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Abstract. The classical technique to perform key mixing in block ci-
phers is through exclusive-or (exor). In this paper we show that when
the n-bit key is mixed in a block cipher of size n bits via addition modulo
2", the bias of the linear approximations falls exponentially fast. Exper-
imental results have been provided to show that such a scheme cannot
be cryptanalyzed using Linear Cryptanalysis.
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1 Introduction

Linear Cryptanalysis [1] is one of the most powerful and significant attacks
applicable to symmetric key block ciphers. The block ciphers have to be designed
so that they provide resistance to Linear cryptanalysis (LC). Although some
design methodologies have been proposed, in [2-5], the systematic development
of block ciphers with resistance against linear cryptanalysis is still a challenging
task.

Linear Cryptanalysis essentially deals with the probability of approximating
the input and output of non-linear functions, used in the block cipher with
linear expressions [6]. The objective of LC is to obtain the last round key of a R
round block cipher from the linear approximations of (R — 1) rounds. The linear
approximation is achieved by combining the smaller linear expressions with large
bias [6]. The bias of the linear expression is obtained using the Piling-Up lemma
and has to be suitably high for the attack to successfully reveal the last round
keys. From this lemma it is evident that for a linear expression with a large bias,
the biases of each individual sub-expressions have to be significant. If one of
them is negligible (almost zero), then the bias of the resultant expression is also
negligible (almost zero) and does not lead to a successful linear cryptanalysis.

In Substitution-Permutation Network (SPN) like AES, DES the key mixing
step is performed by key exoring where the key bits are simply exored (that is
added without carry) with the data bits before each round and after the last
round. In [7] the linear approximations of addition modulo 2" (with carry) was



studied. The author derived an 6(logn)-time algorithm to compute the correla-
tion of linear approximations of addition modulo 2”. The algorithm is optimal
and generates all linear approximations with a given non-zero correlation coef-
ficient, and also determines the distribution of the correlation coefficients. The
present paper investigates if the replacement of key exoring step in an n bit
block cipher with addition modulo 2™ can reduce the bias of linear expressions
in the cipher. Indeed some block ciphers like MARS [8], IDEA [9] use addition
modulo 2" inside their rounds. The present paper show both analytically and
experimentally that such a key mixing operation can help to foil the powerful
linear cryptanalysis. In the present work the maximum bias of linear approxi-
mations of addition modulo 2" have been computed. It has been shown that the
bias of linear approximations of the addition step falls exponentially fast with
the bit position. Finally, a SPN cipher named GPIG1 have been taken and suc-
cessfully cryptanalayzed using LC. Results have been presented to demonstrate
that when the key mixing is performed through modulo 2™ addition (in block
cipher GPIG2) LC fails to reveal the key.

In the next section (section 2) the maximum bias of linear approximations for
addition modulo 2™ has been evaluated. Section 3 presents the construction of
the block ciphers GPIG1 and GPIG2. Section 4 shows theoretically that the bias
of sample linear approximations for GPIG2 is much less compared to those in
GPIG1. Section 5 compares the linear attack on GPIG1 with that over GPIG2
and demonstrates that GPIG2 is a stronger cipher. The work is concluded in
section 6.

2 Best Linear Approximation of Addition modulo 2"

Block Ciphers use simple bit-wise exclusive OR between the key bits associated
with a round and the data block input to a round. Also at the end there is a
key exoring step with a round key, so that a cryptanalyst cannot easily work his
way backwards.

Linear Cryptanalysis (LC) tries to take advantage of high probability oc-
curences of linear expressions involving plaintext bits, ciphertext bits and subkey
bits. The basic idea is to approximate a portion of the cipher with an expression
that is linear, where linearity refers to a mod-2 bitwise exclusive or operation.
The approach in LC is to determine expressions of the form which have a high
or low probability of occurence. Let us consider an expression of the form:

<XpdXpo... X, >e<Y;,aeY,...0Y;, >=0

where X; represents the i-th bit of the input X = [X1,X>,...] and Y; rep-
resents the j-th bit of the output Y = [Y7,Y?2,...]. This equation is representing
the exclusive OR of u input bits and v output bits.

If the bits are chosen randomly then the above approximated linear expres-
sion will hold with probability 1/2. If p; is the probability with which the ex-
pression holds then the bias is defined as |p; — 1/2|.

Inorder to extract the key bits the cryptanalyst forms linear approximations
for R — 1 rounds (if R is the total number of rounds) with large probability



bias. Then the cryptanalyst attacks the last round subkeys or round keys. The
probability of various linear expressions are formed and are collected using the
Piling-Up Lemma to form bigger equations. The lemma is stated underneath
without proof.

Lemma 1. [1] For n independent, random binary variables X1, Xo,..., X,
with bias €1,¢€a,.. .,

€n,

PrX;®...0X,=0)=1/2+2""[] e
i=1

Thus if X1, X,..., X, are n linear approximations then the bias of the linear
approximation made out of these n equations is denoted by [6, 10]:

n
— on—1
€1,2,.n =2 Hfi
i=1

Thus it is evident that if the bias of any of the linear approximation falls
then the bias of the resultant equation also reduces. In the following theorems
we compute the maximum bias of all possible linear approximations of addition
modulo 2". Hence we obtain the best linear approximation of addition modulo
2™ in order to perform LC. Subsequently the biases are used to perform Linear
Cryptanalysis (LC) against an SPN cipher, where the key is mixed using addition
modulo 2”. Results show that such a cipher becomes stronger against Linear
Cryptanalysis.

Theorem 1. For given n-bit inputs x and k the output is denoted by another
n-bit number y=(x+k) mod 2". The probability that each output bit y[i] can be
denoted by the linear function z[i] ® k[i] is denoted by p;, 0 < i < n. Then
pi=1/2+(1/2)"*! and 1/2 < p; < 1.

Proof. Let c[i] denote the carry out from the addition of z and k after ¢ bits,
(vefer figure 1). Clearly, y[0] = x[0] @ k[0], with probability 1. Thus p; = 1.

(i+1) i (i-1 10

1. The Output Register y which stores the sum of two registers x and k
2.0,1,...,3i-1),1i, (i+1), ... indicates the bit positions of y
3. c[i—1] indicates the carry out after the addition of (i-1) bits are complete

Fig. 1. The Output State of the sum



Now, y[1] = z[1] @ k[1] when there is no carry c[0], fed from the 0" bit.

Now, ¢[0] = 0, with probability 3/4 and hence p; = 3/4.

Let, the event that the 44, bit of ¥ can be expressed as a linear expression
z[i] and k[i] has a probability p;. Similarly the (i 4+ 1)!* can be linearly expessed
with a probability p;41.

Now, we note the following fact. The (i+1)** bit cannot be linearly expressed
if there is a carry from the " bit, that is if c[i]=1.

This can be divided into two mutually exclusive cases. First the event say A,
c[i — 1]=0 and the addition of z[i] and y[i] generates a carry. Now, when c[i — 1]
= 0, then y[i] must have been linearly expressed (using the above fact) and the
probability by definition is p;. Thus the probability that A is true is 1/4.p;.

The other event B is the case where c[i — 1]=1 and the addition of z[¢] and
y[¢] propagates the carry. The probability that B is true is 3/4.(1 — p;).

Clearly if the event (A U B) occurs then the (i + 1)!* bit cannot be linearly
expressed and the probability is by definition (1 — p;1).

Thus, (1-p;y1) = P(AUB) = P(A)+ P(B) (because A and B are mutually
exclusive)

= 1/dp; + 3/4.(1-py)
or, pir1=1/4+ p;/2
Using the recurrence relation we have
Pit1=1/4+p;i/2
—1/4+1/2(1/4+ pi 1/2)
—1/4[1+1/2] + (1/2)%p; 4
Thus continnuing we have
Pt =L/4[1+ (1/2) + (1/2% + ...+ (1/2)7] + (1/2)*1po
=1/2[1 + (1/2)#*1], since py = 1

Thus, p; = 1/2[1 + (1/2)}] = 1/2 + (1/2)*+1.

Using the equation we have pg = 1,p; = 3/4,p2 = 5/8,p3 = 9/16 and so on.

Clearly, 1/2 < p; < 1.

Therefore, the bias of the linear approximation relating to the it* bit position
is (pi —1/2) = 1/2"*! and hence falls exponentially fast with i.

In the following theorems we compute the maximum value of the biases of all
possible linear approximations of the sum bits. We show in the following theorem
that the bias cannot be more than 1/2¢+1.

Theorem 2. For given n-bit inputs x and k the output is denoted by another
n bit number y = (x + k) mod 2™. The largest bias of a linear approximation of

yli) is (1/2)+1.

Proof. It is evident that, y[i] = z[i] ® k[¢] ® c[i — 1], where ¢[i — 1] is the carry in
of the it" bit of the addition. The carry in is the non-linear part of the equation.
Thus in order to obtain various linear approximations for the non-linear part
linear approximations have to be found out for the carry in term. Each possible
approximation of ¢[i], denoted by L[i] will give rise to different biases which are
equal to the bias of a linear approximation of y[i].



The equation for ¢[0] = z[0]k[0], which is a boolean function for two variables.
Likewise, ¢[1] = majority(z[1], k[1], ¢[0])

= majority (z[1], k1], z[0]%[0])
z[1]k[1] & =[1]z[0]k[0] ® k[1]z[0]k[0].

Thus ¢[1] is a boolean function of four variables.

Likewise, c[i] is a boolean function for 2(i + 1) variables.

The maximum non-linearity for an m variable boolean function, where m
is even, is 2m~1 — 2m/2-1 Hence, the probability of match for the best linear
approximation of a boolean function operating on an even number of variables
ig: 1 — 2mTtem/iTt 1 4 92— (m/2+1)

7™ 2

Thus, the probability of matching for the best linear approximation for ¢[i]
is 1/2 4+ 2=(+2)  substituting m = 2(i + 1).

The output y[i] = z[i] ® k[i] ® c[i — 1] can thus be approximated by a linear
equation, y'[i] = z[i]@k[i]®L[i—1], where L[i—1] is the best linear approximation
for cfi — 1J.

Hence, the largest probability with which a linear approximation can match
y[i] is 1/2+ 27142 = 1/2 4 2=(+1)_ Thus, the largest bias of a linear approx-
imation for y[i] is (1/2)%*!.

From the above results it is evident that:

Corollary 1. The best linear approzimation for s[i] is a[i] ® k[i], where the
probability of match is 1/2 + 2-0+Y) and hence the bias is 2= 01,

So, if the key-mixing step in the block cipher is an addition modulo 2" step,
the probability of any linear expression relating to the key elements may be
estimated using the above result and the Piling-Up lemma. If the resulting linear
expression involves any particular bit position, say the i** bit of the key, the
bias of the resulting equation is lesser than (1/2)**! and as the following table
suggests the biases become negligible very fast.

The bias of the linear expression relating the key bits have been computed
using the above expression and tabulated in table 1.

Table 1. Biases of Linear Approximations Involving Key Bits

Key Bit 1
Position| 0 | 1 | 2 | 3 4 5 6 7 8 9 | 10
Bias [0.5]0.25]0.125|0.0625|0.0313]0.0156]0.0079]0.0039]0.0020]0.0010]0.0004

We see that the bias of the linear approximations involving the key bits falls
ver fast. With an expected key size of 128 the bias of the linear approximations
is almost zero (negligible) beyond a bit position of six (marked in table 1). This
fact makes the finding of linear approximations in the cipher with a large bias a
more difficult task. Discovering the key through Linear Cryptanalysis becomes
improbable.



In order to observe the effects of key mixing through addition on linear crypt-
analysis we construct two SPN ciphers, GPigl and GPig2. GPig2 differs from
GPigl in the fact that the key mixing is performed through addition modulo 2™.
First, the construction of the two block ciphers are highlighted in the following
section.

3 Construction of the SPN Ciphers : GPigl and GPig2

In this section we present the construction of Substitution-Permutation net-
works, GPigl and GPig2, which is subsequently cryptanalyzed using linear crypt-
analysis. The cipher, named GPigl, has been chosen from the tutorial presented
in [10,6]. The cipher GPigl is essentially a traditional SPN block cipher, where
the key mixing is performed by exoring between the data and the round keys.
GPigl is modified into another cipher and named GPig2, the only modification
in the latter cipher being that the key mixing step is performed through addi-
tion modulo 2”. In subsequent sections linear cryptanalysis against the modified
cipher has been compared with that of the original cipher to demonstrate the
benefit of the change.

3.1 The Substitution-Permutation Network-GPigl

In figure 2 the unmodified block cipher GPig! is illustrated. The cipher takes a
16-bit input block and processes the block by repeating the basic operations of
a round four times. Each round consists of

— Substitution
— a Transposition of bits (Permutation)
— a Key Mixing Step

This basic structure is the Fiestel Network and the basic operations are
similar to those found in DES and in many modern ciphers, including Rijndael.
Thus, the experimentation performed on the SPN cipher with respect to linear
cryptanalysis is also applicable in case of standard and more practical block
ciphers, without loss of generality.

The various blocks used in the block cipher are detailed next.

Substitution: In the cipher, the 16 bit data block data is subdivided into
four groups (sub-blocks). Each sub-block forms an input to a 4x4 S-box (a
substitution with 4 input and 4 output bits), which can be implemented easily
with a table lookup of sixteen 4-bit values, indexed by the integer represented
by the 4 input bits. For the cipher, the same S-box is chosen for all the rounds
and is chosen from the S-boxes of DES. It is the first row of the first S-box.
In table 2, the most significant bit of the hexadecimal notation represents the
leftmost bit of the S-box in figure 2.



P1 Plaintext P16
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subkey Kl Mixingthrough exoring
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=
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subkey K5 Mixingthrough exoring

Ciphertext

Fig. 2. The Structure of GPigl
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Table 2. S-box Representation (in hexadecimal)

input {0(1|2|3|4|5|6|7|8|9|A|B|C|D|E|F
output|E|4|D|1|2|F|B|8|3|A|6 |C|5|9|0|7

Permutation: The permutation portion of a round is simply the transposition
of the bits or the permutation of the bit positions. The permutation of figure 2
is given in table 3 (where the numbers represent bit positions in the block, with
1 being the leftmost bit and 16 being the rightmost bit) and can be simply
described as: the i** input bit is connected to the j* output bit (see figure 2).

Table 3. Permutation

[
N

3|4 (56| 7|8(9|10(11|12|13|14|15|16
9|13(2|6(10(14(3| 7 |11|15| 4 | 8 |12|16

input
output

[
[

Key Mixing: The key mixing is achieved in the block cipher through bit-wise
exclusive-OR between the key bits associated with a round (referred to as a
subkey) and the data block input to a round. The subkey for a round is derived
from the master’s key through a process known as the key schedule. In the
cipher, we shall assume that all the subkeys are independently generated and
are unrelated.

Decryption: In order to decrypt, data is essentially passed backwards through
the network. However the S-boxes have to be bijective. Also, the subkeys have
to be applied in the reverse order for proper decryption.

3.2 The modified SPN Cipher-GPig2

GPig2 is a similar block cipher as GPigl with the only difference being in the
key mixing step. Instead of exor operations bewteen the data of the it* round
(X;) and the it round key (K;), the key mixing in GPig2 is performed through
addition modulo 2'6. Thus, we replace the key mixing step of the i*” round:

Y = X; ® K;

with, Y; = (X; + K;)%2'%, where + represents the arithmetic ad-
dition operation. The symbol % is the modulo operation, st 0 < Y; < 216,

It is clear that the step is a reversible step, since X; = (V; — K;)%2'¢, where
— refers to signed arithmetic subtraction.

In the present section both GPigl and GPig2 are analyzed under the light
of linear attack. In order to start with the analysis we first need to analyze the
S-box components and obtain linear approximations for the S-box, which is the
same in both the ciphers.



4 Linear Cryptanalysis of GPigl and GPig2

The linear approximations of the S-box is presented in [6,10]. We summarise
the result with a brief description. As figure & shows, the input bits of the S-
box are represented by X1, X2, X3, X4 and the output by Y7,Y5,Y3,Ys. A linear
approximation involving the input bits is denoted by a1 X1 Bas XoBaz X3P as Xy,
where a; € {0,1}. The approximation can be represented by a hexadecimal value
aiasazay, where ap is the most significant bit. Similarly the linear approximation
involving the output bits, b1 X1 @ b2Xa & b3 X3 @ by X4, where b; € {0,1}, is
denoted by the hexadecimal value by bob3bs. In order to obtain the probability of
a linear approximation, all the 16 possible input values for X are applied, and
the corresponding output values of Y are examined. The number of matches
between the output Y and the linear approximation of the output is obtained

(N). Thus the bias is £ — 1.

X5 R X

S-Box

Y1 Y2 Y3| Yy

Fig. 3. S-box Mapping

For example, for the expression,

X0 X3 =Y10Y;:0Y,,
it is observed that out of the 16 cases, 12 is the number of matches. Thus
the probability of the linear approximation is 13 = 2 and the biasis 3 — 7 = 1.
A complete enumeration of all the linear approximations of the S-box in the
cipher is given in table 4 [6]. The entries of the table are filled up with the values
N —8. Thus, the bias for a linear approximation is obtained by dividing an entry
in the table by 16. Hence, for the above example the input sum in hexadecimal
is 6 and the corresponding output sum is B. Thus the corresponding entry in

the table is +4 and therefore the bias is +% = %.
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Table 4. Linear Approximation Table (LAT) of S-box

Output Sum

01 23 45 6 78 9ABCDEF

0|+8 0| Of Of O Of Of Of O O/ O] O] O] O] O0f O

1| 0 0| -2| -2| 0 0| -2|+6|+2|+2| 0| 0[+2[+2| 0 O

2| 0] 0f -2 -2{ 0] Of -2| -2 0| O|+2|+2| 0] 0] -6] +2

I 3] 0/ 0] 0] 0] O] O] O] O|+2| -6| -2| -2{+2|+2| -2| -2
n 4] 0[+2]| 0| -2| -2| -4| -2 0| 0| -2| 0|+2|+2| -4|+2| 0
p 5 0] -2| -2 0| -2| 0[+4(+2| -2| 0| -4/+2| 0] -2| -2| O
u 6| 0[+2| -2|+4|+2| 0/ 0|+2| 0| -2{+2|+4| -2| 0| 0| -2
t 7| 0] -2| 0|+2|+2| -4[+2| 0] -2 0[+2| 0|+4|+2| 0] +2
8 0| 0| Of Of 0f Of 0O Of -2|4+2|+2| -2|+2| -2| -2| -6

S 9| 0] 0| -2|-2| 0| 0] -2| -2| 4] 0| -2|+2| O0[+4|+2| -2
u A| 0|+4| -2|+2| 4] 0[+2| -2|+2|+2| 0] 0|+2|+2| 0 0
m B| 0(+4| 0| -4/+4| 0|+4| 0| 0] 0] 0] 0] 0] 0] Of O
C| 0| -2|+4| -2| -2| 0|+2| 0[+2] 0|+2|+4| 0|+2| 0] -2

D| 0|+2|+2| 0| -2(+4| 0(+2| -4| -2|+2| 0[+2| 0 0] +2

E| 0|+2|+2| 0| -2| -4| 0+2| -2| 0| 0| -2| -4{+2| -2| 0

F| 0| -2| -4| -2| -2| 0|+2| 0| 0| -2|+4]| -2| -2| 0[+2| 0

4.1 Linear Approximations for the complete Ciphers

The biases of the linear approximations have been obtained for the S-boxes of
the SPN networks. By concatenating appropriate linear approximations of the S-
boxes, the linear approximations of the complete cipher involving plaintext bits
and data bits from the output of the second last round of S-boxes are obtained,
using the Piling-Up lemma. Following is an example of the calculation of the
bias of a linear approximation of both the ciphers. It is evident from the results
that the bias of a linear approximation for GPig2 is much lesser than that for
GPigl.

In the following example, U;(V;) represents the 16-bit block of bits at the
input (output) of the round i S-boxes and U; ; (V; ;) represent the j** bit of block
Ui(V;) (where the bits are numbered from 1 to 16 from left to right in figure 2).
In case of GPigl the 16-bit block key for the i*" round , K;, is exclusive-ORed
at the input to round i. However, Kj is the key exclusive-ORed at the output of
round 4. In the case of GPig2, instead of exclusive-OR, as already pointed out,
the key bits are added modulo 2" to the data blocks.

Ezxample 1. Comparision of the probability biases of linear approximations for
the first 3 rounds of GPigl and GPig2

Sample Linear Approximation: Uy ®Us s ®Us14 B Us16 G Ps @ P& P =0

GPigl:

In order to obtain the linear approximation for the first two rounds we con-
sider the following linear expressions:

1. Vvl,g = U1,5 D U1,7 D U178, with bias %
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. U1 5 = Ps ® K1 5, with bias
. U117 = P; @ K; 7, with bias
. U1 3 = P3 ® K1 g, with bias
. Uz = Va6 @ Vag, with bias —%
. Use = V1,6 ® Ko 6, with bias 1

O UL AW N
D[ =00 | =0 | =

The concatenation of the above expression leads to the following approxima-
tion:

Vo @Vos @ PO O RO K s K17 @K1 3@ Kyg=10 (1)

The Piling-Up Lemma predicts that the bias of equation 1 is equal to
b =P DY =1,
Similarly, in order to obtain the linear approximation for the third round we

consider the following expressions:

Us = Va6 ® K36, with bias 3

. Usj4 = Vo,g © K314, with bias 1
Us e = V3,6 ® V38, with bias —%

. Usja = V3,14 ® V3,6, with bias —1

Combining the equations we arrive at the expression:

Vae @ Vag ® V314 ® V3,16 D Vays ® K3 6® Vog ® K314 =0 (2)

, with a bias of 82 = 23(33(—1)(—1)) = +5-
Combining equation I and equation 2 we get the expression:

V3,6®V380V3,140V3,16 DO PO ROK 1 s OK1,7O K1 DKo gD K3 6D K314 =0
(3)

The following expressions:

Use = V3,6 ® Ky
Uss = V314 @ Kag

- Usj1a =Vag ® Ky 14
. Usji6 = V3,16 © K416

Lo o

, each having a bias of %, are combined with equation 3 to finally obtain:

U @Us s ®Us 14 B Us16 D P O P O R @ Z =0 (4)
K

,where ZK = K1,5 @Klﬁ EBKLs @KQ’G @K&(j (&) K3,14 @K4,6 EBK478 EBK4714 D
Ky 16.

Hence, using Piling-Up Lemma the bias of the equation is:

B3 = 25(B152(3x)) = 2°((=5)(5)(3x)) = —355-

Now, since ), is fixed (that is either 0 or 1 depending on the key bits), the
linear approximation
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U46@U48@U414@U416@P5@P769Ps=0 (5)
holds with probablhty 25 ;5 or1— 3—2, depending on whether )", is

Oor 1.

Thus, the bias of the linear expression (equation 5) has a magintude of 3%

Next, we compute the bias of the linear expression in the case of the cipher
GPig2.

GPig2:

In order to obtain the bias of the linear approximation a similar calculation
is performed.

The biases of the linear approximations of the S-boxes are identical for both
the ciphers. Only the biases of the linear expressions involving the key bits
are different for GPig2 and are computed using Theorems 2 and 3. We first
enumerate the linear expressions involving the key bits and the corresponding

biases:

1. Ui 5 = Ps ® K1 5, with bias o
2. Uy = P ® Ky 7, with bias 218
3. U1,s = Ps ® K; g, with bias ?1
4. U26 —Vle@Kze,Wlth bias >

Thus, the bias of equation 1 in case of GPig2 is :

B =Pk kb(-1)d) =

In order to obtain the linear approximation for round 3, the linear expression
involving the key bits are:

1. Usg = Va6 ® K36, with bias 27
2. Us,14 = Vo 8 @ K314, With bias 215

Thus the bias of equation 2 becomes:
ﬂ - 23(27 2}5( %)(_%)) = 2%3
In order to arrive at the final expression (equation ), the expressions involv-
ing the key bits of round 4 are
1. U46 = V3 6 ® Ky ,65 with bias 217
2. Upg =V314® Ky 8, with bias 219
3. Uga = V38 @ Ky,14, with bias —1—5
4. Usje = Va6 ® Ku,16, with bias 517

Thus, the bias of equation 5 is:

5 = 25(/81 521217 219 215 217) = 25(( 2%9)(2%3)(2%8)) = 2L5 ~ 0.

The above example demonstrates that when the key mixing step in the SPN
block cipher is performed with the help of addition modulo 27, the bias of the
linear expressions are almost zero, and thus cannot be used in linear cryptanal-
ysis.

In the following section we perform a linear attack on both the ciphers,
GPigl and GPig2 and evaluate the strength of the second cipher against the
cryptanalysis.
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Experimental Extraction of Key Bits

In this section it is experimentally shown that GPigl is successfully cryptana-
lyzed using the linear expression, mentioned in the example. It is also demon-
strated that for GPig2 such an attack does not work. The reason being, in order
for linear cryptanalysis to be successful the bias of (R — 1) round linear expres-
sions (approximations) for an R round block cipher has to be large. However,
in the case of GPig2 the biases of linear expressions falls very fast to zero and
hence such equations cannot be exploited in a conventional linear attack.

5.1

Experimental Setup

The procedure adopted to evaluate the last round keys are as follows:

1.

2.

A large number (10,000) of cipher-texts are obtained by encrypting plain-
texts i,e we generate 10,000 known plaintext/ ciphertext pairs.
The attacker considers the linear approximation (mentioned in the example)
of the first 3 rounds of the ciphers. To restate the expression is:

Uss @Uss UL 14D Us 16 P 0P, @ P =0 (6)

The terms Uy, Usg and Uy 14 affects the S-boxes Sy and Su4. Hence, the
attacker guesses (Ks5,. .., Ksg) and (K513, .., K5,16). In case of GPigl he
exors them with the ciphertext bits to obtain (Vs 5, ..., V5,16). Then he per-
forms the inverse of the S-Box operations to obtain the values of U6, Uy g
and Uy 14. If their values satisfy equation 6 then a count is incremented for
the guessed key bits (Ksp5,..., K58, K5,13,-..,K5,16). The partial subkey
which has the count which differs greatest from half the number of plain-
text/ ciphertext samples (50,000) is assumed to represent the correct values
of the guessed key bits. An incorrect subkey is assumed to be equivalent to
a random guess to the bits of the linear expression and this holds with prob-
ability close to 1/2. The same attack is also performed on GPig2. Only we
assume that the attacker knows the values of the key bits (Ks,9,. .., K5,12).
Thus here he guesses the partial keys (Ks5,...,Ks5s,K513,...,K5,16) and
subtracts the key bits from the ciphertext to arrive at the required values
of (Vs5,...,Vs,16) and finally the values of Uy, Us g and Uy 14. The rest of
the attack is similar. This gives a best case scenario to the attacker.

From, the table we see that the attack works fine for GPigl, where the correct
subkey bits (last round) keys (Ks5,..., K53, K513,...,K5,16) = [2,4] leads
to the largest bias of 0.0308 and is thus detected. The bias is also close to
the calculated bias of 1/32=0.03125.

However the same attack on GPig2 shows that the bias of the expression for
the correct key bits [2,4] is only 0.0010 which is less than the biases of the in-
correct key bits. The result implies that the probability of linear expressions
to hold in case of GPig2 is much close to 1/2 and is thus very hard to dif-
ferentiate from a random guess. Thus GPig2 offers a much better resistance
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to linear cryptanalysis than GPigl. Also note that in the experimentation
it was observed that the highest bias (0.0139) occured for a key bit = E9,
which is an incorrect key.

Table 5. Experimental Results for Linear Attack

Partial SubKey Bias Partial SubKey Bias
[K5,5,..,K5,g,..,K5,13] XOR | ADD [K5’5,..,K5,8,..,K5,13] XOR | ADD
1C 0.0023/0.0027 2A 0.0099(0.0030
1D 0.0042|0.0084 2B 0.0053(0.0044
1E 0.0013/0.0006 2C 0.0060{0.0120
1F 0.0055/0.0034 2D 0.0107{0.0034
20 0.0011{0.0023 2E 0.0074/0.0061
21 0.0061{0.0053 2F 0.0024(0.0012
22 0.0028(0.0049 30 0.0137(0.0002
23 0.0075/0.0067 31 0.0151{0.0043
24 0.0308{0.0010 32 0.0104(0.0048
25 0.0156{0.0079 33 0.0151{0.0010
26 0.0148(0.0022 34 0.0090{0.0025
27 0.0011{0.0003 35 0.0130{0.0048
28 0.0266|0.0009 36 0.0078(0.0034
29 0.0107/0.0046 37 0.0025(0.0020

Max Bias for XOR: 0.0308 for the correct Key 24H
Max Bias for Add: 0.0139 for an incorrect Key E9H

6 Conclusion

In the present paper the conventional key mixing have been altered from exor to
addition modulo 2". The largest bias of linear approximations for the output bit
of such a key mixing have been computed. Both theoretically and experimentally
it has been demonstrated that such a modification makes the cipher strong
against Linear Cryptanalysis.
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