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Abstract. Digital signature is one of the most important primitives
in public key cryptography. It provides authenticity, integrity and non-
repudiation to many kinds of applications. On signer privacy however,
it is generally unclear or suspicious of whether a signature scheme itself
can guarantee the anonymity of the signer. In this paper, we give some
affirmative answers to it. We formally define the signer anonymity for
digital signature and propose some schemes of this type. We show that
a signer anonymous signature scheme can be very useful by proposing
a new anonymous key exchange protocol which allows a client Alice to
establish a session key with a server Bob securely while keeping her iden-
tity secret from eavesdroppers. In the protocol, the anonymity of Alice
is already maintained when Alice sends her signature to Bob in clear,
and no additional encapsulation or mechanism is needed for the signa-
ture. We also propose a method of using anonymous signature to solve
the collusion problem between organizers and reviewers of an anonymous
paper review system.
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1 Introduction

Digital signature is one of the most important primitives in public key cryp-
tography. It is a very useful tool for providing authenticity, integrity and non-
repudiation while it has seldom been considered to provide user privacy by its
own. In many applications such as e-voting, e-auction, authentication protocols,
and many others, we need to protect a signer’s identity from being known by
eavesdroppers or other parties in a system. For example, in an anonymous elec-
tronic transaction processing system [17] or an anonymous key exchange protocol
[27], additional mechanisms or encapsulation techniques such as extra layers of
encryption are applied onto their underlying signature schemes for protecting
the signer’s identity. In some other examples such as [8], several requirements
for the signer anonymity of a signature scheme are informally given. However,
among these solutions or discussions, they usually require significant increase
of system complexities or lack formal methodologies for analyzing the level of
anonymity being provided to signers. Although it is widely believed that a sig-
nature scheme by itself may provide a certain degree of anonymity to its signers,
there is no formal treatment on this subject. It is still generally unclear on ex-
actly what conditions that a signature itself can provide anonymity of its signer.
Comparing with the progress on the decryptor identity exposure issue of public
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key encryption schemes [2], it has been far lagged behind on the research of the
signer anonymity of signature schemes themselves.

In this paper, we formally define a signer anonymous signature scheme.
Traditionally, a secure digital signature scheme is required to be existentially
unforgeable against adaptive chosen message attack (euf-cma) [15]. By signer
anonymity, we mean that given a signature (but not the message), no one can
tell who the real signer is. It will coexist with unforgeability. That is, a signer
anonymous signature scheme will be euf-cma as a conventional signature scheme,
while the signer’s identity will be protected if only a signature is given but not
the corresponding message or signer’s identity/public key. We are expecting to
see the signer anonymous signature schemes to be very useful for many privacy-
related applications. In particular, we will see that it is possible to just use signer
anonymous signatures to preserve user privacy without applying any additional
mechanism or encapsulation technique onto the signatures.

One may think that keeping the message of a signature secret should give
signer anonymity to the signature. However, this is far from enough. Also notice
that a system may only have a few public keys so that an adversary can efficiently
enumerate them all in an endeavor of finding signer’s identity. Due to the lack of
a rigorous treatment on the signer anonymity of a signature scheme, signatures
used in many current privacy-related systems are giving out enough information
to an adversary for compromising the identity of an anonymous user.

Consider the following example (Fig. 1) which is a key transport protocol
proposed by Boyd and Park [8] for a mobile client A to transport a session key
σ to a server B. The protocol is also targeted to provide client anonymity by
protecting A’s identity IDA from being known by eavesdroppers.

A→ B : PKEB(IDA, σ, count)
A← B : Encσ(count, rB)
A→ B : SigA(IDB , h(count, σ, rB))

Fig. 1. Boyd-Park Authenticated Key Transport Protocol

In the first message of the protocol, A encrypts IDA, σ and a field count
under B’s public key encryption function PKEB which is assumed to be publicly
known. This protects A’s identity from being known by eavesdroppers. In the
third message of the protocol however, A also needs to generate and send a
signature to B in clear. Obviously, to hide the identity of A, this signature should
not provide any meaningful information about A’s identity to eavesdroppers.

To illustrate some subtleties of making a signature signer anonymous, we
describe several potential attacking techniques which can be used to compromise
a signer’s identity. They are

– Different Domain Attack
– Redundant Structure Attack
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– Sparse Message Attack

Redundant Structure Attack. As remarked by the authors in [8], it is
important to make sure that the signature does not contain any “redundant”
structure, which can be revealed during the signature verification procedure
and does not require the signed message to be known, while such a redundant
structure may help an eavesdropper identify the mobile client. In [8], no formal
definition of such “redundant” structure is given and it is also not obvious to
have a satisfactory definition for it. We may only give some examples to illustrate
the idea of it. For example, a recoverable signature scheme [7] allows the message
to be recovered and verified from the redundant structure of such a signature
once the correct signature verification function is given. Hence if the signature
scheme SigA in the protocol above is recoverable, an eavesdropper can find out
the identity of A by trying the signature verification functions of all mobile
clients one by one until a message starting with IDB is recovered and verified.

Different Domain Attack. In order to prevent Redundant Structure At-
tack, a signature scheme which appears to be immune from such an attack, an
ElGamal or Schnorr [25] type signature scheme was chosen for this key trans-
port protocol [8]. However, we notice that an eavesdropper may still be able to
identify the mobile client by examining the signature from another aspect: sim-
ply from the length of a signature. Suppose there are two mobile clients in the
system and one of them is communicating with the server using this anonymous
key transport protocol. When Schnorr signature scheme is used, the two mobile
clients may select their own keys in different groups that could have different
sizes. By examining the length of the signature in the protocol, the eavesdropper
can tell which mobile client is communicating with the server.

Sparse Message Attack. For signature schemes where redundant structure
does not exist and all signers have the same signature domain, an adversary
may still be able to find out the signer from just the given signature. Below is
an example.

Consider a trapdoor one-way permutation family indexed by signers’ public
keys (e.g. RSA [23]), a signature of a message is generated by computing the
permutation inverse of the message using a signer’s private signing key (i.e.
a trapdoor information). If the message space is sparse in the image of the
permutation family (e.g. the image of the permutation family contains only a
few meaningful messages), the adversary is able to find out who the actual signer
is. Given a signature, the adversary can find out the actual signer’s identity using
the following elimination method: “For a trial signer, the adversary computes
the one-way permutation of the signature indexed by the signer’s public key and
checks if the result is in the corresponding message space. If it is not, then the
adversary is sure that this signer is not the actual signer of the signature. The
adversary will simply repeat this elimination procedure until a signer is found.”

There are many other examples that signature schemes may have leaked too
much information about the identity of the signer. In [20], Lee et al. used a
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signature scheme for anonymous electronic auction, and the signature scheme is
very similar to Schnorr signature scheme. In the scheme, if bidders are allowed
to pick keys in different cyclic groups that are arbitrarily chosen, then it is
possible that keys are of different lengths. The method of examining the length
of signatures can usually give enough information to eavesdroppers for finding
out the identities of bidders.

Encrypting a Signature May Not Work Either. In [17], a pseudonym
server is used to enhance user privacy in electronic transactions (e.g. SET [21],
iKP [3]). Although signatures exchanged between a client and a pseudonym
server are encrypted, client identity could still be revealed from information
such as the length of a ciphertext which is usually tightly related to the length of
the signature encrypted. One should note that this problem may not be solved
by using a key-privacy-enabled public key encryption scheme [2] as such an
encryption scheme is addressing the identity exposure issue of the decryptor,
not the sender.

Contributions. We formally introduce signer anonymous digital signature
and define two security models subsequently for it. The first one is static, it pro-
vides an intuitive way to screen off signatures which do not have the anonymity
property; the second one, a stronger model, combines the static model with the
adaptive chosen message attack, and this adaptive model is then used in the
security analyses of the signer anonymity of our proposed schemes.

Some commonly used signature schemes are examined. We show that the
basic RSA signature scheme [23] is in general not signer anonymous, except in a
special case where some restrictive assumptions are applied. We then show that
PSS [7] is not signer anonymous even with those restrictive assumptions. We also
show that Schnorr and ElGamal signature schemes are not signer anonymous,
except all signers are choosing keys under a common domain.

To transform those signature schemes to signer anonymous versions, we pro-
pose some extensions of them and show that they are signer anonymous even
under our adaptive model. We also propose a new anonymous key exchange pro-
tocol which allows a client Alice to establish a session key with a server Bob
securely while keeping her identity secret from eavesdroppers. In the protocol
Alice sends her signer anonymous signature to Bob in clear, while the anonymity
of Alice is already maintained. As another application, we propose a method of
using anonymous signature to solve the collusion problem between organizers
and reviewers of an anonymous paper review system.

Paper Organization. In Sec. 2, we review some related work. This is followed
by Sec. 3 in which we introduce a security model for signer anonymous signature.
In Sec. 4, we review some commonly used signature schemes and show that
they are not signer anonymous. In Sec. 5, we introduce a stronger model for
signer anonymous signature and call it the adaptive model. In Sec. 6, we propose
some modifications of the signature schemes reviewed in Sec. 4 and show their
anonymity under the stronger adaptive model. In Sec. 7, we apply our anonymous
signature schemes on the design of anonymous key establishment protocols and
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the construction of an anonymous paper review system which solves the collusion
problem between organizers and reviewers.

2 Related Work

For the counterpart of digital signature in public key cryptography, the public
key encryption with key privacy was introduced and first formalized by Bellare
et al. in [2]. In their model, a secure key-privacy-enabled encryption scheme not
only ensures that an encrypted message is semantically secure against adaptive
chosen-ciphertext attacks but also prevents the public from getting the decryp-
tor’s identity from his ciphertexts. Several techniques were also proposed in [2]
for converting a conventional encryption scheme to a key-privacy-enabled en-
cryption scheme. However, these techniques cannot be simply applied to digital
signature schemes for converting them to anonymous version. The main chal-
lenge of constructing an anonymous signature scheme is that signature schemes
are not designed for hiding messages. It is different from a public key encryption
scheme. For a secure key-privacy-enabled encryption scheme, an attacker (i.e.
the one who wants to find out the identity of the decryptor) has access to both
the message and the corresponding ciphertext (and of course the public keys
of all decryptors in a system). For constructing a secure anonymous signature
scheme, on the other hand, we need to consider the impacts of messages to the
anonymity of signatures more carefully. For example, if a signature and the cor-
responding message are given, it is impossible to have a signature scheme be
anonymous because the signature is publicly verifiable and the number of public
keys in a system is usually limited. Another example, if the message of a chal-
lenge signature is not given but the message space is small, it would still be easy
to find out the identity of the signer by searching over all the possible messages
for each possible signer. In the following sections, we will see that we tackle the
problems related to message characteristics (such as message space and message
distribution) from both definitions and techniques. On definitions, we define the
exact meaning of an anonymous signature scheme with respect to the message
characteristics. On techniques, we will propose some major ones for making sure
that message characteristics would not compromise signer anonymity.

Notice that signer anonymity is not the same as sender anonymity while the
latter is not new. In signcryption schemes with key privacy [9,26], or in desig-
nated verifier signature schemes [18,19], the identity of the sender is protected
(i.e. sender anonymity) using the intended decryptor/verifier’s public key. Their
techniques are similar to that of key-privacy-enabled encryption schemes [2]. An
anonymous signature scheme, on the other hand, does not have an intended re-
cipient when a signature is generated. It solely focuses on the signer anonymity
of a signature scheme itself.

The term, signer anonymity, can also be found in literature related to group
signature [11,4] and ring signature [24,12]. But their meaning of signer anonymity
is more precisely to be read as 1-out-of-n (or t-out-of-n for threshold settings)
signer anonymity, where n is fixed for each given group/ring signature. These
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schemes have a set of n signers defined by each signature and the signer anonymity
of the signature is to prevent anyone from finding out the actual signer out of
these n possible signers. In addition, the computational complexity of these
schemes is in proportion to the size n of the signer set defined by each of these
signatures. An anonymous signature scheme, on the other hand, is rather a con-
ventional signature scheme with an additional property – signer anonymity. The
computational complexity of a signature is independent of the number of public
keys in a system, and the level of anonymity is independent of the number of
public keys in a system either (provided that all the public keys are defined ap-
propriately according to the specification of the anonymous signature scheme).
If we extend our notion of signer anonymity to group signature or ring signature,
we are actually making the group of possible signers anonymous. That is, given
a group/ring signature, an attacker cannot find out who is in the signer group
or who is not.

3 A Static Security Model for Signer Anonymity

Definition 1. A digital signature scheme is a tuple of four algorithms denoted
by (K,M,S,V).

1. The key generation algorithm K is a randomized algorithm which on input
1k, where k ∈ N is a security parameter, returns in polynomial time a pair
(pk, sk) of matching public and secret keys.

2. The message space generatorM is an algorithm which on input a public key
pk returns in polynomial time a set M (called the message space with respect
to pk). Formally, the output is a description of M and for simplicity, we
denote M by M(pk).

3. The signing algorithm S is a (possibly randomized) algorithm which on input
1k, a message m and the secret key sk returns in polynomial time a signature
σ for m.

4. The verification algorithm V is a deterministic algorithm which on input 1k,
a message m, the public key pk, and a candidate signature σ for m returns
in polynomial time a bit indicating the validity of the signature.

(Correctness.) We require that V(1k,m, pk,S(1k,m, sk)) = 1 for any (pk, sk)←
K(1k) and m ∈M(pk).

From the definition above, we explicitly specify that the message space is
defined by the public key. In the past, this is usually assumed but not explicit
and is often considered to have a common message space for all keys in a system.
In this paper, we explicitly define the message space as it is important to our
discussions of signer anonymity. Another possible definition ofM is to consider
it as a randomized algorithm which generates messages directly. In other words,
the message distribution is also specified by the scheme. However, it is unnatural.
In practice, a signature scheme only has the message space defined with respect
to each public key. It is up to the specific application to decide how the messages
are to be drawn from the message space. Therefore, we leave the distribution
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of messages undefined and specify it only when it comes into place for ensuring
signer anonymity.

A signature aims to provide message authentication and non-repudiation, so
in the literature, most of the results are focusing on the impossibility of producing
forgeries. The theme of this paper is to consider an auxiliary property for digital
signature: signer anonymity. In the following, we specify a basic model which
captures our fundamental notion of signer anonymity. For simplicity, we omit
the expression of 1k from the inputs of S and V in the rest of the paper.

3.1 Static Model

Definition 2. Let SD = (K,M,S,V) be a digital signature scheme. Suppose
the key generation algorithm is run twice with the security parameter k, and
(pk0, sk0)← K(1k) and (pk1, sk1)← K(1k) are generated. SD is said to produce
computationally indistinguishable signatures (or signatures with signer anonymity
in the static model) if for every probabilistic polynomial time (PPT) algorithm
D, every positive polynomial p(·), and all sufficiently large k’s,

|Pr[D(1k, pk0, pk1, σ0) = 1]− Pr[D(1k, pk0, pk1, σ1) = 1]| < 1
p(k)

(1)

where σ0 ← S(m0, sk0), σ1 ← S(m1, sk1) and m0 ∈R M(pk0), m1 ∈R M(pk1).

By x ∈R X, we mean that an element x is randomly chosen from a set X. A
weaker version of Def. 2 is to restrict that the message spaces of both public keys
are identical and the signatures σ0 and σ1 are signatures of the same message,
that is, m0 = m1. This model looks intuitive but restrictive when compared with
the definition above. In many cases, the message spaces for different public keys
are not the same or their message distributions are not identical. For example,
the basic RSA signature scheme [23] reviewed below may have the size of the
message space depend on the value of the RSA modulus.

3.2 Discussions

A message-recoverable signature scheme, such as PSS-R [7], allows the message
of each of its signatures to be recovered directly from the signature once the cor-
responding public key is given while having negligible chance to have a message
recovered from the signature if an incorrect public key is supplied. In Def. 2,
since public keys are known to D, we can see that a message-recoverable signa-
ture scheme cannot be anonymous.

Although messages m0 and m1 are unknown to the distinguisher D, the
corresponding message spaces are publicly known (since M, pk0 and pk1 are
known). Hence for satisfying Def. 2, it is required that all message spaces should
be sufficiently large so that it is negligible for D to guess correctly the message.
One may consider that every message space should have at least 2k messages. We
will give a more precise specification to the message space. One should also note
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that the size of the message space is a necessary requirement to the anonymity
of a signature scheme, but it is not sufficient.

On the signature spaces, Def. 2 also indicates that D should not be able to
distinguish computationally a signature from one space to another. As a coun-
terexample, if the signature space correlates to the length of the corresponding
public key (mentioned earlier in the introduction section), D may be able to
compromise the anonymity of a signature from this information.

In the next section, we will see some concrete signature schemes and show
that they are not signer anonymous under Def. 2. We will then give an even
stronger definition of signer anonymity and propose some techniques for trans-
forming those schemes into signer anonymous versions which can be proven under
the stronger notion.

4 Signature Signatures that are Not Signer Anonymous

In this section, we review some of the commonly used signature schemes and
show that they are in general not signer anonymous.

4.1 The Basic RSA Signature Scheme

In the following, we show that unless intentionally specified, the basic RSA
signature scheme [23] (the primitive one without using hash function), in its
general use, is not signer anonymous according to Def. 2.

Consider two signers Signer0 and Signer1 with RSA moduli N0 and N1,
respectively. Without loss of generality, let N0 > N1. If the two moduli are of
different length, it is obvious that signatures generated by the two signers can
easily be identified by checking the length of a given signature. Even if N0 and
N1 are of equal length, we can still distinguish signatures for most of the cases.
In the following, we elaborate this in detail.

Let us evaluate the probability that a signature of Signer0 falls into the range
of ZN0−ZN1 . Let ∆ = N0−N1. The probability that a signature of Signer0 falls
into {N1, · · · , N0 − 1} will be ∆/N0. This value is upper bounded by ∆/2k−1

if |N0| = k. Hence if |∆| is in the order of log(k), then the probability will be
negligible for sufficiently large k. This is the case when we say that N0 and N1

are “very close” to each other. In this case, the basic RSA signature scheme may
be anonymous. However, this is true only if all message spaces in the system are
dense in the corresponding ranges, for example, every element in ZNi

, i = 0, 1, is
valid/meaningful. On the other hand, if the message space of Signer0 or Signer1

is sparse in ZNi
, i = 0/1, that is, there are only a few elements in ZNi

that
are valid (or meaningful) messages. Then the scheme cannot be anonymous.
For example, suppose a signature σ = md0

0 mod N0 is given where d0 is the
private exponent of Signer0, the distinguisher D can determine if Signer1 is the
actual signer by computing m′ = σe1 mod N1, where e1 is the public exponent of
Signer1 and then determining if m′ is in the message space of Signer1. Since the
message space of Signer1 in ZN1 is sparse, it will have a non-negligible chance



10 G. Yang, D. Wong, X. Deng and H. Wang

that m′ is not in the message space, which allows D to find out the actual signer
with non-negligible advantage.

All of the above are concerning about special cases. In the general case where
N0 and N1 are generated by following a conventional procedure, that is, each
of N0 and N1 is a product of two randomly chosen equal-length primes and
|N0| = |N1| = k, the following theorem implies that with at least a constant
probability that a RSA signature can be distinguished successfully (i.e. not signer
anonymous under Def. 2).

Theorem 1. If N0 and N1 are generated by following the conventional proce-
dure, then the probability that |N0 −N1| ≥ 2k−2 is at least 1

400 .

Proof. Suppose N0 and N1 are generated by following the conventional pro-
cedure, that is, randomly generate two equal-length primes p0 and q0 and set
N0 = p0q0 such that |N0| = k and do the same for N1. Without loss of gen-
erality, consider N0 > N1. We show that with at least a constant probabil-
ity (i.e. non-negligible probability), a signature of Signer0 falls into the range
{N1, · · · , N0 − 1}, and therefore signatures generated by Signer0 and Signer1

are generally distinguishable even if N0 and N1 are of the same length.

| R1 | | | R2 |

α =
√

2k−1 ξ = 3α+β
4

γ = α+3β
4 β =

√
2k

Fig. 2. The Range of RSA Prime Factors

Consider a RSA modulo N = pq where p and q are random prime of the
same length. For 2k−1 < N < 2k, we have α =

√
2k−1 < p, q < β =

√
2k. The

range is illustrated in Fig. 2.
The number of primes that are less than or equal to an integer n is roughly

n/ ln(n) where ln(·) denotes the natural logarithm. This implies that the prime
density (1/ ln(n)) is in decreasing order. If we randomly choose a prime α < x <
β, the probability that it is in R1 is greater that 1/4. Hence, we have

Pr[p and q are in R1] >
1
16

.

Using the prime density function we can also calculate for a randomly chosen
prime α < x < β,

Pr[x is in R2] ≈
β

ln(β) −
γ

ln(γ)

β
ln(β) −

α
ln(α)

≈
2k/2

k/2 −
c12

k/2

k/2+ln(c1)/ ln(2)

2k/2

k/2 −
2k/2

(k−1)/
√

2
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≈
1
k −

c1
k+2 ln(c1)/ ln(2)

1
k −

1√
2(k−1)

≈
√

2(1− c1)k3 + O(k2)
(
√

2− 1)k3 + O(k2)

where c1 = 3+1/
√

2
4 . We then get

Pr[x is in R2] ≈
((
√

2− 1)/4)k3 + O(k2)
(
√

2− 1)k3 + O(k2)

>
1
5

for sufficiently large k. Therefore,

Pr[p and q are in R2] >
1
25

.

And for any N0 generated by p0 and q0 in R2 and N1 generated by p1 and q1 in
R1,

N0 −N1 ≥ γ2 − ξ2 =
β2 − α2

2
= 2k−2.

Thus with at least a constant probability (i.e. non-negligible probability), N0 and
N1 are “far away” from each other that leads to the result of having signatures of
Signer0 fall into the range {N1, · · · , N0 − 1} with non-negligible chance. There-
fore signatures generated by Signer0 and Signer1 are generally distinguishable
even if N0 and N1 are of the same length. ut

4.2 PSS

Based on the results above, we can see that PSS [7] is not signer anonymous
either. Below are the details.

Let k ∈ N be a security parameter. There are two additional security parame-
ters k0 and k1 satisfying k0 +k1 ≤ k−1. As suggested in [7], we can imagine k =
1024, k0 = k1 = 128. Let h : {0, 1}∗ → {0, 1}k1 and g : {0, 1}k1 → {0, 1}k−k1−1

be two hash functions3. Let g1 be the function on input w ∈ {0, 1}k1 returns
the first k0 bits of g(w), and let g2 be the function which on input w ∈ {0, 1}k1

returns the remaining k − k0 − k1 − 1 bits of g(w).
The key generation algorithm K is the same as that of the basic RSA:

(pk, sk)← K(1k) where pk = (N, e) and sk = (N, d) with N being a composite
of two randomly generated equal-length primes and |N | = k. The message space
MPSS can be any subset of {0, 1}∗. The signature generation and verification
algorithms are described as follows.
3 As g is actually an expansion function, we can consider it as a one-way function

which is viewed as a random oracle for security analysis.
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S(m, sk)
1. r

R← {0, 1}k0 ; w ← h(m‖r); r∗ ← g1(w)⊕ r
2. y ← 0‖w‖r∗‖g2(w). The first 0-bit is to guarantee that y is in ZN .
3. return σ = yd mod N

V(m, pk, σ)
1. y ← σe mod N
2. Break up y as b‖w‖r∗‖γ (That is, let b be the first bit of y, w the next

k1 bits, r∗ the next k0 bits, and γ the remaining bits.)
3. r ← r∗ ⊕ g1(w)
4. If (h(m‖r) = w and g2(w) = γ and b = 0) then return 1

Else return 0

(Analysis.) We can see that PSS has the same problem as the basic RSA, that
is, the actual signer of a signature can be found out simply by examining the
length of the signature or evaluating the ‘gaps’ among the ranges of the signature
spaces of different signers. Theorem 1 applies directly to PSS. In the following,
we examine an extra feature that PSS has.

This feature allows a specific distinguisher D (in Def. 2) to distinguish the
signatures between two different signers even the RSA moduli of these two signers
are “very close” (as defined in Sec. 4.1) to each other. Suppose N0 and N1 are
both k bits long. We construct a distinguish D in the following way:

“On input (1k, pk0, pk1, σ), compute y ← σe0 mod N0, and break up y
as done in STEP 2 of the verification algorithm V above. If g2(w) = γ,
output 1; otherwise, output 0.”

In the case σ = σ0, Pr[D(1k, pk0, pk1, σ) = 1] = 1. In the case σ = σ1, if g
is considered as a random oracle [6], then the probability that g2(w) = γ is
negligible in k − k0 − k1 − 1. Using k = 1024, k0 = k1 = 128, we can see that
D’s advantage is overwhelming, and D is in polynomial time.

4.3 Schnorr Signature Scheme [25]

On input a security parameter 1k, the key generation algorithm K returns a
public key pk which consists of a set of group parameters I = (p, q, g,G, h) and
an element y ∈ G, and a secret key sk which is a random element x ∈R Zq, such
that y = gx mod p. In I, p, q are two large primes chosen randomly such that
q|p−1, G is a subgroup of Z∗

p with order q, g is a generator of G so that computing
discrete logarithms to the base g is difficult, and h : {0, 1}∗ → {0, 1, · · · , 2k − 1}
is a hash function where 2k < q.

In the original Schnorr signature scheme, the message space can be arbitrarily
specified as any subset of {0, 1}∗. For allowing us to specify the minimum size of
the message space that an anonymous Schnorr signature scheme should be in the
later part of this paper, we quantify the message space. We define the message
space generatorM such that on input pk, which is generated by K(1k),M(pk)
outputs the description of a message space MSchnorr such that |MSchnorr| ≥ 2k.
Below are the signature generation and verification algorithms.
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Signing algorithm. On input a message m ∈ MSchnorr and a secret
key x, S(m,x) is computed as follows:
1. Choose a random w ∈R Zq and compute t = gw mod p.
2. Compute r = h(t, m).
3. Compute s = w − xr mod q.

The signature for m is the pair (r, s).

Verification algorithm. To verify a signature (r, s) for message m
under public key (I, y), compute t = gsyr mod p and output 1 if
r = h(t, m), otherwise output 0.

Since signers generate their public key pairs independently, it is pretty likely
that different signers have their keys under different sets of group parameters.
We can see that the scheme is not signer anonymous as identity information
will be leaked from the value of s by applying similar arguments to that in
Sec. 4.1. Interestingly, in a special case where all signers are sharing a common
set of group parameters, the scheme can actually be shown to provide signer
anonymity under the random oracle model [6] without any modification. The
proof technique is similar to that for Lemma 2.

ElGamal Signature Scheme [13]. The analysis of ElGamal signature scheme
is similar to the above. We skip the details in this paper.

In the next section, we define a stronger notion of signer anonymity for digital
signature schemes.

5 An Adaptive Security Model for Signer Anonymity

Def. 2 is static as the distinguisher cannot adaptively acquire additional infor-
mation about the challenging signature from the environment. In the following,
we define a stronger model which allows the distinguisher to adaptively obtain
signatures generated by the entity who generates the challenging signature.

Definition 3 (SA-CMA). Let k be a security parameter. A digital signature
scheme SD is signer anonymous against chosen message attack (SA-CMA) if
for all sufficiently large k, no PPT adversary (or distinguisher) D can win the
following game with a probability non-negligibly larger than 1

2 . The game is sim-
ulated by a challenger.

1. (Key Generation Phase.) The challenger runs K(1k) multiple times for gen-
erating polynomially many public and secret key pairs. All the public keys are
accessible by D.

2. (Training Phase.) D adaptively queries the challenger with a public key pki

and a message m ∈ M(pki). The challenger produces σ ← S(m, ski) and
replies D with σ if pki is generated in the Key Generation Phase; otherwise,
a ‘⊥’ is returned indicating that signature generation has failed.
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3. (Key Selection Phase I.) D picks two public keys from the public keys
generated in the Key Generation Phase. We denote these two key pairs by
(pk0, sk0) and (pk1, sk1).

4. (Key Selection Phase II.) The challenger gives all the secret keys to D except
sk0 and sk1.

5. (Challenge Phase.) The challenger tosses a random coin $
R← {0, 1}, then

randomly picks a message m ∈R M(pk$), and returns a challenge signature
σ ← S(m, sk$) to D.

6. (Cracking Phase.) D can still adaptively make signing queries as in the
Training Phase but the associated public key with each query can only be pk0

or pk1.
7. (Output Phase.) At the end of the game, D outputs a bit $′ and wins if

$′ = $.

D’s advantage is defined as Advsa−cma = Pr[$′ = $]− 1
2 and Pr[$′ = $] is the

probability that D wins the game. The probability is taken over the coin tosses
of both D and the challenger, including the coin toss for $.

If a scheme satisfies this definition, we say that the scheme is SA-CMA secure.
As the distinguisher D of the adaptive model has an additional signing oracle

to access, the model is obviously stronger than the static one given in Def. 2.
Another seemingly “stronger” definition is to let D perform the Challenge Phase
and the Cracking Phase in the following way:

Definition 4. ...
5. The challenger tosses a random coin $

R← {0, 1}.
6. D can adaptively perform the following queries:

(a) D performs signing queries as in the Training Phase except that now the
allowable public keys are pk0 and pk1 only.

(b) D queries a special oracle called challenging oracle. The challenging
oracle randomly picks a message m ∈R M(pk$), and returns σ ←
S(m, sk$) to D.

...

But the following result shows that Def. 3 and Def. 4 are equivalent.

Theorem 2. If there exists no PPT algorithm that has a non-negligible advan-
tage in winning the game in Def. 3, then there exists no PPT algorithm that has
a non-negligible advantage in winning the game in Def. 4.

The proof below uses the “hybrid” technique described in [14].

Proof. Before we go to the proof we denote the games in Def. 3 and Def. 4 by
Game 1 and Game 2, respectively.

The proof is by contradiction. Suppose there exists a polynomial time ad-
versary D that wins Game 2 with non-negligible advantage by performing p(k)
challenging queries where p(·) denotes a polynomial. We construct another poly-
nomial time adversary D′ that wins Game 1 with non-negligible advantage.
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D′ runs D by performing all the actions that D has made except the chal-
lenging queries. D′ uniformly chooses a number i from (1, 2, · · · , p(k)). For the
first i−1 challenging queries, D′ answers D with σ0 = S(m, sk0) by querying
the signing oracle on pk0 and a message m ∈ M(pk0). For the i-th query, D′
answers D with the challenge signature σ it has received in Game 1. For the rest
p(k)−i challenging queries, it answers D with σ1 = S(m, sk1) by querying the
signing oracle on pk1 and a message m ∈M(pk1). D′ outputs what D outputs.

Now let us assess the success rate of D′. For simplicity, we use the subscript
(0 or 1) to indicate the secret key used to generate the signature.

Let λ0 = Pr[D(σ1
0 , σ2

0 , · · · , σp(k)
0 ) = 1]. And let λ1 = Pr[D(σ1

1 , σ2
1 , · · · , σp(k)

1 ) =
1]. From the assumption, D’s advantage in Game 2 is defined as ε = 1

2 (1−λ0) +
1
2λ1 − 1

2 = 1
2 (λ1 − λ0) which is non-negligible. Then

Pr[D outputs 1|b = 1] =
1

p(k)

p(k)∑
i=1

(Pr[D(σ1
0 , σ2

0 , ..., σi−1
0 , σi

1, σ
i+1
1 , ..., σ

p(k)
1 ) = 1])

and

Pr[D outputs 1|b = 0] =
1

p(k)

p(k)∑
i=1

(Pr[D(σ1
0 , σ2

0 , ..., σi−1
0 , σi

0, σ
i+1
1 , ..., σ

p(k)
1 ) = 1])

Finally,

Pr[D′ wins the game ] = Pr[D outputs 0|b = 0]Pr[b = 0] +
Pr[D outputs 1|b = 1]Pr[b = 1]

=
1
2

+
1
2
(Pr[D outputs 1|b = 1]− Pr[D outputs 1|b = 0])

=
1
2

+
1

2p(k)
(
p(k)∑
i=1

(Pr[D(σ1
0 , σ2

0 , ..., σi−1
0 , σi

1, σ
i+1
1 , ..., σ

p(k)
1 ) = 1])

−
p(k)∑
i=1

(Pr[D(σ1
0 , σ2

0 , ..., σi−1
0 , σi

0, σ
i+1
1 , ..., σ

p(k)
1 ) = 1]))

=
1
2

+
ε

p(k)
.

So D′ wins the game with a non-negligible advantage and D′ runs in polynomial
time. ut
The theorem above indicates that once the distinguisher is given access to a
signing oracle, then giving it one challenge is equivalent to giving it polynomially
many challenges.

6 Modified Signature Schemes for Signer Anonymity

In this section, we propose some modifications on the schemes described in Sec. 4
and show that they are signer anonymous under the adaptive model (i.e. SA-
CMA in Def. 3). We start with Schnorr signature scheme and provide the full
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proof for its signer anonymity. Then we modify the basic RSA signature scheme
and subsequently the PSS.

6.1 Extended Schnorr Signature Scheme for Signer Anonymity

The key generation algorithm K and the message space generatorM are almost
the same as the original Schnorr signature scheme described in Sec. 4.3, except
that the public key now also contains an additional parameter denoted by b ∈ N.
Let qmin and qmax denote the lower bound and upper bound of the group orders
of all signers, respectively. Let 2b be an integer which is ` bits longer than qmax

and ` = k + 1. One may imagine k = 160 and hence ` = 161. Let h : {0, 1}∗ →
{0, 1, · · · , 2k − 1} be a hash function where 2k < qmin.

For a signer with public key pk = (I, b, y) and secret key x generated by
K(1k) where I = (p, q, g,G, h) and y = gx mod p, the signature generation and
verification algorithms are as follows. Let n be the largest integer such that
nq < 2b.

Signing algorithm. On input a message m ∈ M(pk) and secret key
x, S(m,x) is computed as follows:
1. Choose a random w ∈ Zq and compute t = gw mod p.
2. Compute r = h(t, m) and then s = w − xr mod q.
3. Choose a number λ

R← {0, 1, · · · , n− 1} and compute s′ = s + λq
The signature for m is the pair (r, s′).

Verification algorithm. To verify signature (r, s′) for message m
and public key (I, y), compute s = s′ mod q and t = gsyr mod p,
and output 1 if r = h(t, m), otherwise, output 0.

Consider two arbitrary signers Signeri and Signerj whose sets of group parame-
ters are denoted by Ii = (pi, qi, gi, Gi, h) and Ij = (pj , qj , gj , Gj , h), respectively.
Let ni and nj be the largest integers such that niqi < 2b and njqj < 2b, respec-
tively. Without loss of generality, we assume niqi < njqj .

Lemma 1. For the extended Schnorr signature scheme above, if signer Signeri

generates a signature (ri, s
′
i) and signer Signerj generates a signature (rj , s

′
j),

then the probability that s′j is in ∆ = {niqi, · · · , njqj − 1} is at most 2−k.

Proof. First, note that s′i and s′j are uniformly distributed on {0, 1, · · · , niqi−1}
and {0, 1, · · · , njqj − 1}, respectively. Second, since njqj < 2b and niqi ≥ 2b− qi,
njqj − niqi < 2b − (2b − qi) = qi ≤ qmax. Hence,

Pr[s′j ∈ ∆] < qmax/(2b − qmax) < 1/2l−1 = 1/2k.

ut

In the following, we assume that h behaves like a random oracle [6]. If an algo-
rithm A runs in time at most t and completes successfully with probability at
least ε > 0, then A is said to be a (t, ε)-algorithm. The probability is taken over
the input domain and the coin tosses of A.
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Lemma 2. In the extended Schnorr signature scheme above, suppose for any
pair of signers Signeri and Signerj, qi = qj. Then if there exists a (t, ε + 1

2 )-
algorithm (distinguisher) D which wins the game of Def. 3 after performing at
most qH hash queries and qS signing queries, there exists a (t′, ε′)-algorithm
F which existentially forges under the chosen message attack [15] a signature
after performing at most qH + qS hash queries and qS signing queries, where
t′ ≤ t + qKc and ε′ ≥ (1− qH+qS

2k )(1− qS

2k ) ε
qK

for qK being some polynomial in k
and c being the time required for generating one key pair in the extended Schnorr
signature scheme.

Proof. We construct an algorithm F which runs D under a simulated environ-
ment of Def. 3 and forges a Schnorr signature.

At the beginning of the simulation, F is given a security parameter k, a set
of group parameters I = (p, q, g,G, h), a challenge element y ∈ G, an auxiliary
parameter b ∈ N and a message space MSchnorr such that |MSchnorr| ≥ 2k.
F is to forge a signature σ∗ = (r∗, s∗) with message m∗ ∈ MSchnorr such
that r∗ = h(gs∗yr∗ mod p, m∗) where h is provided as a random oracle by the
unforgeability game simulator of F . Note that F has access to the random oracle
of h and a signing oracle corresponding to the challenge public key y. The signing
oracle, on input a message m ∈ MSchnorr, returns a signature σ = (r, s) such
that r = h(gsyr mod p, m). We denote the random oracle for h by HO and the
signing oracle by SO.

In the Key Generation Phase of the game defined in Def. 3, F randomly
generates qK−1 public key pairs where qK is some polynomial in k. For each of the
public key pairs, say the i-th, the set of group parameters Ii = (pi, qi, gi, Gi, h)
is generated such that qi = q, qi|pi−1, and gi is the generator of Gi whose order
is qi. Also an element yi is generated as gxi

i mod pi where xi is randomly chosen
from Zqi

. The public key of i-th public key pair is set to pki = (Ii, b, yi) and the
corresponding secret key is xi. Let L = {pki}1≤i≤qK

be the set of public keys
generated in this phase except pkj , which instead is assigned to (I, b, y). The
value of j is chosen randomly from 1 to qK .

In the Training Phase and the Cracking Phase, F answers all oracle queries
made by D. For a hash query, the query is relayed by F to HO for an answer.
The answer is then relayed back to D. F also maintains a list Ψ of queried values
and their returns. For a signature query with message m in the corresponding
message space, there are two cases. Case 1: if the public key is not y, F follows
the signing algorithm of the scheme to generate a signature. This can be done
as F knows the corresponding signing key (or secret key). Case 2: if the public
key is y, F relays the query to SO and relays the signature back to D. Note that
the list Ψ should also be updated for hash values. In addition to these steps, in
the Cracking Phase, we will see shortly that F needs to carry out a few more
checkings when relaying queries and answers between D and the oracles HO,
SO to and fro.

In the Key Selection Phase I, if D picks two public keys such that none of
the keys is y, F fails and halts. Let the two public keys be (Î0, b, ŷ0), (Î1, b, ŷ1).
Suppose F does not fail and proceeds successfully to the Challenge Phase, F
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sets the challenge signature σ∗ = (r∗, s∗) by randomly picks r∗
R← {0, 1}k and

s∗
R← {0, 1, · · · , nq−1} where n is the largest integer so that nq < 2b. If r∗ is

already in the list Ψ as a queried hash oracle answer, F fails and halts (we will
see below that this event is called E2). Otherwise, an entry (>, r∗) is added into
the list Ψ , where > represents some hash input whose value is not known yet
but its hash value has been given as r∗.

The simulation proceeds until D reaches the Output Phase. When D outputs
and halts, F also halts and outputs nothing. That means F has failed to forge a
signature. However during the Cracking Phase, whenever D makes a hash query,
F checks if the answer of HO is r∗. If this is the case and at the same time
the hash evaluation is of the form h(gs∗yr∗ mod p, m∗) where m∗ ∈ MSchnorr

and m∗ is not involved in a signing query in the Training phase, F outputs the
forged signature σ∗ = (r∗, s∗) and message m∗, and halts. In addition, during
the Cracking Phase, whenever D makes a signing query with some message
m∗ ∈MSchnorr under y, F first queriesHO for the value of h(gs∗yr∗ mod p, m∗).
If the hash value is equal to r∗ and m∗ is not involved in a signing query in
the Training Phase, F outputs the forged signature σ∗ = (r∗, s∗) and message
m∗, and halts; if the hash value is not r∗, F then relays the query to SO and
continues the simulation as described above. Note that if m∗ turns out to have
been queried in some signing query during the Training Phase, F fails and halts
(we will see below that this event is called E3).

Analysis. First of all, it is easy to see that the running time of F is in poly-
nomial of that of D and F perfectly simulates the game of Def. 3 except during
the Challenge Phase. In this phase, the challenger in a real game (that is, F in
the simulated game described above) should have randomly picked a key among
two given public keys, then picked a message randomly from the message space
corresponding to the chosen public key and generated a challenge signature ac-
cordingly. In the following, we show that it is indistinguishable from D’s point of
view between the Challenge Phase of a real game and that of the simulated game
by F . Essentially, we show that in the simulated game, given a pair (r∗, s∗), it is
equally likely to have a message m ∈MSchnorr which produces a valid signature
equal to (r∗, s∗) no matter which of the public keys (Î0, b, ŷ0) and (Î1, b, ŷ1) is
corresponded with.

To show this, we investigate the distribution of the messages which produce
a signature (r∗, s∗) with respect to each of (Î0, b, ŷ0) and (Î1, b, ŷ1). For each of
(Î$∗ , b, ŷ$∗), $∗ = 0, 1, define a distribution

M$∗ = {m : r∗ ← h(gs∗ ŷr∗

$∗ mod p, m), m
R← {0, 1}`}.

Under the assumption that h is a random function [6], both distributions M0

and M1 are uniform, and both M0 and M1 have the same expected number of
messages which is equal to |MSchnorr|/2k. From the fact that log2(|MSchnorr|) ≥
k, we have at least half chance (derived from 1− (1− 2−k)|M

Schnorr| ≥ 1/2) that
the challenge signature σ∗ = (r∗, s∗), generated by F in the Challenge Phase of
the simulated game above, is a valid signature of some message. Furthermore,
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as h behaves likes a random oracle with the range of 2k possible values, it is
negligible for D to find out if the challenge signature is valid or not. Hence
from D’s point of view, when given a pair (r∗, s∗), it is equally likely to be a
valid signature no matter it is generated by a key corresponding to (Î0, b, ŷ0) or
(Î1, b, ŷ1).

Let E1 be the event that the hash evaluation

r∗ ← h(gs∗ ŷr∗

$∗ mod p, m∗) (2)

is carried out during the cracking phase where $∗ = 0/1. If event E1 does not
occur, by the random oracle assumption, it has not been decided (by the game
simulator F) on which message m∗ will make Eq. (2) hold. Hence D has no
advantage in winning the game. If E1 occurs and ŷ$∗ = y, then F wins the
game of existential unforgeability against chosen message attack.

Since the position of (I, b, y) in L is randomly chosen, the probability of
selecting (I, b, y) in Key Selection Phase I is 2/qK . Due to the same reason, in
event E1, the chance that ŷ$∗ = y is 1/2. Note that Pr[D wins] ≥ ε + 1/2. Let
Pr[D wins |E1] = λ + 1/2. We have

ε +
1
2
≤ Pr[D wins]

= (λ +
1
2
)Pr[E1] + Pr[D wins |E1]Pr[E1]

= (λ +
1
2
)Pr[E1] +

1
2
Pr[E1].

Hence λPr[E1] ≥ ε. Since ε > 0, we have 0 < λ ≤ 1/2. Therefore Pr[E1] ≥ 2ε.
To find out the lower bound of the winning probability of F , we only have

two events left to evaluate, that is, the chance that F fails due to the following
two events.

Event E2: During the Challenge Phase, r∗ is found to be in the list of Ψ .
Event E3: During the Cracking Phase, if evaluation r∗ ← h(gs∗yr∗ mod p, m∗)

occurs while m∗ has been involved in a signing query during the Training
Phase.

Since r∗ is randomly chosen from {0, 1}k and h is a random function, we have
Pr[E2] ≤ qH+qS

2k . Similarly, we have Pr[E3] ≤ qS

2k .
Combining all the events above, they include the case that y is one of ŷ0

and ŷ1, the case that (r∗, s∗) is a valid signature of y, E1 occurs, the case that
y is involved in the event E1, the case that r∗ is not in the list Ψ during the
Challenge Phase (i.e. E2), and the case that the forged message m∗ has not been
involved in any signing query during the Training Phase (i.e. E3), we have

Pr[F wins] ≥ (1− qH + qS

2k
)(1− qS

2k
)

ε

qK
.

On the running time of F , we can see that besides running D, F needs to
generates qK−1 key pairs during the Key Generation Phase and at most qS
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additional hash queries during the Cracking Phase. Let c be the time required
for generating one key pair. The running time of F is at most t + qKc. Also F
performs at most qH + qS hash queries and qS signing queries. ut

Theorem 3. The extended Schnorr signature scheme described above is SA-
CMA secure.

Proof. Without loss of generality, suppose in the game of Def. 3, the distinguisher
D picks the public keys corresponding Signeri and Signerj in the Key Selection
Phase I, and Signerj is picked by the challenger in the Challenge Phase. We
follow the notations used above and in the proof of Lemma 1, we assume that
niqi < njqj . Let E be the event that s′j 6∈ ∆. In other words, E is the event that
s′j ∈ {0, 1, · · · , niqi− 1}, that is, in the same domain as Signeri has been picked
by the challenger. According to Lemma 2, we have Pr[D wins the game |E] ≤
1
2 + ε(k) under the assumption that the extended Schnorr signature scheme is
existentially unforgeable [15], where ε is a negligible function. Since Pr[E] ≤ 1,
we have

Pr[D wins the game ∧E] ≤ 1
2

+ ε(k) (3)

According to Lemma 1, we have Pr[E] ≤ 2−k. Since Pr[D wins the game |E] ≤ 1,
we have

Pr[D wins the game ∧E] ≤ 2−k (4)

Combining Eq. (3) and (4), we have

Pr[D wins the game ] ≤ 1
2

+ ε(k) + 2−k

ut

The extended Schnorr signature scheme still maintains existential unforgeability
against adaptive chosen message attack (euf-cma) [15], namely, given a signing
oracle, an adversary cannot forge a signature for a message m which has not
been queried to the signing oracle before. However, the extended scheme does
not satisfy the strong unforgeability [5,1], namely, given a signing oracle, an
adversary cannot forge a valid pair of message m and signature σ which has not
been a query output of the signing oracle for m before.

6.2 Extended RSA Signature Scheme for Signer Anonymity

In our extended RSA signature scheme, we set up a common message space
and signature space for all signers regardless of the values of their RSA moduli.
The technique is borrowed from Rivest, Shamir and Tauman in the context of
a ring signature scheme [24]. It expands the message spaces of all signers to
a common domain {0, 1}b such that 2b is significantly greater than the RSA
moduli (denoted by Ni, i = 1, 2, · · ·) of all signers (e.g. b is 160 bits longer than
the largest Ni of all signers). An extended trapdoor one-way permutation gi over
{0, 1}b with respect to the signer i’s RSA modulus Ni is defined as follows. For
any b-bit message m, define nonnegative integers qi and ri so that m = qiNi + ri

and 0 ≤ ri < Ni. Then
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gi(m) =

�
qiNi + (rdi

i mod Ni) if (qi + 1)Ni ≤ 2b

m else.

where di is the RSA private exponent. The function gi is a one-way trapdoor
permutation over {0, 1}b and its inverse function g−1

i is defined as

g−1
i (m) =

{
qiNi + (r1/di

i mod Ni) if (qi + 1)Ni ≤ 2b

m else.

We then apply the traditional hash-then-sign strategy by using a hash function
to map messages from the signer’s message space to the common domain {0, 1}b.
Note that the extended RSA signature is euf-cma [15] under the random oracle
model. On signer anonymity, we have the following theorem.

Theorem 4. Let k be a system parameter. Suppose the extended RSA scheme
described above has the common domain {0, 1}b such that b−|Nmax| ≥ k, where
Nmax is the largest value of RSA moduli of all signers. If the message space of
each of the signers has at least 2k messages, then the scheme is SA-CMA secure
(with respect to Def. 3).

Proof (Sketch). Let h be a random oracle (hash function) that maps messages
from the signer’s message space to the common domain {0, 1}b. As h is a random
oracle, for any signer with RSA modulus Ni and for any message m from the
signer’s message space, the probability that gi(h(m)) = h(m) is at most 2−k.
The proofing techniques of Lemma 1, Lemma 2 and Theorem 3 can then be used
subsequently.

First, if a signer Signeri, whose RSA modulus is Ni, and signer Signerj ,
whose RSA modulus is Nj , generate message-signature pairs (mi, gi(h(mi)) and
(mj , gj(h(mj)), respectively, then the probability that gi(h(mi)) falls in the
range [2b−Nj + 1, 2b−Ni] is negligible (wlog, assuming that Ni < Nj). This
can be shown using the proofing technique for Lemma 1.

Second, for the two signers above, if a signature falls in the range [1, 2b−Nj ],
by applying the proofing technique for Lemma 2, we can show that D of the
game in Def. 3 will have negligible chance of distinguishing signatures between
the two signers as the extended RSA scheme is euf-cma [15].

Finally, by employing the combining technique of the proof of Theorem 3,
we conclude that the extended RSA scheme above is SA-CMA secure. ut

6.3 Extended PSS for Signer Anonymity

There are two phases. In the first phase, the domain expansion technique used in
the extended RSA signature scheme is employed. In the second phase, we solve
the problem brought in by the extra feature of PSS discussed in Sec 4.2. Our
solution is to conceal the special format of y. Details are as follows.

Let gi be the extended trapdoor one-way permutation defined above in
Sec. 6.2. It corresponds to the public key of signer i. Replace the original hash
function g : {0, 1}k1 → {0, 1}k−k1−1 with another hash function ρ : {0, 1}k1 →
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{0, 1}b−k1 . Let ρ1 be a function which on input w ∈ {0, 1}k1 returns the first k0

bits of ρ(w), and let ρ2 be a function which on input w ∈ {0, 1}k1 returns the
remaining b − k1 − k0 bits of ρ(w). Let ζ : {0, 1}∗ → {0, 1}b−k1−k0 be another
hash function. We then follow the other notations used in Sec. 4.2. The message
space MPSS ⊆ {0, 1}∗ is assumed to contain at least 2k messages. For security
analysis, all hash functions are assumed to behave like random oracles.

The key generation algorithm is the same as the original PSS scheme except
that we now have an additional parameter b. Below are the signature generation
and verification algorithms which maintain the unforgeability of the scheme in
terms of euf-cma [15] under the random oracle model.

S(m, ski)

1. r
R← {0, 1}k0 ; w ← h(m‖r); r∗ ← ρ1(w)⊕ r

2. y ← w‖r∗‖ρ2(w)⊕ ζ(m)
3. return σ = gi(y)

V(m, pki, σ)

1. y ← g−1
i (σ)

2. Break up y as w‖r∗‖γ (That is, let w be the first k1 bits, r∗ the next k0

bits, and γ the remaining bits.)
3. r ← r∗ ⊕ ρ1(w)
4. If (h(m‖r) = w and ρ2(w)⊕ ζ(m) = γ) then return 1

Else return 0

Theorem 5. Let k be a system parameter. Suppose the extended PSS scheme
described above has the common domain {0, 1}b such that b−|Nmax| ≥ k, where
Nmax is the largest value of RSA moduli of all signers. If the message space of
each of the signers has at least 2k messages, then the scheme is SA-CMA secure.

Proof (Sketch). In case h, ρ and ζ are random functions (i.e. behaving like ran-
dom oracles), y is random in {0, 1}b. Then similar techniques to those used in
the proof sketch of Theorem 4 above can be used to prove this theorem in a
straightforward way. ut

7 Applications

In the introduction of this paper, we have described some applications of anony-
mous signature schemes. In this section, we provide more details on how to use
anonymous signature to enhance user privacy for key exchange. We also pro-
pose a new anonymous paper review system which uses anonymous signature to
enhance the anonymity of the paper review process against collusion between
organizers and reviewers.



Anonymous Signature Schemes 23

7.1 Anonymous Key Exchange

As shown in Fig. 1 and discussed in the introduction section, the protocol cannot
provide client anonymity if the Different Domain Attack is feasible. In order to
make it client anonymous, we modify the last message flow from A to B by using
an anonymous signature scheme and change the message to

A→ B : SigA(h(IDB , count, σ, rB))

where h : {0, 1}∗ → {0, 1}k is a hash function which behaves like a random
oracle.

The example above is an anonymous key transport protocol. Next, we con-
struct an anonymous key exchange protocol which not only ensures the anonymity
of the client but also allows the client and the server to establish a session key
from both of their session key contributions. The protocol is based on a key
exchange protocol called “SIG-DH” [10] which is a signature-based variation of
the Diffie-Hellman key exchange protocol with provable security against various
active attacks defined in the Canetti-Krawczyk model [10].

Anonymous SIG-DH Protocol: (Fig. 3)
Let k be a security parameter. Let G be a group generated by g with large
prime order q so that computing discrete logarithms to be base g is difficult. Let
H : {0, 1}∗ → {0, 1}3k be a hash function. Each party has a secret signing key
for a signature algorithm Sig. By SigA(m), we mean the signature on message m
generated by party A with identity IDA ∈ {0, 1}k. Assume the public keys of all
parties in the system are publicly known. Let E be a block cipher (e.g. AES [22])
of block size k. Suppose a client (the initiator) A and a server (the responder) B
already have a session-id s shared. We will explain shortly on how the session-id
s is established. The following protocol is carried out between them.

1. A randomly chooses a temporal identity alias ∈R {0, 1}k, x ∈R Zq, and
sends (alias, s, α = gx) to B.

2. Upon receipt of (alias, s, α), B randomly chooses y ∈R Zq, then computes
κ1‖κ2‖κ3 ← H(αy) such that |κi| = k for i = 1, 2, 3, erases y, and sends to
A the message (B, s, β = gy) together with SIGB(B, s, β, α, alias).

3. Upon receipt of (B, s, β = gy) and B’s signature, A computes κ′1‖κ′2‖κ′3 ←
H(βx), erases x, and verifies the signature. If the signature is valid, A
sends to B the message (alias, s, C1 = Eκ1(A)) together with its signature
σ = SigA(h(alias, A, s, α, β,B, κ′2)) where h : {0, 1}∗ → {0, 1}k is a hash
function. A outputs the session key κ′3 under session-id s.

4. Upon receipt of (alias, s, C1) and a signature σ, B computes A′ = E−1
κ1

(C1),
and verifies the identity A′ (e.g. for access control) and signature σ. If all
verifications are passed, B outputs the session key κ3 under session-id s.

(Analysis.) The protocol described above (Fig. 3) supports anonymity of the
client A if Sig is an anonymous signature scheme. In the protocol, all hash
functions are assumed to behave like random oracles. The session-id s should
also be randomly selected each time for ensuring A’s anonymity. As suggested
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A B
alias, s, α = gx

-

B, s, β = gy, SigB(B, s, β, α, alias)�

alias, s, Eκ1(A), SigA(h(alias, A, s, α, β, B, κ′2))-

Fig. 3. Anonymous SIG-DH Protocol

by the authors of [10], in practice, the session-id s can be a pair (s1, s2) where
s1 is a value randomly chosen by A such that it is different from the values in
other of A’s sessions and s2 is randomly chosen by B in a similar way. These
values can be exchanged by the parties as a prologue [16]. Alternatively, s1 can
be included by A in the first message of the protocol, and s2 be included by B
in the second message.

The protocol assumes that the signature verification keys of all parties are
publicly known. In practice, we can add the client’s certificate into the encryption
in the third message provided that the certificates of all clients are of the same
length. Also, we assume that the server does not know the client at the beginning
of the communication. In case it is already known, the encryption operation in
the third message can be removed from the protocol.

Comparing with the original “SIG-DH” protocol [10], the anonymous version
proposed above has an additional message component κ2 in the signature of A.
κ2 is used for satisfying the anonymity requirement of an anonymous signature
scheme, that is, preventing an adversary from compromising A’s anonymity by
searching through the list of all possible ‘messages’ of the signature.

The two anonymous key transport/exchange protocols described above can
be used by a mobile device to communicate with a base station anonymously
without being tracked or identified by any eavesdroppers, other mobile devices
or foreign base stations.

7.2 Anonymous Paper Review

The process of a current anonymous paper review system is to have authors sub-
mit their papers and authorship information to a conference organizer such that
their papers should be fully anonymous, with no author names, affiliations, ac-
knowledgements, or obvious references. The organizer then keeps the authorship
information of each paper secret from the reviewers and only disseminates those
anonymous papers to reviewers for review. However, the system has no protec-
tion against collusion between the organizer and a reviewer. The organizer or
some insiders in the organizing institute, for example a graduate student who is
responsible for maintaining the paper submission server, may leak the author-
ship information of some papers to the reviewer. In the following, we describe a
method of using anonymous signature to solve the collusion problem.

Consider the paper submission server is now a bulletin board which posts and
timestamps any message received. Once posted, the message cannot be altered.
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Let PaperA be a paper which is fully anonymous. Let A be the identity of the
paper’s author and assume that each author already has his public key (for signa-
ture verification) published. To submit the paper PaperA, the author randomly
picks a long binary string r ∈ {0, 1}k where k is the security parameter, and
generates a signature σA = AnonSigA(h(PaperA, r)) using his anonymous sig-
nature generation algorithm denoted by AnonSigA on the message h(PaperA, r)
where h : {0, 1}∗ → {0, 1}k is a hash function which behaves like a random
oracle. The author posts PaperA and σA onto the bulletin board for review.
When all the reviews are completed and the acceptance decision on each paper
has been made, the decision will be posted on the bulletin board. If PaperA is
accepted, the author A will reveal the value of r for claiming his authorship on
PaperA. From this point on, everyone is able to verify his authorship using σA,
(PaperA, r) and A’s public key.

Analysis: During the review stage, no author has given out any authorship
information and the secrecy of r prevents anyone from identifying the signer
of σA. This new system can even make those just submitted papers and their
signatures public. In this way, it will help authors claim to be the first authors
of some new results without compromising the process of anonymous review,
as their papers are timestamped when they are first submitted for review. In
addition, it will also help discover parallel submissions.
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