
.

5. Whenever B makes a Get-An-R(v,m) query, receive t = DLog(g, v). Return
the value t− ym to B.

6. If B successfully outputs
(
(m′

1, r
′
1), (m

′
2, r

′
2), . . . , (m

′
n(k)+1, r

′
n(k)+1)

)
where

CHHK(m′
i, r

′
i) = vi for all i, A returns

(
x1, x2, . . . , xn(k)+1

)
where xi =

r′i + y(m′
i −mi). Otherwise, abort.

Clearly, we have ε < Adv B ≤ Adv A. ut

Using the One-More-R assumption, we can prove that our on-line/off-line
threshold signature scheme is secure against adaptive chosen message attack.

Theorem 2. Let T S = (Thresh-Key-Gen, Thresh-Sig, Ver) be a given simulat-
able threshold signature scheme. Then we let T SOn/Off = (On/Off-Thresh-Key-
Gen, Thresh-Sig-Off-line, Thresh-Sig-On-line, Ver) be the resulting On-line/Off-
line Threshold Signature scheme. If T SOn/Off is existentially forgeable by an
q-adaptive chosen message attack with success probability ε, then one of the fol-
lowing must hold:

1. There exists a probabilistic algorithm that breaks either the One-More-R as-
sumption or the collision resistance of CHHK with probability at least ε

2 .
2. The underlying threshold signature scheme T S is existentially forgeable by a

q-random message attack with probability at least ε
2 .

Proof. Suppose that an adversary A forges a signature in the T SOn/Off scheme
with a q-chosen message attack with probability ε. Now let {m1,m2, . . . ,mq}
be the q messages chosen by A to be signed by the T SOn/Off scheme. Let
{(σ1,m1, r1), . . . , (σq,mq, rq)} be the signatures produced in this fashion by
the T SOn/Off scheme. Then A outputs a signature forgery (σ,m, r) such that
VPK(CHHK(m, r), σ) = Accept and m 6= mi for all i, with probability ε. More-
over, either there exists an i such that CHHK(mi, ri) = CHHK(m, r) or there
does not exist such an i. One of these cases occurs with probability at least ε

2 .
If the first case holds with probability at least ε

2 , then we define a simulator
S that breaks the One-More-R assumption. S is given as input the public bases
g and h, as well as the set of challenges

(
v1, v2, . . . , vn(k)+1

)
.

S simulates the On/Off-Thresh-Key-Gen phase with A. When the simulation
gets to the point where h is to be generated by using the DKG protocol, S uses
SIMDKG(h), the DKG simulator, to “fix” the result of the DKG run to be h.

On the ith run of the Thresh-Sig-Off-line phase, S simulates the phase as
normal. However, when it reaches the point where hm is to be generated using
the DKG protocol, it uses SIMDKG(vig

−r) to fix the value of hm so that the
resulting chameleon hash grhm equals the given vi value. S then simulates the
rest of the phase as normal.

On the jth run of the Thresh-Sig-On-line phase, with input m′
j specified by A,

S simulates the phase as normal. Suppose that the players involved are P ′ ⊂ P.
Of the players in P ′, without loss of generality let PA = {P1, P2, . . . , Pt} ⊂ P ′

be the players controlled by the adversary A. Since S “controls” more than t
players, it is able to reconstruct the values of ri, yi,mi, and zi for all Pi ∈ PA
from its own shares, since all were generated by the DKG protocol. Hence S
is able to recover col-1i and col-2i for all Pi ∈ PA. Now S fixes Pl ∈ P ′ \ PA.
For each Pi ∈ P ′ \ (PA ∪ {Pl}), S picks col-1i and col-2i uniformly at random
and broadcasts them. In addition, S queries the Get-An-R oracle on m′

j and vj

to receive r′j . With this information S can simply fix the value of (col-1l, col-2l)
such that the interpolation of all the col-1i + col-2i values comes out to be r′j .

At the end, A produces (σ,m, r) such that VPK(CHHK(m, r), σ) = Accept
and there exists an i such that CHHK(m, r) = vi. If vi was not used by S in
a run of Thresh-Sig-On-line, then S has produced One-More-R value, namely r.
On the other hand, if vi was used by S, then we have a collision with CHHK .

If the second case holds with probability at least ε
2 , then we define a simulator

S that existentially forges a signature under a random message attack on the
underlying threshold signature T S. In addition, we let SIMT S

1 and SIMT S
2 be

defined as in Definition 5.
S simulates the On/Off-Thresh-Key-Gen phase as normal, except during the

execution of Thresh-Key-Gen. In this case, S uses SIMT S
1 to fix the public key

for T S to be the public key for the signing oracle SigT S .
On the ith run of the off-line phase, let S simulate it as normal, except for the

computation of hm and running Thresh-Sig. Let S query SigT S , which outputs
(vi, σi), where vi is chosen uniformly at random and VPK(vi, σi) = Accept. Next,
use SIMDKG(vig

−r) to fix hm. Finally, S then uses SIMT S
2 to simulate a run of

Thresh-Sig with S on input vi, such that the output is fixed to σi. We can do
this because our assumption is that Thresh-Sig is simulatable.

Each run of the on-line phase is simulated as normal by S. At the end,
A produces (σ,m, r) such that VPK(CHHK(m, r), σ) = Accept and for all i,
vi 6= CHHK(m, r). But in this case, S has forged a signature σ on a message
CHHK(m, r) not queried to the signing oracle SigT S . ut

From this, we can derive the following theorem:

Theorem 3. Suppose that a static adversary corrupts at most t < n
3 players

before beginning the off-line phase. Then our on-line/off-line threshold signature
scheme T SOn/Off is existentially unforgeable against adaptive chosen message

attacks assuming that the underlying threshold signature scheme T S is existen-
tially unforgeable against random message attacks.

6 Evaluation

We analyze the number of bit operations required by our scheme, as previously
shown in Table 1. First, in our scheme, is the threshold key generation. The bit
complexity of Thresh-Key-Gen for T S, as well as generating a Germain prime is
included in KOn/Off. Afterwards, we invoke the New-DKG protocol [7] once, and
an analysis shows that it requires 3t + 4 exponentiations, so KDKG ∈ O(tk3)
since an exponentiation requires O(k3) bit operations over Zp. Thus, the key
generation phase takes KOn/Off + KDKG bit operations.

Next, we analyze our off-line phase. First, we invoke the New-DKG protocol
three times, so this gives 3KDKG. Next, we have gr and hm, so we multiply both
terms to get CHHK(r, m). Moreover, a single multiplication requires O(k2) bit
operations over Zp. Finally, the signature stamp SSK(CHHK(m, r)) requires τ
bit operations. Thus the off-line phases requires a total of 3KDKG + O(k2) + τ
bit operations.

For our on-line complexity, we can separate a player’s computational com-
plexity for generating a signature share from the signature reconstruction com-
plexity. Each player Pi ∈ P ′ performs two additions and two multiplications
when computing col-1i and col-2i. The on-line signature reconstruction requires
computing fi(0), which is 2t multiplications, and this is done for all Pi ∈ P ′, so
we have a total of (2t+1)2 multiplications when we compute r′. Only addition of
the 2(2t + 1) shares as well as performing 2t subtractions when computing fi(0)
is required giving a total of 2t(2t + 1) + 2(2t + 1) − 1 = 4t2 + 6t + 1 additions.
Furthermore, each addition over Zp requires O(k) bit operations. Already we
see that the number of multiplications in the on-line phase is substantially fewer
than k since the threshold t is quite small when compared to a k bit prime.
If verification of the signature shares is required, then each share requires six
modular exponentiations. A summary of the number of operations performed
appears in Table 2.

We review the complexity of Shoup’s RSA threshold signature scheme [17],
which was also shown in Table 1. The key generation phase of Shoup’s signature
scheme requires a trusted party, but asymptotically the computation cost is the
same as our distributed key generation. In Shoup’s on-line phase, the recon-
struction complexity, once again, can be separated from the share verification

Table 2. Our On-line Phase Computational Complexity

Our On-line Phase Complexity Additions Multiplications Exponentiations

Player Signature Share 2 2 0

Signature Reconstruction 4t2 + 6t + 1 4t2 + 4t + 1 0

Signature Share Verification 0 3 6

complexity. The reconstruction of the signature requires t modular exponenti-
ations, t − 1 modular multiplications, and one invocation of the extended Eu-
clidean algorithm. Finally, verifying an individual signature share also requires
six modular exponentiations and three modular multiplications. Although both
threshold signature schemes have approximately the same signature share veri-
fication complexity, we have managed to avoid any modular exponentiations in
the reconstruction complexity of our signature scheme.

7 Extensions

7.1 Using Merkle Trees for Batching

We explained earlier that computing a threshold signature when performing
writes for small files in Pond [12] is expensive, while for large files, the time
spent computing the threshold signature is negligible compared to the actual
write. In the event that a threshold signature must be quickly computed on
demand, our scheme immediately becomes attractive over other schemes. This
is especially true for Pond when computing threshold signatures for small writes.

One way of improving performance is to batch messages, an idea due to Wong
and Lam [18], by using Merkle hash trees [11]. Instead of signing messages one
by one, we wait for n messages to arrive and then build a Merkle tree over these
messages. If there are a total of n messages and the batch size is B, then a
total of

⌈
n
B

⌉
signature stamps are needed. This approach does trade latency for

throughput, and it depends on how much time can be spent waiting for messages
to arrive on-line. In fact, Merkle trees for batching has been applied to Shoup’s
scheme in OceanStore in order to increase throughput for small updates [13].

7.2 Eliminating Random Oracles

By using the techniques in [4], which eliminates the random oracle from the
verification step in Shoup’s RSA threshold scheme, we can eliminate the random
oracle H, but at the cost of including interaction.

8 Acknowledgments

We thank Lea Kissner, Emil Ong, Naveen Sastry, Umesh Shankar, and Hoeteck
Wee for providing helpful feedback on an earlier draft of this work, as well as
the anonymous referees for their helpful comments. This research was supported
by grant NSF CNS-0093337.

References

[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a Distributed File System. In Proceed-
ings of 13th ACM Symposium on Operating Systems Principles, pages 198–212.
Association for Computing Machinery SIGOPS, 1991.

[2] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Sig-
nature Scheme. Journal of Cryptology, 16(3):185–215, 2003.

[3] David Chaum and Torben P. Pedersen. Wallet Databases with Observers. In
CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 89–105.
Springer-Verlag, 1992.

[4] Ivan Damg̊ard and Kasper Dupont. Efficient Threshold RSA Signatures with
General Moduli and No Extra Assumptions. In Public Key Cryptography, volume
3386 of Lecture Notes in Computer Science, pages 346–361. Springer-Verlag, 2005.

[5] Yvo Desmedt and Yair Frankel. Threshold Cryptosystems. In CRYPTO, volume
435 of Lecture Notes in Computer Science, pages 307–315. Springer-Verlag, 1989.

[6] Shimon Even, Oded Goldreich, and Silvio Micali. On-Line/Off-Line Digital
Schemes. In CRYPTO, volume 435 of Lecture Notes in Computer Science, pages
263–275. Springer-Verlag, 1989.

[7] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
Distributed Key Generation for Discrete Logarithm Cryptosystems. To appear,
Journal of Cryptology. http://www.research.ibm.com/security/dkg03.ps.

[8] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
Threshold DSS Signatures. Inf. Comput., 164(1):54–84, 2001.

[9] Hugo Krawczyk and Tal Rabin. Chameleon Signatures. In Proceedings of the
Network and Distributed System Security Symposium, pages 143–154, 2000.

[10] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture for Global-Scale
Persistent Storage. In Proceedings of ACM Architectural Support for Programming
Languages and Operating Systems, Novemeber 2000.

[11] Ralph Merkle. Protocols for Public Key Cryptosystems. In IEEE Symposium on
Security and Privacy, pages 122–134, April 1980.

[12] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and
John Kubiatowicz. Pond: The OceanStore Prototype. In Proceedings of the Con-
ference on File and Storage Technologies. USENIX, 2003.

[13] Sean Rhea and John Kubiatowicz. The OceanStore Write Path. http://roc.cs.
berkeley.edu/retreats/summer_02/slides/srhea.pdf, June 2002.

[14] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation
of a Log-Structured File System. In ACM Transactions on Computer Systems,
volume 10, pages 26–52, February 1992.

[15] Chris Ruemmler and John Wilkes. UNIX Disk Access Patterns. In USENIX
Winter 1993 Conference Proceedings, January 1993.

[16] Adi Shamir and Yael Tauman. Improved Online/Offline Signature Schemes. In
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 355–367.
Springer-Verlag, 2001.

[17] Victor Shoup. Practical Threshold Signatures. In EUROCRYPT, volume 1807 of
Lecture Notes in Computer Science, pages 207–220. Springer-Verlag, 2000.

[18] Chung Kei Wong and Simon S. Lam. Digital Signatures for Flows and Multicasts.
IEEE/ACM Trans. Netw., 7(4):502–513, 1999.

[19] Zhiyong Xu, Yingwu Zhu, Rui Min, and Yiming Hu. Achieving Better Load
Balance in Distributed Storage System. In International Conference on Parallel
and Distributed Processing Techniques and Applications, June 2002.

[20] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A Secure
Distributed Online Certification Authority. ACM Trans. Computer Systems,
20(4):329–368, 2002.

http://www.research.ibm.com/security/dkg03.ps
http://roc.cs.berkeley.edu/retreats/summer_02/slides/srhea.pdf
http://roc.cs.berkeley.edu/retreats/summer_02/slides/srhea.pdf

