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Abstract

This paper addresses the problem of making signatures of one domain (an ad-hoc
network) available in another domain (the Internet). Universal verifiability is a highly
desirable property when signed documents need to be permanently non-repudiable so as
to prevent dishonest signers from disavowing signatures they have produced. As a prac-
tical solution, we construct a new signature scheme where a valid signature should be
generated by a couple of distinct signing keys. In the random oracle model, the signature
scheme is provably secure in the sense of existential unforgeability under adaptive chosen
message attacks assuming the hardness of the computational Diffie-Hellman problem in
the Gap Diffie-Hellman groups.
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1 Introduction

In modern cryptography, digital signatures are among the most fundamental and prominent
tools for realizing security in open distributed systems and networks. In a conventional
Public Key Infrastructure (PKI) environment [ITU97], it is easy to confirm the authorship
of a signed document by verifying the signature with a certificate of a given public key and,
simultaneously, by checking whether the corresponding certificate is revoked, communicating
with on-line Certificate Authority (CA). Within an ad-hoc environment, a user can also
generate and verify digital signatures with the assistance of pre-established ad-hoc CA [ZH99].

Nevertheless, signatures generated from an ad-hoc network are neither easily validated
nor directly compatible in any infra network since the ad-hoc network is, in general, assumed
to be physically isolated from the infra network, i.e, autonomous. For instance, suppose
that Alice is an (ad-hoc) signer and Bob is a (mobile) verifier. When Bob receives Alice’s
signature, he is able to verify her signature and to identify her interacting with an on-line
ad-hoc CA. Now, Bob switches to an infra network such as the Internet disconnecting the
ad-hoc network channel. Even if this signature was verified to be genuine before leaving
the ad-hoc network, the signature is not verifiable to any other party who has received the
signature from Bob within the infra network because her certificate is inapplicable outside
its domain. Despite Bob’s efforts to retrieve Alice’s certificate status information, he will not
succeed due to difficulties in communication with the ad-hoc CA. Even if the current status
of her certificate can be obtained, the certificate will still be of dubious standing and even
extraneous since the ad-hoc CA is definitely not a trusted authority in the new domain. Alice
is then exempt from responsibility of the signature she produced. Thus, it is highly desirable
to make signatures non-repudiable in order that signers should be permanently undeniable
even when they are in ad-hoc networks. A trivial solution for the long-term non-repudiation
is to make the signer participate in so-called a posteriori arbitration when a dispute occurs.
Intuitively this requires a strong assumption that any suspicious signer would willingly take
part in the arbitration; unfortunately, this assumption is not realistic.

The alternative solution proposed in this paper is to provide the universal verifiability
for signatures. Our scheme is an a priori and non-interactive (for signers) protocol in which
a mobile verifier is given an ad-hoc signature as well as a corresponding infra (actually en-
crypted) signature. At the same time, the verifier also obtains an additional zero-knowledge
argument that demonstrates the signer’s possession of (ad-hoc and infra) signing keys used
for generating signatures. Interacting with a trusted “notary,” the verifier will finally obtain
the translation of the given ad-hoc signature while authenticating the signer’s identity. This
translation becomes identical to the infra signature as desired.

We construct a universally verifiable signature scheme (refer to the P2DL signature) by
extending the verifiably encrypted signature scheme proposed by Boneh et al. [BGLS03]. We
also extend the zero-knowledge proof of discrete-log equality [CP93] into a zero-knowledge
proof of two discrete logarithms possession and give its formal analysis. The signature scheme
presented here offers provable security against adaptive chosen message attacks under the Gap
Diffie-Hellman assumption [OP01] in the random oracle model [BR93].
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1.1 Motivation

Most signature schemes provide so-called “public verifiability,” as long as the validation of
given a message-signature pair with some redundant parameters is believed to be true. In
accordance with this validation, the authenticity of corresponding signer’s public (verifica-
tion) key is also requisite after retrieving the signer’s certificate status information from the
CA according to X.509 [ITU97]. As such, the verification of signatures are on two points:
the validation of given the signature, message, and parameters, plus the signer’s public-key
validity via revocation check. (In short, signature validation and revocation.)

In this paper, we pay attention to the verifiability of signature in two-domain environ-
ment, especially in an ad-hoc network and the Internet. Ad-hoc networks are substantially
autonomous. Thus, there is no communication channel from an ad-hoc network to the Internet
(and vice versa), whatsoever wired or wireless channel, by definition of the ad-hoc network.
If an ordinary signature is generated from an ad-hoc network, is that signature available in
the Internet? Owing to the isolation between two networks, it looks insurmountable though.

Suppose that Alice is a signer with two signing keys SKad-hoc and SKinfra for the purpose
of signature generations in ad-hoc and infra networks, respectively. She is able to generate
a signature σ under her signing key SKad-hoc for the ad-hoc network and to make any user
verifiable with this signature within its domain. It is always verifiable for every ad-hoc user
as desired. What if this ad-hoc signature is transferred to any other domain such as the
Internet? Even if this signature is genuine via signature validation, it is impossible to check
whether the signer’s key is revoked or not. One can ask why not use an infra signing key
SKinfra within every ad-hoc network for the public verifiability in the Internet. An analogous
problem arises for ad-hoc verifiers because of the difficulties in checking the revocation of
the signer’s infra network public-key. Due to the limitation of ordinary signatures in the
literature, we construct a new signature scheme that offers the universal verifiability across
two isolated domains.

Definition 1 (Universal Verifiability of Two-Domain Setting). A signature Σ transferred from
one domain is said to be universally verifiable when a given signature is publicly verifiable in
both one domain D1 and in the other domain D2.

• (Unilaterally universal verifiability). A signature generated from D1 is also publicly
verifiable in D2, but a signature generated from D2 is not verifiable in D1. In this case,
the signature scheme is universally verifiable in a unilateral way from D1 to D2.

• (Bilaterally universal verifiability). A signature originated from any domain, D1 or D2,
is publicly verifiable in both domains D1 and D2.

1.2 Our Contributions

Supporting the unilaterally universal verifiability from an ad-hoc domain to the Internet
domain, our signature scheme features several characteristics below.

• Non-interactivity. In the proposed scheme, signing process is not interactive. After
sending a signed document to any verifier, signer does not have to attend any other
protocol without listening to the verifier’s feedback. It is highly desirable in most
signature schemes and makes our scheme more practical.
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• Verifier’s Mobility Support. Due to the isolation between ad-hoc and infra networks,
the only way to transfer signatures generated across domains is to allow verifiers mobile
from an ad-hoc network to the Internet. We can imagine verifiers are mobile devices
such as laptop computers, PDAs, or any other hand-held electrical conveniences.

• Granularity. In our scheme, a signer simply generates ordinary short signatures for use
in each ad-hoc and infra networks. Next the signer computes the non-interactive zero
knowledge (NIZK) in order to prove the signer’s possession of two signing secret keys.
Intuitively, the signature Σ comprises an ad-hoc signature σ1, infra signature σ2, and the
redundancy for NIZK. Hence, after finishing appropriate validation steps, our signature
Σ is no longer necessary. For ad-hoc verifiers, σ1 is sufficient as a signature of the given
message. On the other hand, σ2 makes infra network users convinced that the given
message-signature pair is authentic. In particular, the granularity feature makes our
signature scheme attractive since shorter (ordinary) signature is enough for any verifier
in each separated network.

• Notarization. A special-purpose trusted third party (TTP) of the Internet domain
is assumed in our scheme. The notary’s task is mainly to notify the revocation of
signer’s infra public key on behalf of the on-line infra CA. In addition, notary verifies
any signature transferred from ad-hoc domain and then publishes a smaller ordinary
signature for the Internet use only. Before notarization, this infra signature is encrypted
under the notary’s public key. This disables for any mobile verifier to spread signer’s
infra signature in any other domain without doing in the Internet. The presence of the
trusted notary is not burdensome because it looks like a slightly modified CA. This also
makes our protocol quite realistic.

• Tight Security Reduction. Interestingly, equipped with the redundant information for
NIZK proof, the security of the proposed scheme is tightly related to the computational
Diffie-Hellman problem with formal proof, while the co-GDH signature scheme [BLS04]
adopted as underlying signatures is loosely related to the same hard problem. In prin-
ciple, the tight security reduction is infinitely preferable for strengthening the security
of protocols.

1.3 Organization

The rest of this paper is organized as follows. The following section provides an overview of
relevant background. Section 3 presents the new universally verifiable signature scheme. The
security of the scheme is formally analyzed in Section 4. We conclude this paper in Section
5. Finally we present the rigorous proof of Lemmas in Appendix.

2 Preliminaries

2.1 Notation and Bilinear Maps

We first consider two (distinct and multiplicative) cyclic groups G1 = 〈g1〉 and G2 = 〈g2〉 of
prime order q, where the discrete logarithm problem is intractable. Let ψ be a computable
isomorphism from G1 to G2, with ψ(g1) = g2.
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We require a bilinear map ê : G1 × G2 → GT , where the group GT is multiplicative and
the orders of all the given groups are the same: #G1 = #G2 = #GT = q. A bilinear map
satisfying the following properties is said to be an admissible bilinear map: (a) bilinear: for
all u ∈ G1, v ∈ G2 and a, b ∈ Zq, ê(ua, vb) = ê(u, v)ab; (b) non-degenerate: given generators
g1 and g2, ê(g1, g2) 6= 1; (c) computable: there is an efficient algorithm to compute ê(u, v)
for any u ∈ G1, v ∈ G2. With an isomorphism ψ(·), these properties lead to two more simple
attributes: for any u,w ∈ G1, ê(u, ψ(w)) = ê(w,ψ(u)); and for any u ∈ G1, v1, v2 ∈ G2,
ê(u, v1v2) = ê(u, v1) · ê(u, v2). Without loss of generality, we assume these maps ψ(·) and
ê(·) can be computed in one time unit for the group action, and we then call the two groups
(G1,G2) a bilinear group pair.

The expression z ∈R S indicates that an element z is chosen randomly from the finite
set S according to the uniform distribution. When parsing a string w into a sequence of
fragments U1, U2, . . . , U`, we use w P→ U1‖U2‖ . . . ‖U`. For simplicity, the (mod q) marker for
operations on elements in Zq is omitted.

2.2 Intractability Assumptions

We define several hard problems closely related to the Diffie-Hellman problem [DH76]. Con-
sider a single cyclic group G = 〈g〉, with q = #G a prime.

Computational Diffie-Hellman Problem (CDH). For a, b ∈ Zq, given g, ga, gb ∈ G,
compute gab ∈ G.

Decision Diffie-Hellman Problem (DDH). For a, b, c ∈ Zq, given g, ga, gb, gc ∈ G, an-
swer with;

(i) Yes, if c = ab. In this case, (g, ga, gb, gc) is called a Diffie-Hellman quadruple.

(ii) No, otherwise.

There is strong evidence that these two standard hard problems are closely related the hard-
ness of computing discrete logarithms. There exist polynomial-time algorithms that either
reduce the DDH to the CDH or reduce the CDH to the discrete logarithm problem. The
converses of these reductions, however, are thus far not known to hold. All the three prob-
lems are widely conjectured to be intractable. A variety of cryptographic protocols have been
proved secure under these standard intractability assumptions. Refer to [MW99, Bon98] for
further reading.

Now suppose that two distinct cyclic groups G1 = 〈g1〉 and G2 = 〈g2〉 of prime order q
form a bilinear group pair. We then obtain natural generalizations of the computational and
decisional Diffie-Hellman problems with this bilinear group pair (G1,G2). Using the prefix
“co” implies that the given two groups are different (but with the same order).

Computational Co-Diffie-Hellman Problem (co-CDH). For a ∈ Zq, given g1, ga
1 ∈ G1

and h ∈ G2, compute ha ∈ G2.

Decision Co-Diffie-Hellman Problem (co-DDH). For a, b ∈ Zq, given g1, g
a
1 ∈ G1 and

h, hb ∈ G2, answer with;

(i) Yes, if a = b. In this case, (g1, ga
1 , h, h

b) is called a co-Diffie-Hellman quadruple.

(ii) No, otherwise.
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Here, we define co-gap Diffie-Hellman (co-GDH) groups to be group pairs G1 and G2 on
which co-DDH is easy but co-CDH is hard. This class of problems—gap problems—was first
introduced by Okamoto and Pointcheval [OP01] and is considered to be dual to the class
of the decision problems. They also discussed several cryptographic applications based on
these problems such as the undeniable signature scheme introduced by Chaum and Pederson
[CP93] and designated confirmer signatures. Joux and Nguyen [JN01] also pointed out that,
for the special case of supersingular elliptic curves, DDH is easy while CDH is still hard.

Definition 2 (co-GDH assumption [BGLS03]). We say that both G1 and G2 are (t, ε)-co-GDH
groups if they are in the class of decision groups for co-Diffie-Hellman and no PPT algorithm
(t, ε)-breaks co-CDH in groups G1 and G2 with sufficiently large prime q.

2.3 Co-GDH Signature Scheme

The co-GDH signature scheme due to Boneh et al. [BLS04] is known to be one of the shortest
signatures in the literature. In this scheme, there are three algorithms, KeyGen, Sign, and
Verify, plus a full-domain hash function H : {0, 1}∗ → G2, which works as a random oracle.

Key Generation. The secret key x is chosen at random x ∈R Zq, and the corresponding
public key y is computed by y ← gx

1 . The public key is an element of G1.

Signing. To generate a signature on a message M ∈ {0, 1}∗ under the secret key x, compute
σ ← hx, where h = H(M). Thus, the message-signature pair becomes (M,σ).

Verification. The verification algorithm takes the signer’s public key y, message M , and
signature σ as input. It first computes h ← H(M) and checks if (g1, y, h, σ) is a valid
co-Diffie-Hellman quadruple.

We can simply make use of a bilinear map ê from G1×G2 to GT for co-DDH testing: ê(g1, σ) ?=
ê(y, h). This signature scheme is existentially unforgeable under adaptive chosen message
attacks [GMR88] in the random oracle model. However, the security reduction is loosely
related to the CDH problem.

2.4 Proving Equality of Two Discrete Logarithms

Let G = 〈g〉 = 〈h〉 be a group of prime order q with generators g, h. Denote EDL(g, h) as
the language of pairs (y, σ) ∈ G2 such that dloggy = dloghσ, where dloggy denotes the
discrete logarithm of y with respect to the base g (identically for dloghσ). The following is a
well-known zero-knowledge proof system for the proof of equality of two discrete logarithms
[CP93]. This system proceeds as follows.

• Given (y, σ) ∈ EDL(g, h), the prover picks k ∈R Zq at random, computes u ← gk, v ←
hk, and then sends them to the verifier.

• The verifier chooses c ∈R Zq as a public random challenge and sends it to the prover.

• Upon receipt of c, the prover responds with s← k + cx.

• The verifier checks if gs ?= uyc and hs ?= vσc hold true.
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It is well known that this proof system is both complete and sound. See [CP93] for details.
Notice that this interactive proof system is a public-coin zero-knowledge since a simulator
given inputs g, h, y, σ can choose c, s at random in Zq and compute u and v from them. A
non-interactive version of this proof system has several applications such as EDL signature
schemes [GJ03, KW03, CM05] that are proved to be as secure as the CDH problem and
threshold cryptosystems that are provably secure against chosen ciphertext attacks under the
CDH and DDH assumptions [SG98], viewing the hash functions as random oracles [BR93].

3 P2DL Signature Scheme

3.1 New Model

The participants in our protocol are classified into three groups; Signer, Verifier, and Notary.
Each of them plays a respective role:

Signer. She wants to produce a signature on a document in an ad-hoc network. Each signer
has its ad-hoc and infra certificates that are issued by the respective ad-hoc and infra
CAs. Roughly speaking, her P2DL signature contains three essential ingredients:

1. An ad-hoc signature σ1. This is only valid in the ad-hoc network.

2. An infra signature σ2. This is only valid in the infra network. She does not
want any recipient to obtain this signature until notarization. Thus, an encrypted
signature is transmitted to a receiver.

3. A zero-knowledge argument is provided to prove herself possessing a couple of
signing (secret) keys, which are used in generating σ1 and σ2 signatures.

In general, she does not have to establish a communication channel to the infra network.

Verifier. Any verifier is assumed to be potentially mobile from the ad-hoc network to the
infra network. Upon receipt of a signer’s signature, the verifier can immediately verify
her ad-hoc signature σ1 within an ad-hoc network. After switching to the infra network,
the verifier can obtain an infra signature σ2 by asking the trusted notary to translate
P2DL signature into an infra one.

Trusted Notary. A special-purpose TTP is assumed, the trusted notary.1 The notary op-
erates when a verifier makes a request of notarization. The notary performs two tasks:

1. It determines whether the given P2DL signature is valid and whether the given
ad-hoc and infra signatures are generated by one person. If “YES,” it publishes σ2

as the translation of σ1. If “NO,” it notifies that the given signature is invalid.

2. During notarization, the notary offers a public-key certification service upon re-
ceiving the signer’s (infra) public key on behalf of the on-line (infra) CA.

1Notice that the notary is an entity only available in the infra network while signers stay within the ad-hoc
network (when sending their signatures to verifiers). In contrast, verifiers are possibly mobile from an ad-hoc
network to the infra network. Our signature scheme features the mobility nature of verifiers.
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3.2 P2DL Signature Scheme

The protocol uses two hash functions. The security analysis will view these hash functions as
random oracles.

H1 : {0, 1}∗ ×Zq → G2, H2 : (G2)9 → Zq

Key generation. Each signer is assumed to hold two (distinct) key pairs, which are used in
an ad-hoc network and in the infra network separately. For a particular signer, pick x2 ∈R Zq

at random, and compute y2 ← gx2
1 . The infra secret key is x2 ∈ Zq and the corresponding

public key is y2 ∈ G1. Then, the ad-hoc key and trusted notary’s key pairs, (x1, y1) and
(xN , yN ), are generated, respectively, in the same manner as the infra key generation. Note
that an ad-hoc key might be linearly independent of the infra secret.

Signature generation. Given the key pairs (x1, y1) and (x2, y2), and the trusted notary’s
public key yN , the algorithm to sign a message M ∈ {0, 1}∗ runs as follows. The signer
chooses r1, r2, k1, k2 ∈R Zq at random, and computes

h← H1(M, r1), σ1 ← hx1 , σ2 ← hx2 , u1 ← gk1
2 , v1 ← hk1 , u2 ← gk2

2 , v2 ← hk2 ,

c← H2(h, ψ(y1), ψ(y2), σ1, σ2, u1, v1, u2, v2), s1 ← k1 + cx1, s2 ← k2 + cx2,

w = 〈 gr2
2 , σ2 · ψ(yN )r2 〉 .

The P2DL signature is Σ = (r1, σ1, w, s1, s2, c). This will be sent to the verifier along with
the message M and implicitly public keys y1, y2, and yN .

At first glance, we can see two individual co-GDH signatures σ1, σ2 generated under the
ad-hoc and infra secrets, respectively. However, the signer does not want any recipient to
“instantly” possess her infra signature σ2 until the trusted notary permits publication of σ2.
Thus, σ2 is encrypted into w with the notary’s public key, while σ1 is not. The ciphertext w
is exactly in the form of an ElGamal type ciphertext [ElG85]. In addition, a non-interactive
zero-knowledge argument proving that (y1, σ1) ∈ EDL(g1, h) and, simultaneously, (y2, σ2) ∈
EDL(g1, h) is presented to demonstrate the signer’s possession of two discrete logarithms
x1, x2. Indeed, this ZK argument works as a nexus or correlation between σ1 and σ2.

Verification. Upon receipt of (M,Σ), any user can validate σ1 and check if the ad-hoc
public key of the signer is revoked. First, a verifier parses Σ P→ r1‖σ1‖w‖s1‖s2‖c. The verifier
then computes h← H1(M, r1) and checks if

ê(g1, σ1) ?= ê(y1, h). (1)

Consistency is easily proved because ê(g1, σ1) = ê(g1, h)x1 = ê(gx1
1 , h) = ê(y1, h). However,

the infra signature σ2 cannot be verified instantly because it is encrypted. One can verify the
encrypted signature instead since the encrypted infra signature in our scheme is analogous to
the bilinear verifiably-encrypted signature.2 Perform the following: parse w → U‖V ; check if
the equation below holds.

ê(g1, V ) ?= ê(y2, h) · ê(yN , U) (2)
2The bilinear verifiably-encrypted signature [BGLS03] is a simple combination of the co-GDH signature and

ElGamal cryptosystem. Our design goal is to provide the universal verifiability of digital signatures across two
domains, while the verifiably-encrypted signature is applicable to the contract signing protocol with a single
domain setting. Moreover, the resulting signature scheme features a tight security reduction.
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This also ensures consistency of verification for any valid encrypted signature; ê(g1, V ) =
ê(g1, σ2 · ψ(yN )r2) = ê(g1, hx2) · ê(g1, ψ(yN )r2) = ê(y2, h) · ê(g1, UxN ) = ê(y2, h) · ê(yN , U).

The verifier, voluntarily, forwards (M,Σ) to the trusted notary when he or she wishes to
confirm the authorship of the ad-hoc signature σ1 and to obtain a “translation” of σ1 available
in the infra network. The notary in turn responds with the validity of the signature and the
infra version of the given signature i.e., σ2 as required. We name this algorithm Notarization.

Notarization. The notarization algorithm takes as input the notary’s decryption key xN ,
the signer’s ad-hoc and infra public keys y1, y2, and (M,Σ). After parsing the P2DL signature,
the notary performs the following:

• Check whether the public key y2 is revoked (e.g, OCSP [MAM+99] and CRL profile
[HFPS99]); If so, output ⊥ and terminate;

• Otherwise, parse the ciphertext into two components such that w P→ U‖V ;

• Decrypt the ciphertext: σ2 ← V/UxN ;

• Compute h← H1(M, r1);

• Compute u1 ← gs1
2 ψ(y1)−c, v1 ← hs1σ−c

1 , u2 ← gs2
2 ψ(y2)−c, v2 ← hs2σ−c

2 ;

• Compute c′ ← H2(h, ψ(y1), ψ(y2), σ1, σ2, u1, v1, u2, v2);

• If c′ = c, publish σ2 as the infra signature; Otherwise, output ⊥.

This algorithm runs when the verifier has made a request to the trusted notary for the afore-
mentioned reasons. The notarization algorithm consists of two types of checking procedures.
First, it checks whether the signer’s infra public key is revoked. Second, the notary checks if
the proof system assures that (y1, σ1) ∈ EDL(g1, h) ∧ (y2, σ2) ∈ EDL(g1, h). Equivalently, if
the zero-knowledge is proved, it convinces the notary that the signer owns both dlogg1

y1 and
dlogg1

y2. If all the checking procedures output “YES,” the notary determines to publish σ2 as
the rendering of σ1 on behalf of the signer. Alternatively, the trusted notary appends its sig-
nature on this infra signature σ2 to enable every user to distinguish the notary’s publications
from ordinary (infra) signatures.

Confirmation. Upon satisfaction of notarization, the verifier receives an infra signature σ2

from the notary. The verifier checks if the following equation holds true

ê(g1, σ2) ?= ê(y2, h). (3)

The signature is verified under the signer’s public key, which has already been certified. The
consistency in verifying σ2 is easily provable as we have likewise done for (1).

4 Security Analysis

4.1 Proving Possession of Two Discrete Logarithms

The zero-knowledge proof of the equality of two discrete logarithms introduced in Sect 2.4
helps a prover to convince a verifier of his possession of a single secret exponent x ∈ Zq
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that is the secret key of the corresponding public key y and the discrete logarithm of another
element σ with respect to the base h as well: x = dloggy = dloghσ. The P2DL signature
scheme, however, requires a non-interactive zero-knowledge proof of the possession of two (not
single but distinct) discrete logarithms x1 and x2, which is an extension of the zero-knowledge
proof of the equality of two discrete logarithms. We refer to this special honest-verifier proof
system as P2DL.

The P2DL proof system takes as input the prover’s secret exponents x1 and x2 as elements
of a certain group G, two generators g and h of G, a hash function H2 that maps from (G)9

to Zq. First, the prover picks k1, k2 ∈R Zq at random. Next, proceed the following in order
to prove that (y1, σ1) ∈ EDL(g, h) ∧ (y2, σ2) ∈ EDL(g, h):

u1 ← gk1 , v1 ← hk1 , u2 ← gk2 , v2 ← hk2 ,

c← H2(h, y1, y2, σ1, σ2, u1, v1, u2, v2),
s1 ← k1 + cx1, s2 ← k2 + cx2.

The binary operator “∧” implies the logical operator “AND.” The resulting proof is (c, s1, s2)
and can be verified by first reconstructing the commitments

u′1 ← gs1y−c
1 , v′1 ← hs1σ−c

1 , u′2 ← gs2y−c
2 , v′2 ← hs2σ−c

2 ,

where y1 = gx1 and y2 = gx2 , and then checking the equations below

c′ ← H2(h, y1, y2, σ1, σ2, u
′
1, v

′
1, u

′
2, v

′
2) and c′

?= c.

The verifier accepts if c′ = c; otherwise, the verifier rejects.

Theorem 1. The P2DL ZK protocol mentioned above is a special honest-verifier proof system
for proving that (y1, σ1) ∈ EDL(g, h)∧(y2, σ2) ∈ EDL(g, h), assuming the couple of keys belongs
to a user.

Proof. Completeness of the protocol can be easily seen so that an honest prover will always
succeed in constructing a valid proof since

u′1 = gs1y−c
1 = gk1+cx1g−cx1 = gk1 = u1,

v′1 = hs1σ−c
1 = hk1+cx1h−cx1 = hk1 = v1.

Likewise, we can see the correctness for u′2 and v′2. Therefore, for an honest prover, c′ = c.
Let us now consider the soundness of P2DL ZK protocol. Suppose that a cheating prover who
knows neither x1 nor x2 can generate another correct response and challenge pair (ĉ, s′1, s

′
2)

that differs from the given (c, s1, s2), then{
gs1−s′1 = yĉ−c

1 , gs2−s′2 = yĉ−c
2 ,

hs1−s′1 = σĉ−c
1 , hs2−s′2 = σĉ−c

2 ,

and hence {
dloggy1 = dloghσ1 = s1−s′1

ĉ−c ,

dloggy2 = dloghσ2 = s2−s′2
ĉ−c .

This contradicts the assumption that the cheating prover knows neither x1 nor x2. Thus,
the soundness probability is at most 1/q2. Even when a prover knows one of the discrete
logarithms, the prover’s probability of successfully cheating is at most approximately 1/q.
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In the actual run of P2DL signature scheme, a slightly modified version of this proof
system is used, where an isomorphism ψ and two distinct groups G1 = 〈g1〉 and G2 = 〈g2〉
with a prime order q might be used.

4.2 Security against Existential Forgeries

Boneh et al. have shown that the co-GDH signature scheme is secure, namely existentially un-
forgeable, under a chosen message attack as long as the co-GDH assumption holds. The P2DL
signature introduced here uses the co-GDH signature as the underlying signature scheme.
However, it still remains unproven that an attacker who has at most one of the secret keys
x1 and x2 cannot generate any valid P2DL signature tuple Σ = (r1, σ1, w, s1, s2, c) with a
non-negligible probability.

Theorem 2. The P2DL signature scheme is provably secure against existential forgery under
adaptive chosen message attacks assuming that (a) all the hash functions are chosen from the
random oracles, and (b) the co-GDH assumption holds.

The proof of this theorem is described in the appendix A.

5 Concluding Remarks

Coalition-Resistance. Observe that a colluding couple of ad-hoc and infra users can gen-
erate a valid (but forged) P2DL signature since the couple of used key pairs for ad-hoc and
infra users is completely loosely-coupled. Therefore, we should make any relationship between
the signing keys. A simple countermeasure we have in mind is to provide an additional ad-
ministration policy on issuing ad-hoc certificates. The signer A has the following formatted
certificate, which is denoted by

CertA(ad-hoc) = 〈ID1, PK1,CertA(infra), params, SigCA1(all parts thereof)〉

where ID1 = IDA(ad-hoc) and PK1 = PKA(ad-hoc). In addition, params represents the
domain parameters (G1,G2,GT , g1, g2, ψ, ê, q) and SigCA1(·) denotes an (ordinary) signature
of the ad-hoc CA. Whenever issuing an ad-hoc certificate, it is mandatory for the ad-hoc CA
to authenticate whether the user is the owner of the predetermined infra certificate

CertA(infra) = 〈ID2, PK2, params, SigCA2(all parts thereof)〉.

Each of ID2, PK2, and SigCA2(·) has the equivalent meaning to ID1, PK1, and SigCA1(·)
in the infra network. Note that the same domain parameters params are used even in the
infra network. Achieving the coalition-resistance via more sophisticated constructions such
as group signatures [ACJT00, BBS04] can be a compelling approach, but it is not of our
interest.

Towards Heterogeneous Settings. Our protocol is constructed only within a “homoge-
neous” mathematical setting. In other words, both in ad-hoc network and in infra network, the
same domain parameters and mathematical functions are appropriately assumed. Nonethe-
less, it would be more preferable to consider the universal verifiability among “heterogeneous”
domains with distinct domain parameters to achieve the so-called ubiquitous security. As far
as we know, this generalized construction still remains unanswered.
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A Proof of Theorem 2

Suppose that a forger algorithm F (t, qH , qS , qN , ε)-breaks the P2DL signature scheme. We
construct a simulator algorithm S, which takes at least one of an ad-hoc key y1 and infra key
y2 as input. The simulator S works in order to forge a co-GDH signature or to directly solve
the CDH problem in group G1. Thus, we subdivide the simulator S into S1, S2, and S3 as
follows.

• S1 attempts to forge a co-GDH signature σ1 that is the resulting ad-hoc signature from
the forger F algorithm against the P2DL scheme. The input to the simulator is y1.

• S2 attempts to forge a co-GDH signature σ2 that is the resulting infra signature from
the forger algorithm F against the P2DL scheme. S2 takes y2 as input.

• S3 attempts to solve a CDH problem given g1, ga
1 , and gb

1 as input, without knowing
any secret exponent a ∈ Zq or b ∈ Zq. The input to S3 is a tuple (g1, ga

1 , g
b
1).

The theorem now follows immediately from the following three lemmas.

Lemma 3 (Ad-Hoc Signature Unforgeability). If the co-GDH signature scheme is (t′, q′H , q
′
S , ε

′)-
secure against existential forgery on the groups G1 and G2 where these groups are co-GDH
groups of prime order q with an isomorphism ψ : G1 → G2 such that ψ(g1) = g2 and a bilinear
map ê : G1 × G2 → GT , then the P2DL signature scheme is (t, qH , qS , qN , ε)-secure against
existential (ad-hoc signature) forgery under adaptive chosen message attacks in the random
oracle model, where

ε ≤ ε′ + qS · qH · q−3 (4)
t ≈ t′ − 15 · qS · texp (5)

Proof. The cost of a multi-base exponentiation is estimated to be about 20% more than the
cost of a single exponentiation. We denotes texp the running time of a single exponentiation
in each of defined groups G1, G2, and GT .

Given an ad-hoc public key y1, algorithm S1 simulates a run of the P2DL signature scheme
to the forger F . As a simulator, S1 answers F ’s hash function queries, signature oracle queries,
notarization oracle queries, and it tries to translate F ’s possible forgery Σ into a co-GDH
signature forgery σ1 of y1. Two types of signature oracles are presented; one belongs to the
co-GDH challenger and the other belongs to S1 under the simulator’s control. Algorithm S1

simulates the challenger and interacts with F as follows.

Setup. The simulator S1 generates two key pairs (x2, y2) and (xN , yN ) running the Key Gen-
eration algorithm described in Sect 3. The key pair (x2, y2) serves as an infra key pair,
and meanwhile (xN , yN ) works as the trusted notary’s key pair. Now, S1 runs F pro-
viding the public keys y1, y2, and yN , and public parameters (G1,G2,GT , g1, g2, ψ, ê, q)
as input.

H1-oracle Queries. If the forger F requests a hash query on a string (M, r1), algorithm
S1 makes a query on (M, r1) to the challenger’s hash oracle, receiving some value
h← H1(M, r1). Then S1 simply forwards h to F .
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H2-oracle Queries. S3 answers with a random integer in Zq.

Signature Queries. The forger F asks for a P2DL signature on message M . Algorithm S1

has to create a valid signature tuple without knowing the ad-hoc secret key x1 even
though S1 has access to a signing oracle for y1 and a H1 hash oracle belong to the
challenger. S1 proceeds as follows:

1. S1 randomly chooses r1 ∈R Zq.

2. S1 asks a H1 query on (M, r1), receiving some value h ← H1(M, r1) and creates
σ2 ← hx2 as an infra signature.

3. S1 queries the challenger’s signing oracle for y1 on M‖r1. The signing oracle will
answer σ1 ← hx1 to S1.

4. Thereafter, S1 simulates the P2DL ZK protocol as such: picks at random κ, c, s1 ∈R

Zq, computes u2 ← gκ
2 and v2 ← hκ, computes s2 ← κ + cx2, and assigns u1 ←

gs1
2 ψ(y1)−c and v1 ← hs1σ−c

1 .

5. If H2 has ever been queried on inputs (h, ψ(y1), ψ(y2), σ1, σ2, u1, v1, u2, v2) before,
S1 aborts. Otherwise, H2(h, ψ(y1), ψ(y2), σ1, σ2, u1, v1, u2, v2) , c.

6. S1 selects r2 ∈R Zq at random, and encrypts σ2 into 〈gr2
2 , σ2 · ψ(yN )r2〉 under the

notary’s key yN . Finally, S1 returns Σ = (r1, σ1, w, s1, s2, c) as the P2DL signature
of M .

Notarization Queries. When the forger F requests notarization for (M,Σ), S1 checks
whether the given signature Σ = (r1, σ1, w, s1, s2, c) is valid and, if so, returns σ2 ←
V/UxN , parsing the ciphertext w P→ U‖V .

Guess. If F provides a valid P2DL signature pair (M∗,Σ∗) for some previously unsigned
non-trivial message M∗, then algorithm S1 extracts σ∗1 from Σ∗ = (r∗1, σ

∗
1, w

∗, s∗1, s
∗
2, c

∗).
Finally, S1 outputs σ∗1 as a co-GDH signature forgery on a message M∗‖r∗1.

Claim 1. If algorithm S1 does not abort during the simulation, the forger algorithm F ’s view
is identical to its view in the real attack.

Proof of claim. The responses to H1 and H2 queries are as in the actual attack since each
response is uniformly and independently distributed in the probability spaces G2 and Zq,
respectively. As a consequence, the success probability to forge a co-GDH signature is equal
to the probability of forging a P2DL signature.

Remark 1. The running time of algorithm S1 can be calculated by inspection: In Setup phase,
the simulator computes two single exponentiations. Each query to the signing oracle requires
six single exponentiations together with two multi-base exponentiations. Each query to the
notarization oracle requires two single exponentiations and four multi-base exponentiations.
Assuming that qS ≈ qN , we get the approximation of the running time in (5).
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It remains to bound the probability that the simulator S1 aborts during simulation. Such an
event is defined as below:

E is the event that the same input to the H2-oracle is queried one more time at the fifth step
of the signature oracle simulation.

Claim 2. Pr[E ] ≤ qS · (qH + qS) · q−3

Proof of claim. To estimate the probability of event E , let us take the input to theH2-oracle
into account. The input tuple is represented as a sequence of several strings: (h, ψ(y1), ψ(y2),
σ1, σ2, u1, v1, u2, v2). For simplicity, we ignore the isomorphism ψ but it makes no serious
change in security. Hence we have (h, y1, y2, σ1, σ2, u1, v1, u2, v2), which can be represented as
(gα

2 , y1, y2, y
α
1 , y

α
2 , g

β
2 , g

αβ
2 , gγ

2 , g
αγ
2 ), where all the exponents are considered as random coins as

such (α, β, γ) ∈R Zq × Zq × Zq. Therefore, we obtain the overall probability of collision is
less than qS · (qH + qS) · q−3 for the simulation of the signature oracle.

Remark 2. Reasonably assuming qH � qS , we see that S1 successfully forges a co-GDH
signature with an advantage of (4). Since the amount qS · qH · q−3 is enough small to be
negligible, forging a P2DL signature with a single secret key is identical to forging a co-GDH
signature as required.

Lemma 4 (Infra Signature Unforgeability). If the co-GDH signature scheme is (t′, q′H , q
′
S , ε

′)-
secure against existential forgery on the same groups G1 and G2 as defined in Lemma 3,
then the P2DL signature scheme is (t, qH , qS , qN , ε)-secure against existential (infra signature)
forgery under adaptive chosen message attacks in the random oracle model.

Proof. Simply substituting the input to S1 for y2, S2 obtains exactly the same result as
Lemma 3.

In the following lemma, we reduce the successful forgery against the P2DL scheme to the
CDH problem solver in G1.

Lemma 5 (Unforgeability against Attackers with No Secret). Suppose that G1 is a (t′, ε′)-
CDH group that forms a co-GDH group pair with G2 as defined above. Then the P2DL signa-
ture scheme is (t, qH , qS , qN , ε)-secure against existential forgery on adaptive chosen message
attacks in the random oracle model, where

ε ≤ ε′ + qS · qH · q−1 (6)
t ≈ t′ − (qH + 17 · qS) · texp (7)

Proof. Given three elements g1, ga
1 , and gb

1 in group G1, algorithm S3 simulates a run of
the P2DL signature scheme to the forger F . The simulator S3 answers F ’s H1 and H2 hash
queries, the P2DL signature oracle queries, notarization oracle queries, and it tries to translate
F ’s possible forgery Σ into an answer to the CDH problem gab

1 . Algorithm S3 simulates the
challenger and interacts with F as follows.

Setup. The simulator S3 assigns y1 , ga
1 and y2 , gb

1 and generates a notary’s key pair
(xN , yN ). Now, S3 runs F providing the public keys y1, y2, and yN , and public para-
meters (G1,G2,GT , g1, g2, ψ, ê, q) as input.
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H1-oracle Queries. When the forger F asks a hash query on a string (M, r1), S3 replies
with H1(M, r1)← (ψ(y2))d, selecting at random d ∈R Zq.

H2-oracle Queries. Handled as in the Lemma 3.

Signature Queries. The simulator S3 performs as follows when F requests a P2DL signature
query on message M .

1. S3 randomly chooses r1 ∈R Zq. If the same H1-oracle query on (M, r1) has been
granted, the simulator aborts.

2. Otherwise, S3 assigns h← gκ
2 , σ1 ← ψ(y1)κ, and σ2 ← ψ(y2)κ by picking κ ∈R Zq

at random.

3. Next S3 simulates the P2DL ZK protocol as such: picks c, s1, s2 ∈R Zq, and assigns
u1 ← gs1

2 ψ(y1)−c, v1 ← hs1σ−c
1 , u2 ← gs2

2 ψ(y2)−c, and v2 ← hs2σ−c
2 .

4. If H2 has ever been queried on inputs (h, ψ(y1), ψ(y2), σ1, σ2, u1, v1, u2, v2) before,
S3 aborts. Otherwise, H2(h, ψ(y1), ψ(y2), σ1, σ2, u1, v1, u2, v2) , c.

5. S3 selects r2 ∈R Zq at random, and encrypts σ2 into 〈gr2
2 , σ2 · ψ(yN )r2〉 under the

notary’s key yN . Finally, S3 returns Σ = (r1, σ1, w, s1, s2, c) as the P2DL signature
of M .

Notarization Queries. Handled as in the Lemma 3.

Guess. If F provides a valid P2DL signature pair (M∗,Σ∗) for some previously unsigned non-
trivial message M∗, and then algorithm S3 extracts σ∗1 from Σ∗ = (r∗1, σ

∗
1, w

∗, s∗1, s
∗
2, c

∗).
If (M∗, r∗1) has not been queried to the H1-oracle before, the simulator S3 aborts. Oth-
erwise, S3 computes (σ1)1/d. With the inverse of a given isomorphism, ψ−1

(
(σ1)1/d

)
is

the answer to the CDH question. Finally, S3 succeeds in computing (g1)ab.

Claim 3. If algorithm S3 does not abort during the simulation, the forger algorithm F ’s view
is identical to its view in the real attack.

Proof of claim. The responses to H1 and H2-queries are identical to those in the actual attack
since each response is uniformly and independently distributed in the probability spaces G2

and Zq, respectively. In particular, the signing oracle creates a valid P2DL signature for
any message. Indeed, any output of S3’s signing oracle is always valid. Hence, the success
probability in solving a CDH challenge is equal to the probability of forging a P2DL signature.

Remark 3. The running time of algorithm S3 can be estimated by summing up the following:
In Setup phase and H1-oracle simulation, the simulator computes at most qH + 1 exponen-
tiations. Each query to the signing oracle requires five single exponentiations together with
four multi-base exponentiations. Each query to the notarization oracle requires two single
exponentiations and four multi-base exponentiations.

(qH + 9.8 · qS + 6.8 · qN + 1) · texp

Assuming that qS ≈ qN � 1, we obtain approximately (7).
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To complete the proof of Lemma 5, it remains to upper bound the probability that the
simulator S3 aborts during simulation. We define several relevant events:

E1 is the event that the signing oracle of S3 aborts at the first step answering signature
queries.

E2 is the event that the same input to the H2-oracle is queried one more time at the fourth
step of the signature oracle simulation.

E3 is the event that the simulator S3 aborts at the Guess stage when (M∗, r∗1) of the resulting
F ’s output is “not” found in the history of H1-oracle queries.

Claim 4. Pr[E1 ∨ E2 ∨ E3] ≤ qS · (qH + qS) · q−1 + qS · (qH + qS) · q−3 + q−1

Proof of claim. Observe that Pr[E1∨E2∨E3] ≤ Pr[E1]+Pr[E2]+Pr[E3]. First, the event E1 occurs
when simulator S1 chooses an r1 that was a previously given input to the H1-oracle. For qS
signature queries, the termination probability with failure is then at most qS · (qH + qS) · q−1.
Second, the event E2 is regarded as the same event we considered in Claim 2. Lastly, the
event E3 occurs when the forger F provides a signature satisfying σ1/x1

1 = h on its successful
forgery. This probability becomes at most q−1.

Unlike in [GJ03], we do not have to deliberate an extraordinary event of which F outputs
a valid forgery even when (y1, σ1) /∈ EDL(g1, h). In our attack game, such an event does not
occur because a valid output of the forger F always satisfies that ê(g1, σ1) = ê(y1, h).

Remark 4. Reasonably assuming qH � qS � 1, we see that S3 successfully solves a CDH
problem in G1 with an advantage of (6).
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