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Abstract. We construct the first constant-size hierarchical identity-based signature (HIBS)
without random oracles - the signature size is O(λs) bits, where λs is the security parameter,
and it is independent of the number of levels in the hierarchy.

We observe that an efficient hierarchical identity-based signcryption (HIBSC) scheme with-
out random oracles can be compositioned from our HIBS and Boneh, Boyen, and Goh’s HIBE
(hierarchical identity-based encryption)[9]. We further optimize it to a constant-factor efficiency
improvement. This is the first constant-size HIBSC without random oracles.
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1 Introduction

Identity based cryptosystem [34] is a public key cryptosystem where the public key can be an
arbitrary string such as an email address. A trusted authority (TA) uses a master secret key
to issue private keys to identities that request them. For an Identity Based Encryption (IBE)
scheme, Alice can securely encrypt a message to Bob using an unambiguous name of him, such
as email address, as the public key. For an Identity Based Signature (IBS) scheme, Alice can
sign a message using her private key that corresponds to Alice’s identity. Then anybody can
verify the authenticity of the signature from the identity. An Identity Based SignCryption
(IBSC) scheme is the combination of IBE and IBS with a common set of parameters and
keys. With such infrastructure, it can achieve an increase in efficiency and an improvement
in security.

Hierarchical identity based cryptosystem [27, 30] is a generalization of identity based cryp-
tosystem that mirrors the hierarchy of organizations. An identity at level ` of the hierarchy
tree can issue private keys to its descendant identities, but cannot sign or decrypt messages
for other identities. [27] proposed the idea of Hierarchical IBS (HIBS) and Hierarchical IBE
(HIBE). In particular, an IBS (resp. IBE) is an 1-level HIBS (resp. HIBE). Combining HIBS
and HIBE, [22] proposed the concept of Hierarchical IBSC (HIBSC).

Many reductionist security proofs concerning identity based cryptosystems and other cryp-
tosystems used the random oracle model [5]. Several papers proved that some popular cryp-
tosystems previously proved secure in the random oracle are actually provably insecure when
the random oracle is instantiated by any real-world hashing functions [18, 2]. Therefore iden-
tity based cryptosystems provably secure in the standard model attract a great interest. [3]
showed that a certificate-based IBS is secure without random oracles. However these scheme

Several IBE schemes [19, 6, 29] are secure without random oracles under a weaker “selective-
ID” model [19]. Recently, [7] and [36] proposed IBE schemes which are provably secure without
random oracles under the stronger model of [11].
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Most existing practical signature schemes are provably secure in the random oracle model.
[26] proposed a variant of hash-and-sign RSA signature scheme, which is provably secure
without random oracles, by the strong RSA assumption. A different approach was proposed
in [23], and further improvement was proposed in [25]. [14] proposed a signature scheme
provably secure under discrete-log type assumption in the standard model, but the signature
size is long. [8] proposed a short signature scheme secure without random oracles, under
the new q-SDH assumption. [37] proposed some short signatures without random oracles.
The signatures originate from the signature schemes in [8, 39, 17, 13]. They showed how these
signatures can be constructed from new assumptions without random oracles.

It is natural to ask whether other efficient hierarchical identity based cryptosystems are
secure without random oracles. In this paper, we provide an affirmative answer by constructing
an HIBS and HIBSC schemes which can be provably secure without random oracles.

1.1 Our Contribution

We make the following contributions:

– The first constant-size hierarchical identity based signature (HIBS) scheme. It is existen-
tially unforgeable without random oracles under a new interactive intractability assump-
tion.

– Our HIBS scheme is existentially unforgeable providing the Diffie-Hellman Inversion (DHI)
Assumption holds in the gauntlet-ID model without random oracles. We introduce the
gauntlet-ID model, which is a slightly weaker model related to the select-ID model of [19].

– The first constant-size identity based signcryption (IBSC) and hierarchical identity based
signcryption (HIBSC) scheme which are provably secure without random oracles.

1.2 Related Results

Shamir [34] suggested an identity-based signature scheme. Many different IBS schemes were
proposed (e.g. [21, 3]). Boneh and Franklin [11] proposed the first practical identity-based
encryption scheme, which is provably secure in the random oracle model. Several IBE schemes
[19, 6, 29] are secure without random oracles under a weaker “selective-ID” model [19]. [7] and
[36] proposed IBE schemes which are provably secure without random oracles under the model
of [11]. Recently [16] proposed an identity based signature without random oracles, but their
reduction is tight only if they use the “selective-ID” model.

Zheng [41] proposed that encryption and signature can be combined as “signcryption”
which can be more efficient in computation than running encryption and signature separately.
There are some papers (e.g. [32, 15, 38]) concerning the combination of identity-based signa-
ture and encryption to form identity based signcryption schemes. These papers are provably
secure only in the random oracle model.

Hierarchical identity based cryptography (HIBS and HIBE) was proposed in [27] and [30]
proposed another HIBE. Recently, Boneh et al. [10] (preliminary papers [20, 12]) suggested
some methods to construct CCA secure `-level HIBE scheme from a CPA (` + 1)-level HIBE
scheme. Several HIBE without random oracles are proposed in [6, 7, 36, 9] using this result.
Hierarchical identity based signcryption is firstly proposed in [22].
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Type Scheme Security ROM Size

`-HIBS Cert-chain Full ACP No O(`λs)
This paper Full ACP/gID-ACP No O(λs)

IBS Cert-chain Full ACP No O(λs)

Standard Signature [26, 23, 8] ACP No O(λs)

Table 1. Recent results on signatures, IBS, and HIBS. Cert-chain means combining hierarchical authentication
tree and one-time signatures. Full ACP means the scheme is secure against adaptive chosen identity and
adaptive chosen message attack. gID-ACP means the scheme is secure against gauntlet identity and adaptive
chosen message attack. Our scheme is provably secure in Full ACP or gID-ACP model by using different
intractability assumptions. ` is the number of hierarchy level and λs is the security parameter. ROM means if
the reductionist security proof is in the random oracle model.

Our Intuition. Classic methods of constructing fully secure signatures from combining hi-
erarchical authentication tree and one-time signatures can be found in [28]. [3] suggested that
IBS without random oracles can be constructed by certificate chaining, but it is less efficient.
Various instantiations and modifications for IBE are also well-known [20, 12, 10]. We observe
that some of these certificate chaining instantiations bear a striking resemblance to the multi-
level certificate chaining structure in HIBS. User identity can be certified by his parent, by
signing an IBS on the user’s identity. The parent’s identity can be certified again by one level
higher, and the process repeats up until the root. If in each level, the certification of user
identity is secure in the standard model, and finally the lowest level user signature is secure
against adaptive chosen message attack in the standard model, then the entire HIBS scheme
is Full ACP secure in the standard model. However this solution will increase the signature
size by the level of hierarchy. To achieve O(λs) size HIBS, we need to either use an interactive
intractability assumption, or lower the security level to gauntlet ID-ACP (which we will define
below). We can see that the same case applies for HIBE using sID-CCA. The recent results
are summarized in table 1, 2 and 3.

Interactive intractability assumptions: An interactive intractability problem instance means
that an attacker can adaptively query an external oracle and can get distinct valid tuples
from the oracle which satisfy a relation R. Finally he needs to return a new valid tuple which
satisfies R. [31] proposed a LRSW assumption with an external oracle. In proving the security
of a signature scheme, the simulator simply forwards all signing oracle queries to this external
oracle and returns its output to the adversary. Signature schemes like [17] use this type of
assumption. The problem of interactive intractability assumptions is that we need to assume
that the tuples return by the oracle should not help the attacker to solve the intractability
problem. Therefore we need to be extremely careful when formulating interactive intractabil-
ity assumptions.

Gauntlet ID-ACP unforgeability: Gauntlet ID-ACP unforgeability means that in the unforge-
ability game, the adversary finally returns a signature of a user who has never been queried
to the key extraction oracle or the signing oracle. It is related to the select-ID model of [19],
which further requires the adversary to select the user he attacks at the beginning of the
unforgeability game.
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Type Scheme Security ROM Size

`-HIBE [10] + ? Full CCA No O(`λs)
[10] + [9] sID-CCA No O(λs)

IBE [36] Full CCA No O(λs)

Standard Cramer-Shoup/OAEP/ CCA No O(λs)
Encryption [10]+sID-CCA IBE

Table 2. Recent results on encryptions, IBE, and HIBE. Full CCA means the scheme is secure against adaptive
chosen identity and adaptive chosen ciphertext attack. sID-CCA means the scheme is secure against selective
identity and adaptive chosen ciphertext attack. ` is the number of hierarchy level and λs is the security
parameter. ROM means if the reductionist security proof is in the random oracle model. The first row means
that full CCA secure HIBE can be achieved by using [10] and an adaptive chosen identity and chosen plaintext
secure HIBE. However no existing scheme achieves this with a tight security reduction.

Type Scheme Security ROM Size

`-HIBSC [22] Full CCA + ACP Yes O(`λs)
This paper sID-CCA + Full ACP No O(λs)

IBSC [15], [38], etc. Full CCA + ACP Yes O(λs)
This paper sID-CCA + Full ACP No O(λs)

Standard [1], [24] CCA + ACP No O(λs)
Signcryption

Table 3. Recent results on signcryption, IBSC, and HIBSC. All notations are defined in table 1 and 2.
ROM means if the reductionist security proof is in the random oracle model. [24] showed that only standard
signcryption scheme of [1] and [24] achieves the strong insider security model. All existing IBSC and HIBSC
schemes are provably secure in the random oracles only.

We observe that by using either approach, we can achieve a constant size HIBS secure
without random oracles.

1.3 Organization

In section 2, we give some background knowledges. In section 3, we give the definition for the
security model for HIBS and HIBSC. In section 4, we show an efficient instantiation of HIBS
and an ordinary signature from the HIBS. In section 5, we describe how our result can be
applied to signcryption schemes. In section 6, we conclude our paper.

2 Preliminaries

Our scheme uses bilinear pairings on elliptic curves. We now give a brief revision on the
property of pairings and some candidate hard problems from pairings that will be used later.

2.1 Pairings

Let G, GT be cyclic groups of prime order p, writing the group action multiplicatively. Let g
be a generator of G.

Definition 1. A map e : G × G → GT is called a bilinear pairing if, for all x, y ∈ G and
a, b ∈ Z, we have e(xa, yb) = e(x, y)ab, and e(g, g) 6= 1.
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2.2 Intractability Assumptions

Definition 2. (`-DHI problem) The `-Diffie-Hellman Inversion problem is that, given g, gα,
gα2

, . . ., gα` ∈ G, for unknown α ∈ Z∗
p, to compute g1/α.

Definition 3. (`-DHI* problem) The `-Diffie-Hellman Inversion * problem is that, given g,
gα, gα2

, . . ., gα` ∈ G, for unknown α ∈ Z∗
p, to compute gα`+1

.

We say that the `-DHI* assumption holds if no PPT algorithm can solve a random instance
of the `-DHI* problem with non-negligible probability.

Definition 4. (decisional `-wBDHI* problem)[9] The decisional `-weak-Bilinear-Diffie-Hellman
Inversion * problem is that, given g, h, gα, gα2

, . . ., gα` ∈ G and T ∈ GT , for unknown α ∈ Z∗
p,

decide if T = ê(g, h)α`+1
.

We say that the decisional `-wBDHI* assumption holds if no PPT algorithm can solve
a random instance of the decisional `-wBDHI* problem with non-negligible probability over
half.

The `-DHI problem and `-DHI* problem are proven equivalent in [40].
We introduce a new intractability assumption called the OrcYW assumption.

Definition 5. The OrcYW Problem is that given

1. ` ≥ 1, {gxi
: 0 ≤ i ≤ `}, γ, δ, g4, g5, γ1, · · ·, γ`, an identity I = {I1, · · ·, I`}, full-domain

collision-resistant hash function H,
2. an oracle OH which upon input a message m and an identity I ′ = {I1, · · ·, Ik} for k ≤ `,

outputs a tuple (D1, D2, Z1, Z2) satisfying: For some random t, r, which differ for each
query to OH,

D1 = gt, D2 = Qt, Z1 = ah
0gt

4, Z2 = ah
1gt

5

where

Q = g3
∏k

i=1 hIi
i , hi = gγig−x`−i+1

, for 1 ≤ i ≤ ` g2 = gx`+γ , g3 = gδ+
P`

i=1 x`−i+1Ii ,
a0 = gx

2Qr, a1 = gr, h = H(D1, D2, I
′,m, param),

param = (g, gx, g2, g3, g4, g5, h1, · · · , h`)

to output (m̃, D̃1, D̃2, Z̃1, Z̃2) satisfying

ê(g, Z̃1) · ê(g5, D̃2) = ê(g1, g2)h̃ · ê(D̃1, g4) · ê(Z̃2, Q)
∧ ê(D̃1, Q) = ê(g, D̃2) ∧ m̃ was not queried to OH

∧ Q = g3
∏`

i=1 hIi
i

where h̃ = H(D̃1, D̃2, I, m̃, param).

We say that the OrcYW Assumption holds if no PPT algorithm can solve a random
instance of the OrcYW Problem with non-negligible probability.

The intractability of the OrcYW Assumption will be discussed in section 5.

3 Security Model: HIBS and HIBSC

We present the security models for HIBS (Hierarchical Identity-Based Signatures) and for
HIBSC (Hierarchical Identity-Based Signcryption).
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3.1 HIBS Security Model

In identity based cryptography, the security model for IBE was proposed in [11]. Besides the
decryption oracle, the adversary is also allowed to query the key extraction oracle adaptively
to extract the secret key for any identity except the challenge identity. [19] proposed a weaker
“selective-identity” model, where the adversary selects the challenge identity in advance, be-
fore the public parameter is generated. In this paper, we will introduce a variant for signature
scheme, namely a “gauntlet-identity” model.

An `-level HIBS scheme consists of four algorithms: (Setup, Der, Sign, Verify). The algo-
rithms are specified as follows:

– Setup: On input a security parameter 1λs , the TA generates 〈msk, param〉 where msk is the
randomly generated master secret key, and param is the corresponding public parameter.

– Der: On input an identity vector ID, its associated secret key SKID, and a string r, it
returns the corresponding private key SKID.r (corresponds to param).

– Sign: On input the private key of the signer ID, SKID and a message M , it outputs a
signature σ corresponding to param.

– Verify: On input the signer identity vector ID, a message M and signature σ, it outputs
> if σ is a valid signature of M corresponding to ID, param. Otherwise, it outputs ⊥.

The security of a HIBS consists of two requirements, namely Correctness and Existential
Unforgeability. They are defined as follows:

Correctness. We require that > ← Verify(ID, M , Sign(SKID,M)) for any message M , any
private key SKID and its corresponding identity ID.

Existential Unforgeability. We define the existential unforgeability against adaptive iden-
tity and adaptive chosen plaintext attack for HIBS (ACP-UF). We require that the user
identity should be queried through an oracle as in [3]. We assume the simulator maintains an
honest user list HU and a corrupt user list CU . We define the following oracles:

– IO(ID): The Initialization Oracle with input ID outputs ⊥ if ID ∈ HU ∪ CU . Otherwise
it puts ID in HU and returns 1.

– KEO(ID): The Key Extraction Oracle with input ID outputs ⊥ if ID /∈ HU . Otherwise it
outputs the corresponding secret key SKID, removes ID from HU and adds ID to CU .

– SO(ID,M): The Signing Oracle with input signer ID and message M outputs ⊥ if ID /∈
HU . Otherwise it will output a signature σ such that Verify(ID,M, σ) = >.

The Game is defined as follows:

1. (Init. Phase) Simulator S generates system parameter param and gives it to Adversary A.
2. (Probe Phase) A queries IO(ID), KEO(ID) and SO(ID,M), in arbitrary interleaf.
3. (End Game)A delivers a signature σga for signer identity IDga and message Mga. IDga or its

prefix have never been input to a KEO and σga should not be the output of SO(IDga,Mga).

A wins if he completes the Game with > = Verify(IDga,Mga, σga) and IDga ∈ HU . Its
advantage is its probability of winning.

Definition 6. The HIBS scheme is ACP-UF secure if no PPT adversary A has non-negligible
advantage in the ACP-UF game.

We say that a HIBS is secure if it satisfies Correctness and Existential Unforgeability.
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Gauntlet-ID Existential Unforgeability. We define the existential unforgeability against
gauntlet identity and adaptive chosen plaintext attack for HIBS (gID-ACP-UF) as follows.
The game is similar to the ACP-UF game, except in the end game phase, IDga or its prefix
have never been input to a SO query. The HIBS scheme is gID-ACP-UF secure if no PPT
adversary A has non-negligible advantage in the gID-ACP-UF game.

Remark: [21] and many IBS schemes have the SO query of the gauntlet ID to be handled
by the random oracle. They also disallow the query of gauntlet ID to the KEO, which is
similar to our gID model.

Selective-ID Existential Unforgeability. We define the existential unforgeability against
selective identity and adaptive chosen plaintext attack for HIBS (sID-ACP-UF) as follows.
The game is similar to the gID-ACP-UF game, except before the Init. phase, A gives IDga to S
in advance. The HIBS scheme is sID-ACP-UF secure if no PPT adversaryA has non-negligible
advantage in the sID-ACP-UF game.

3.2 Hierarchical Identity-Based Signcryption (HIBSC)

An `-level HIBSC scheme consists of four algorithms: (Setup, Der, Signcrypt, Unsigncrypt).
The algorithms are specified as follows:

– Setup: On input a security parameter 1λs , the TA generates 〈mskA,mskB, param〉 where
mskA (resp. mskB) is the randomly generated master secret key for signcryptor (resp.
unsigncryptor), and param is the corresponding public parameter.

– Der: On input an identity vector ID, its associated secret key SKID, and a string r, it
returns the corresponding private key SKID.r (corresponds to param).

– Signcrypt: On input the private key of the signer IDA, SKIDA
, the recipient identity IDB

and a message M , it outputs a ciphertext σ corresponding to param.
– Unsigncrypt: On input the private key of the recipient IDB, SKIDB

, and a signature σ, it
decrypts to a message M , sender identity IDA and a signature s. It outputs M and IDA

if s is valid corresponding to M, IDA, IDB, param and signer = encryptor. Otherwise, it
outputs ⊥.

The security of a HIBSC consists of three requirements, namely Correctness, Indistin-
guishability and Existential Unforgeability. They are defined as follows:

Correctness. We require that M ← Unsigncrypt(SKIDB
, Signcrypt(SKIDA

, IDB,M)) for any
message M , any private key SKID and its corresponding identity ID.

Indistinguishability. We define the indistinguishability against selective identity and adap-
tive chosen ciphertext attack for HIBS (sID-IND-CCA), as in the following game. We define
the following oracles:

– KEOA/B(ID): The Key Extraction Oracle with input ID will output the secret key SKID

corresponding to mskA or mskB.
– SCO(IDA, IDB,M): The Signcryption Oracle with input signer identity IDA, recipient iden-

tity IDB and message M will output a ciphertext σ such that Unsigncrypt(SKIDB
, σ) = M .
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– UO(IDB, σ): The Unsigncryption Oracle with input recipient identity IDB and ciphertext
M will output a message M and the sender identity IDA for a valid ciphertext σ or will
output ⊥ otherwise.

The Game is defined as follows:

1. (Setup Phase) Adversary A gives recipient ID∗
B to Simulator S. Then S generates system

parameter param and gives (param,mskA) to Adversary A.
2. (Probe 1 Phase) A queries KEOB, SCO, and UO in arbitrary interleaf.
3. (Gauntlet Phase) A gives two messages M∗

0 , M∗
1 and sender ID∗

A to S. S randomly picks
a bit b and returns σ∗ = Signcrypt(SKID∗A

, ID∗
B,M∗

b ) to A.
4. (Probe 2 Phase) A queries KEOB, SCO, and UO in arbitrary interleaf.
5. (End Game) A delivers a guess b̂.

A wins if the following holds: b̂ = b and ID∗
B or its prefix has never been queried to the

KEOB and (ID∗
B, σ∗) has never been queried to the UO. A’s advantage is its probability that

he wins over half. The HIBSC is sID-IND-CCA secure if no PPT attacker has a non-negligible
advantage in the Indistinguishability Game.

Existential Unforgeability. We define the existential unforgeability against adaptive cho-
sen identity and adaptive chosen plaintext attack for HIBSC (ACP-UF), as in the following
game.

1. (Setup Phase) S sets up system parameters and gives (param,mskB) to Adversary A.
2. (Probe Phase) A queries KEOA, SCO, and UO in arbitrary interleaf.
3. (End Game) A delivers a ciphertext σ∗ and a recipient identity ID∗

B.

A wins if the following holds: (M∗, ID∗
A) ← Unsigncrypt(σ∗, SKID∗B

), ID∗
A or its prefix

has never been queried to the KEOA and no SO request has resulted in a ciphertext Ci,
whose unsigncryption under SKID∗B

is identical to the triple (M∗, ID∗
A, σ∗). A’s advantage

is the probability that he wins. The HIBSC is ACP-UF secure if no PPT attacker has a
non-negligible advantage in the Unforgeability Game.

We say that a HIBSC is secure if it satisfies Correctness, Indistinguishability and Existential
Unforgeability.

4 Efficient Instantiation of HIBS

We construct an efficient `-level HIBS scheme which is provably secure without random ora-
cles, based on the `-DHI* assumption. The key system comes from [9].

Let G be a bilinear group of prime order p. Given a pairing: ê : G×G→ GT .

Setup: To generate system parameters, the algorithm selects a random generator g, g2, g3,
g4, g5, h1, . . ., h` ∈ G, picks a random α ∈ Zp, and sets g1 = gα. It chooses an collision-
resistant hash function H. Note H is not a random oracle. Anyone, including the attacker,
can compute H in private. The system parameters param = (g, g1, g2, g3, g4, g5, h1, . . . , h`,H)
and the master key is gα

2 .
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Der: To generate a private key for ID = (id1, . . . , idk). where k ≤ `, the algorithm picks a
random r ∈ Z∗

p and computes:

SKID =
(
gα
2 Qr

ID, gr, hr
k+1, . . . , h

r
`

)
= (a0, a1, bk+1, . . . , b`)

where QID = hid1
1 · · ·h

idk
k · g3. The private key for ID can also be generated by its parent

ID|k−1 = (id1, . . . , idk−1). Details refer to [9].

Sign: For a user with identity ID and private key SKID, he signs a message M as follows. He
picks random t, r̄ ∈ Zp, and computes:

D1 = gt, D2 = QID
t, h = H(D1, D2, ID,M, param)

ā0 = a0QID
r̄, ā1 = a1g

r̄, Z1 = āh
0gt

4, Z2 = āh
1gt

5

The signature σ is (D1, D2, Z1, Z2).

Verify: The verifier receives a signature σ =(D1, D2, Z1, Z2) for message M and signer ID, he
computes h = H(D1, D2, ID,M, param). The verifier checks if both of the following relations
hold:

ê(g, Z1) · ê(g5, D2)
?= ê(g1, g2)h · ê(D1, g4) · ê(Z2, QID) (1)

ê(D1, QID) ?= ê(g,D2) (2)

The verifier outputs > if it is true. Otherwise, he outputs ⊥.

Remark: We can view QID as the output of a hash function with input ID. In many HIBE
schemes like [7, 36, 9], they specify QID = hid1

1 · · ·h
idk
k · g3.

4.1 Security Analysis

We will prove the security of the HIBS scheme using the new OrcYW assumption and other
assumptions.

Theorem 1. Assume H is a full-domain collision-resistant hash function. The hierarchical
identity-based signature scheme HIBSBBG(`) is correct and ACP-UF secure provided the Or-
cYW Assumption holds.

Proof Sketch: The correctness of the scheme is shown as follows:

ê(g, Z1) · ê(g5, D2) = ê(g, gα
2 · (h

id1
1 · · ·h

idk
k · g3)r+r̄)h · ê(g, g4)t · ê(g5, h

id1
1 · · ·h

idk
k · g3)t

= ê(gα, g2)h · ê(gr+r̄, hid1
1 · · ·h

idk
k · g3)h · ê(D1, g4) · ê(gt

5, h
id1
1 · · ·h

idk
k · g3)

= ê(g1, g2)h · ê(D1, g4) · ê(Z2, h
id1
1 · · ·h

idk
k · g3)

Next, we prove ACP-UF.

Setup : Simulator S received a OrcYW Problem instance: {gxi
: 0 ≤ i ≤ `},γ, δ, g4, g5,

γ1, · · ·, γ`, a special identity chain I∗ = {I∗1 , . . . , I∗` }, a full-domain collision-resistant hash
function H and an oracle OY W .
S computes g1 = gx, g2 = gx`+γ , g3 = gδ+

P`
j=1 x`−j+1I∗j and hj = gγjg−x`−j+1

, for 1 ≤ j ≤ `.
S randomly selects n identity chains I1, . . . , In, including I∗ in it. S gives the public parameters
param = (g, g1, g2, g3, g4, g5, h1, . . . , h`) and n identity chains to A.
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Simulating KEO: Simulate as in [9]. For input identity ID = (id1, . . . , idu), if ID is I∗ or a
prefix of it, the simulator declares failure and exits. Otherwise there exists a k ≤ u such that
idk 6= I∗k . We set k be the smallest such index. To answer the query, the simulator derives
a secret key for the identity (id1, . . . , idk) from which it then constructs a private key for
ID = (id1, . . . , idk, . . . , idu).

To generate the secret key for the identity (id1, . . . , idk), the simulator chooses a random
r̃ ∈ Zp. Denote r = xk

(idk−I∗k ) + r̃ and compute:

a0 = yγ
1 · Z · g

x`−k+1r̃(I∗k−idk) where Z =

(
gδ+
Pk

i=1 idiγi ·
∏̀

i=k+1

gx`−i+1I∗i

)r

a1 = gr = gxk/(idk−I∗k )gr̃

Refer to [9] for the well-formedness of the secret key. The remaining hr
k+1, . . . , h

r
` can be

computed by the simulator since they do not involve a gx`+1
term.

Simulating SO : For query with (IDτ ,mτ ), if IDτ is I∗ or its prefix, S queries OY W (mτ , IDτ )
and forwards the answer to A.

Otherwise, S computes the secret key of IDτ as in KEO, and then computes the signature
using the secret key.

Simulation Deviation : It can be shown that the statistical distance among the Real World
and the Ideal World is negligible.

Extraction : A outputs (D∗
1, D

∗
2, Z

∗
1 , Z∗

2 ) for signer I∗ ∈ {I1, . . . , In} and message m∗. If
I∗ 6= I∗, S declares failure and exits. Otherwise, as (I∗,m∗) has never been queried to SO, S
can use the signature to answer the problem instance.

Theorem 2. Assume H is a full-domain collision-resistant hash function. The hierarchical
identity-based signature scheme HIBSBBG(`) is correct and gID-ACP-UF secure provided the
`-DHI∗ Assumption holds.

Proof Sketch: Suppose a simulator S is given the `-DHI* tuple (g, gx, . . . , gx`
). The gID-

ACP-UF games begins with a simulator randomly picks S randomly selects n identity chains
˜ID = {I1, . . . , In}. Denote I∗ = {I∗1 , . . . , I∗` } be an identity in ˜ID.

The simulator picks a random γ ∈ Zp and assigns g1 = gx, g2 = gx` · gγ . The simulator
picks random γ1, . . . γ` ∈ Zp and sets hj = gγjg−x`−j+1

, for 1 ≤ j ≤ `. It also picks a

random δ ∈ Zp and computes g3 = gδ+
P`

j=1 x`−j+1I∗j . The simulator picks random ω1, ω2 ∈ Zp

and sets g4 = gω1 , g5 = gω2 . The simulator gives the adversary A the public parameters
param = (g, g1, g2, g3, g4, g5, h1, . . . , h`) and ˜ID. The corresponding (unknown) master secret
key is gx

2 = gx(x`+γ).

Simulating KEO: Simulate as in [9]. For input identity ID = (id1, . . . , idu), if ID is I∗ or a
prefix of it, the simulator declares failure and exits. Otherwise there exists a k ≤ u such that
idk 6= I∗k . We set k be the smallest such index. To answer the query, the simulator derives
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a secret key for the identity (id1, . . . , idk) from which it then constructs a private key for
ID = (id1, . . . , idk, . . . , idu).

To generate the secret key for the identity (id1, . . . , idk), the simulator chooses a random
r̃ ∈ Zp. Denote r = xk

(idk−I∗k ) + r̃ and compute:

a0 = yγ
1 · Z · g

x`−k+1r̃(I∗k−idk) where Z =

(
gδ+
Pk

i=1 idiγi ·
∏̀

i=k+1

gx`−i+1I∗i

)r

a1 = gr = gxk/(idk−I∗k )gr̃

Refer to [9] for the well-formedness of the secret key. The remaining hr
k+1, . . . , h

r
` can be

computed by the simulator since they do not involve a gx`+1
term.

Simulating SO : For query with (IDτ ,mτ ), if IDτ is I∗ or its prefix, the simulator declares
failure and exits. Otherwise, S computes the secret key of IDτ as in KEO, and then computes
the signature using the secret key.

Simulation Deviation : It can be shown that the statistical distance among the Real World
and the Ideal World is negligible.

Extraction : Finally, the adversary A returns a signature σ∗ for message M∗ and signer
ˆID ∈ ˜ID, where ˆID or its prefix is never been queried to KEO or SO. For probability 1/n1,
ˆID = I∗. Otherwise S declares failure and exits. We denote σ∗ = (D∗

1, D
∗
2, Z

∗
1 , Z∗

2 ). Then we
compute h = H(D∗

1, D
∗
2, I

∗,M∗, param) and we have:

D∗
1 = gt Z∗

1 = ah
0gt

4 = ah
0gω1t Z∗

2 = ah
1gt

5 = ah
1gω2t

Then we can compute a0 = (Z∗
1/D∗

1
ω1)1/h and a1 = (Z∗

2/D∗
1
ω2)1/h. Therefore for I∗, we can

set a1 = gr̄ for some r̄ ∈ Zp. Then:

a0 = gα
2 (g3

∏̀
i=1

h
I∗i
i )r̄

= gα
2 (gδ+

P`
i=1(γiI

∗
i ))r̄

Therefore the simulator returns gx`+1
= gα

2 /gxγ = a0/(aδ+
P`

i=1(γiI
∗
i )

1 gxγ) as the solution.

4.2 Ordinary Signature from HIBS

For a secure HIBS scheme with ` = 1, we obtain a secure IBS scheme. We further show that
we have a secure (ordinary) signature scheme from a secure IBS scheme. The construction is
as follows:

(Ordinary) signature scheme:
– Setup: The user secret key sk is the master key of IBS. The user public key pk is param

of IBS.
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– Sign: The signer picks random β and generates the secret key skβ for its child β as in IBS.
The signer uses skβ to sign the message M as in IBS. The signature is the IBS signature
plus β.

– Verify: The verifier checks the validity of the IBS signature with respect to identity β
and pk.

We give our instantiation as follows:

(Ordinary) signature scheme SigIBS.BBG:
– Setup: To generate system parameters, the algorithm selects a random generator g, g2, g3,

g4, g5, h1 ∈ G, picks a random α ∈ Zp, and sets g1 = gα. It chooses an collision-resistant
hash function H. The public keys are pk = (g, g1, g2, g3, g4, g5, h1,H) and the secret key is
gα
2 .

– Sign: The signer picks random t, β, r̄ ∈ Zp, and computes:

D1 = gt, D2 = (g3h
β
1 )

t
, h = H(D1, D2, β,M, pk)

ā0 = gα
2 (g3h

β
1 )

r̄
, ā1 = gr̄, Z1 = āh

0gt
4, Z2 = āh

1gt
5

The signature σ is (D1, D2, Z1, Z2, β).
– Verify: The verifier receives a signature σ =(D1, D2, Z1, Z2, β) for message M , he com-

putes h = H(D1, D2, β,M, pk). The verifier checks if both of the following relations hold:

ê(g, Z1) · ê(g5, D2)
?= ê(g1, g2)h · ê(D1, g4) · ê(Z2, g3h

β
1 ) (3)

ê(D1, g3h
β
1 ) ?= ê(g,D2) (4)

The verifier outputs > if it is true. Otherwise, he outputs ⊥.

5 Plausibility arguments for the intractability of the OrcYW Assumption

Assuming knowledge of ω1 = logg g4 and ω2 = logg g5, then an OrcYW Problem solver can
solve the DHI* Problem. But S can also solve the DHI* Problem from one OrcYW query
outcome, using this knowledge. Let t̃ = logg D̃1, t̃′ = logQ D̃2. Then Relation (2) implies t̃ = t̃′.
Let A, B be such that Z̃1 = gxh̃

2 Agt̃
4, Z̃2 = Bgt̃

5. Let r̃ = (h̃)−1 logQ A, r̃′ = (h̃)−1 logg B. Then
Relation (1) implies r̃ = r̃′. Finally, S computes Ā = gx

2Qr̃ = (Z̃1g
−t̃
4 )1/h̃ = (Z̃1(D̃1)−ω1)1/h̃, B̄

= gr̃ = (Z̃2g
−t̃
5 )1/h̃ = (Z̃2(D̃1)−ω2)1/h̃, gx

2 = ĀB̄−δ−
P`

i=1 γiIi . Then S computes gx`+1
= gx

2g−xγ .
Therefore, the OrcYW Assumption is in the category of one-more assumptions, akin to

the one-more RSA Assumption and the one-more DL Assumption [4]. It is more akin to the
latter than the former. The state-of-the-art attack on the parallel one-more DL assumption
is Schnorr’s ROS attack [33] and Wagner’s generalized birthday (GB) attack [35]. Below,
we examine the plausibility of our OrcYW Assumption against attackers motivated by ROS
attackers and GB attackers.

Assume m1, · · ·, mq are queried to OY W and the outputs are (D1,τ , D2,τ , Z1,τ , Z2,τ ),
1 ≤ τ ≤ q. An attack motivated by Schnorr’s ROS [33] attack would attempt to construct γ1,
· · ·, γq satisfying

D̃1 =
∏
τ

Dγτ
1,τ = g

P
γτ tτ ,
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D̃2 =
∏
τ

Dγτ
2,τ = Q

P
γτ tτ ,

h̃ =
∑

τ

γτhτ ,

Z̃1 =
∏
τ

Zγτ
1,τ = g

x
P

γτ hτ

2 Q
P

γτ rτ hτ g
P

γτ tτ
4 ,

Z̃2 =
∏
τ

Zγτ
2,τ = g

P
γτ rτ hτ g

P
γτ tτ

5 ,

The crucial relation is the one about a linear dependence of the hash outputs. Schnorr’s blind
signature [33] also suffers from similar attack, and he relates the security of the blind signature
scheme to the ROS problem.

6 Efficient HIBSC without Random Oracles

Motivated by [1]’s generic composition of SignCryption from Encrypt and Sign, we present
a generic composition of HIBSC from HIBE and HIBS. Its security is argued below. Then
we present a concrete instantiation by composing a HIBSC from [9]’s HIBE and our HIBS in
Section 4. The security of this specific HIBSC is reduced to a combination of the securities
of respective components. The result is a provable HIBSC with size O(λs) bits which is
independent of the levels in the HIBSC. Its security is provable without random oracles, albeit
in a weaker model concerning assumptions on the attacker’s ability to maneuver identities in
the oracles.

6.1 Generic composition from HIBE and HIBS

The generic composition of signcryption from a CCA-secure encryption and an ACP-secure
signature is proposed by [1]. They show the security of the outcome without insider attacks.
They also give the guidelines of whenever signing include receiver identity in message and
whenever encrypting include sender identity in plaintext, and argued the result would be
secure against insider attacks. Motivated by their result, we present a generic composition of
HIBSC from HIBE and HIBS.

In [1], a secure signcryption can be composed of a secure signature Sig and a secure
encryption Enc via the sign-then-encrypt paradigm as follows:

σ = EncR(SigS(m, IDR), IDS)

where S is the sender and R is the recipient. We observe that such composition can be
applied to HIBE and HIBS by treating Enc as the HIBE encryption algorithm and Sig as the
HIBS signing algorithm. If [1]’s security theorem for multi-user signcryption is valid, and the
hierarchical key derivation system does not cause any problems, then we are likely to have
security for the composed HIBSC.

Remarks: In [1], their security is actually for generalized CCA (gCCA), which is a slight
relaxation of CCA security. For simplicity, we only mention the CCA security here.
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6.2 Concrete Instantiation

We give a concrete instantiation of HIBSC from our proposed HIBS, the constant size HIBE
from [9] and the transformation technique in [10].

Boneh et al. [10] showed that an adaptive CCA-secure `-level hierarchical identity based
encryption (HIBE) scheme Π can be constructed from a CPA-secure `-level HIBE scheme Π ′

and a strong one-time signature scheme Sig. The intuition behind their construction is that
Π ′ uses the key extraction oracle to simulate the decryption oracle of Π. If Π wants to query
the gauntlet identity, he must have to forge a signature of Sig. Boneh et al. further suggest
that a secure encapsulation scheme and a secure message authentication code can be used
together in order to replace the strong one-time signature scheme.

As a result, we obtain a constant size HIBSC secure without random oracles. We use [10]’s
instantiation of encapsulation scheme. The instantiation is given below:

Setup, Der: same as section 4. In addition, let (Mac, Vfy) be a message authentication code.
We assume all signers get the secret keys from master key A gαA

2 and all recipients get the
secret keys from master key B gαB

2 . Therefore we have g1A = gαA and g1B = gαB . All other
public parameters remain the same as section 4.

Signcrypt: For a user with identity IDA = (id1, . . . , idk) and private key SKIDA
, he sign-

crypts a message M to recipient IB = (I1, . . . , Ij) as follows. He picks random t, χ ∈ Zp, and
computes:

C1 = gt, C2 = (hid1
1 · · ·h

idk
k · g3)t, Ij+1 = H3(χ), k1 = H4(χ),

h = H(C1, C2, IDA, IB, id′,M, param), C3 = a0
hgt

4, C4 = a1
hgt

5,

C5 = H2(ê(g1B, g2)t)⊕ 〈M, IDA, C2, C3, C4, χ〉, C6 = (hI1
1 · · ·h

Ij

j h
Ij+1

j+1 · g3)t,

C7 = tag = Mack1(IDA, IB, Ij+1, C1, · · · , C6)

The ciphertext σ is (C1, C5, C6, C7, Ij+1). Generically,

C5 = SKE.Enc(key = ê(g1, g2)t, ptxt = 〈M, IDA, C2, C3, C4〉)

We have adopted Boneh et al.’s [10] tag design above.

Unsigncrypt: The recipient IB with private key SKIB
= (a0, a1, bj+1, . . . , b`) receives a

ciphertext σ (C1, C5, C6, C7, Ij+1), he computes:

W = ê(C1, a0b
Ij+1

j+1 )/ê(a1, C6) 〈M, IDA, C2, C3, C4, χ〉 = C5 ⊕H2(W )
h = H(C1, C2, IDA, IB, Ij+1,M, param)

Denote IDA = (id1, . . . , idk). The recipient computes k1 = H4(χ) and checks if:

ê(g, C3) · ê(g5, C2)
?= ê(g1A, g2)h · ê(C1, g4) · ê(C4, h

id1
1 · · ·h

idk
k · g3)

1 ?= Vfyk1
(IDA, IB, Ij+1, C1, · · · , C6, C7)

Ij+1
?= H3(χ)

The recipient outputs M if they are all true. Otherwise, he outputs ⊥.
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Security Analysis Our HIBSC scheme is secure without random oracles. In particular, it
can also imply a secure identity based signcryption scheme without random oracles.

Proposition 1. Our HIBSC scheme is correct, sID-IND-CCA secure and ACP-UF secure
assuming the decisional wBDHI* assumption, the OrcYW assumption holds and Schnorr’s
ROS Problem is hard.

The correctness is straightforward.
For indistinguishability, combining the sID-IND-CPA proofs in [9], the transformation

theorem in [10] and also the composition theorem of signature and encryption in [1], it implies
that our HIBSC is sID-IND-CCA secure.

For existential unforgeability, the HIBSC scheme is ACP-UF secure by Theorem 2 and
the composition theorem of signature and encryption in [1].

7 Conclusions

We presented the first constant-size HIBS and HIBSC provable without random oracles. In
the reductionist security proofs, we either use an interactive intractability assumption, or use
the gID models. We also need the sID model for HIBSC security proof. It is an open problem
to avoid these models and assumptions.

Acknowledgements to Jin Li and Kenny Paterson for pointing out an aspect of random
oracles, and to Hong Kong Earmarked Grants 4232-03E and 4328-02E for sponsorship.
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