
Handling Expected Polynomial-Time Strategies

in Simulation-Based Security Proofs∗

Jonathan Katz† Yehuda Lindell‡

July 20, 2006

Abstract

The standard class of adversaries considered in cryptography is that of strict polynomial-time
probabilistic machines. However, expected polynomial-time machines are often also considered.
For example, there are many zero-knowledge protocols for which the only known simulation
techniques run in expected (and not strict) polynomial time. In addition, it has been shown
that expected polynomial-time simulation is essential for achieving constant-round black-box
zero-knowledge protocols. This reliance on expected polynomial-time simulation introduces a
number of conceptual and technical difficulties. In this paper, we develop techniques for dealing
with expected polynomial-time adversaries in simulation-based security proofs.

Keywords: expected polynomial-time, black-box simulation, secure multiparty computation, zero-
knowledge

1 Introduction

1.1 Background

Informally speaking, the simulation paradigm (introduced in [15]) states that a protocol is secure if
the view of any adversary in a real protocol execution can be generated solely from the information
the adversary legitimately possesses (i.e., its input and output). This is demonstrated by presenting
a simulator that is given only the input and output of the adversarial (or “corrupted”) party
or parties, and generates a view that is indistinguishable from the view of the adversary in a
real protocol execution. The implication is that the adversary learns nothing from the protocol
execution, since it could anyway generate everything that it sees in such an execution by itself.

The simulation paradigm can be instantiated in a number of different ways, where the differences
that we refer to here relate to the complexity of the adversary and the complexity of the simulator.
The most straightforward way of instantiating this paradigm is to require that for every (strict)
polynomial-time adversary there exists a (strict) polynomial-time simulator that generates the
required view. However, in many cases it is not known how to construct such simulators. Often, it is

∗An extended abstract of this work appeared in the 2nd Theory of Cryptography Conference (TCC), 2005. This
research was supported in part by Grant No. 2004240 from the United States-Israel Binational Science Foundation
(BSF), Jerusalem, Israel.

†Department of Computer Science, University of Maryland. email: jkatz@cs.umd.edu.
‡Department of Computer Science, Bar-Ilan University. email: lindell@cs.biu.ac.il. Some of this work was

carried out while the author was at IBM T.J.Watson.

1

shown instead that for every strict polynomial-time adversary there exists an expected polynomial-
time simulator that generates the required view. In certain contexts a relaxation of this sort is
actually necessary (see below); unfortunately, this reliance on expected polynomial-time simulation
is problematic for the following reasons:

1. Conceptual considerations: The intuition behind the simulation paradigm is that anything
an adversary can learn from its interaction in a real protocol execution, it could also learn given
only its input and output. This (seemingly) follows because the adversary can run the simulator
itself and thus obtain a view that is indistinguishable from its view in a real execution. However, if
an adversary runs in strict polynomial time while the simulator runs in expected polynomial time,
then the adversary cannot run the simulator. One immediate solution to this problem is to consider
adversaries running in expected polynomial time as well. However, as we will see in Section 1.2,
doing so is problematic for other reasons. The fact that the adversary and simulator are of different
complexities is somewhat disturbing and contrary to the philosophy of the simulation paradigm.
However, this discrepancy also has technical ramifications beyond the mere conceptual ones that
we have mentioned. We describe a major one next.

2. Technical considerations (composition): Consider the case where a protocol π calls a
sub-routine to compute some function f , and is proven secure in a setting where a trusted entity is
used by the parties to compute f .1 Let ρ be a protocol that securely computes f . We would like to
claim that the composed protocol πρ (i.e., in which f is computed within π by having the parties
run protocol ρ) is also secure. The typical way of proving that πρ is secure [5] is to incorporate the
simulator that is guaranteed to exist for ρ into an adversary that attacks π (in the setting where
a trusted party is used to compute f). The security of π can then be invoked, and the overall
security of πρ is thus obtained. The important point to notice here is that this approach to proving
security fails when security of π and ρ is proven by demonstrating the existence of an expected
polynomial-time simulator for every strict polynomial-time adversary. The reason for this failure is
that π is proven secure only for strict polynomial-time adversaries, while the adversary (attacking
π) obtained by incorporating the simulator for ρ will run in expected polynomial time.

We remark that – seemingly due, at least in part, to this difficulty – all previous simulation-
based composition theorems of which we are aware (e.g., [18, 5, 6]) deal only with the case of
protocols proven secure via strict polynomial-time simulation. We also remark that, as with the
aforementioned conceptual considerations, this problem would be solved if all protocols were proven
secure relative to adversaries that run in expected polynomial time. As we have mentioned, this
results in other difficulties, and anyway may not be necessary for obtaining the desired composition.

1.2 Potential Ways of Resolving the Difficulties

There are at least two possible ways of dealing with the difficulties raised above:

1. Require simulators to be “no more powerful” than adversaries: One way of resolving
the above difficulties is to require simulators and adversaries to lie in the same complexity class. This
approach addresses not only the conceptual difficulty raised above, but also the issue of composition.
(This is due to the fact that once the simulator lies in the same class as the adversary, the general
strategy for proving secure composition, as sketched above, is applicable.) Here, there are two
natural choices: (a) require both the adversary and the simulator to run in strict polynomial
time, or (b) allow both the adversary and the simulator to run in expected polynomial-time.

1More formally, and using more technical terminology, here we consider a protocol π that has been proven secure
in the f -hybrid model [5, 6]. See Section 4.1 for formal definitions.

2

Some limitations of the first choice (requiring strict polynomial time for both the adver-
sary and the simulator) were demonstrated in [3], where it was shown that there do not exist
constant-round zero-knowledge protocols2 with black-box simulators running in strict polynomial
time. Constant-round zero-knowledge protocols with non black-box simulation strategies running
in strict polynomial time are, however, known to exist [1, 2, 3].

Before considering the second choice, where both simulators and adversaries run in expected
polynomial time, we briefly address the issue of how to define expected polynomial-time adversaries
for interactive settings (this is treated more formally in Section 2). Loosely speaking, Feige [8]
defined that an adversary A attacking a protocol π runs in expected polynomial time if it runs
in expected polynomial time when interacting with the honest parties running π. (We refer to
this notion as expected polynomial time with respect to the protocol π.) Under this definition, A
may possibly run for a much longer amount of time when interacting with other machines.3 The
justification for this definition is that the goal of an adversary is to attack honest parties; therefore,
any strategy that is “efficient” when interacting with honest parties should be considered “feasible.”
A more stringent definition, advocated by Goldreich [10], requires the adversary to run in expected
polynomial time when interacting with any interactive machine. (We call this notion expected
polynomial time in any interaction.) Clearly, any machine that is expected polynomial time in any
interaction is also expected polynomial time with respect to any protocol π; it is also not hard to see
that the converse is not true. Thus, the second notion defines a strictly smaller class of adversaries
than the first. The justification for this latter definition is that it seems more intuitively appealing
as a “complexity class” of machines.

We now discuss the implementation of the simulation paradigm in which both the adversary
and the simulator run in expected polynomial time. Feige [8] showed that known simulators
for computational zero-knowledge protocols fail when considering adversaries that run in expected
polynomial time with respect to the honest prover. In contrast, it was shown in [20, Appendix
A.1] that the Feige-Shamir zero-knowledge argument4 system [8, 9] remains both zero-knowledge
and an argument of knowledge even when the adversarial party runs in expected polynomial time
in any interaction. (We stress that this positive result of [20] does not hold for adversaries that
run in expected polynomial time with respect to the honest prover.) It was further demonstrated
in [20, Appendix A.2] that the known simulator for the Goldreich-Kahan zero-knowledge proof
system [12] does not work for adversaries running in expected polynomial time in any interaction,
and so likewise for expected polynomial time with respect to the protocol (for the sake of self
containment, we duplicate this negative result of [20] in Appendix A). In fact, prior to our results
(see Section 1.3), there was no known proof system for NP that was proven zero-knowledge for
adversaries that run in expected polynomial time (even under the restricted definition of [10]). We
conclude that allowing the adversary to run in expected polynomial time is problematic because,
prior to our results, in many cases it was simply not known how to construct simulators for such
adversaries. (This is in contrast to the case where both the adversary and the simulator run in
strict polynomial time which, as we have mentioned, suffers from certain inherent limitations.)

The situation for zero-knowledge protocols (prior to our results) is summarized in Table 1. We
stress that this refers only to computational zero-knowledge; perfect zero-knowledge proofs and

2In this paper, whenever we refer to zero-knowledge protocols we mean those having negligible soundness error.
3As a “silly” example to illustrate what we mean: assume protocol π requires parties to preface their messages

with a “1,” and consider an adversary that runs in polynomial time when receiving messages beginning with “1” but
runs in exponential time when receiving messages beginning with “0.” Under Feige’s definition, such an adversary is
considered to run in expected polynomial time.

4Recall that in a proof system soundness holds even for all-powerful provers, whereas in an argument system it is
required to hold only for polynomial-time provers.

3

arguments appear to remain zero-knowledge even when the verifier runs in expected polynomial
time (see [8, Sects. 3.3, 3.4]). A brief explanation for this is given in Section 1.3.

Type of verifier ZK proofs ZK arguments
Expected poly-time in any interaction Unknown Achieved by [9]

Expected poly-time w.r.t. the honest prover Unknown Unknown

Table 1: Prior state of affairs regarding the existence of computational zero-knowledge
proofs/arguments for expected polynomial-time verifiers.

2. Prove a direct composition theorem for expected polynomial-time simulation: A
second and incomparable approach for dealing with the problem of expected polynomial-time sim-
ulation addresses the technical issue of protocol composition, but does not deal with the above-
mentioned conceptual considerations. In this approach, the aim is to show that if two protocols π
and ρ are proven secure in the sense of admitting expected polynomial-time simulation for strict
polynomial-time adversaries, then the composed protocol πρ is also secure in the same sense (i.e.,
that there exists an expected polynomial-time simulator for every strict polynomial-time adversary
attacking πρ).5 Note that in our earlier discussion regarding “technical considerations” we showed
that the current proof technique for proving composition fails. This still leaves open the possibility
of finding a different proof technique that can be used to show that πρ is secure.

An advantage of this approach is that many existing efficient protocols have already been
proven secure using expected polynomial-time simulation for strict polynomial-time adversaries.
A composition theorem as described above means we can use these protocols as building blocks
without reproving their security.

1.3 Our Results

The main focus of this paper is to develop techniques for working with expected polynomial-time
adversaries and simulation. We take first steps in this direction and present two incomparable
results, corresponding to the two approaches discussed in the previous section.

1. Simulation for expected polynomial-time adversaries. Our first result focuses on achiev-
ing expected polynomial-time simulation for expected polynomial-time adversaries. Before describ-
ing the result, we illustrate by way of example the central technical problem that arises when
attempting to simulate an expected polynomial-time adversary. Consider the abstract case of an
execution of a polynomial-time oracle machine A with an expected polynomial-time oracle B (in
our eventual application, the oracle machine A will be a black-box simulator and the oracle B will
be an adversary), where A and B act as follows:

1. Upon input 1k, oracle machine A queries its oracle with the message 1k and receives back a
message x. Next, A queries its oracle with x and halts.

2. Machine B receives an input q. If q equals the first k bits of its random tape, denoted r, then
B runs for 2k steps and halts. Otherwise, it replies with r and halts.

5More precisely (cf. Section 4.1 for formal definitions), say we take as our notion of protocol security the existence
of an appropriate expected polynomial-time simulator for every strict polynomial-time adversary. Then we would
like to claim that if π securely computes some functionality g in the f -hybrid model, and ρ securely computes f , then
πρ securely computes g.

4

Machine A runs in strict polynomial time. Machine B runs in expected polynomial time because,
for any input q of length k, the probability (over the choice of its random tape r) that r is equal
to q is 2−k (and thus B runs for 2k steps with probability 2−k). We may therefore expect that the
overall expected number of steps made by both A and B in an execution of AB(1k) would also be
polynomial. However, the number of steps made by both A and B in an execution of AB(1k) is
actually always more than 2k. This is due to the fact that in the execution of AB(1k), machine
A’s second query to B is always the first k bits of B’s random tape. We therefore conclude that
the “composition” of a polynomial-time oracle machine with an expected polynomial-time oracle
does not necessarily yield an expected polynomial-time computation (when counting the steps of
both the oracle machine and its oracle). More technically, we call this type of composition of two
machines A and B oracle composition. Furthermore, say a class of machines C is closed under oracle
composition if for any oracle machine A ∈ C and any machine B ∈ C, the composed machine AB is
also in C.6 This property of closure under oracle composition is important for black-box simulations
(where A is the simulator and B is the adversary), and holds for the class of strict polynomial-time
machines. However, the above example shows that the class of expected polynomial-time machines
is not closed under oracle composition.

In the setting we consider in this paper, the oracle machine A is a black-box simulator, and the
machine B is a real adversary (whose view A is simulating). The central difficulty that arises is due
to the fact that the distribution of messages that the adversary sees in a simulated execution may be
very far from the distribution of messages that it sees when interacting in a real execution with any
real machine. If the adversary “notices” this difference, it can have a much higher complexity during
simulation than in a real execution. Due to this, the adversary may run in expected polynomial time
in real interactions, but in expected superpolynomial time in simulated interactions. This is the main
problem we encounter. For example, when the above-described B interacts with a real machine, it
almost never receives q such that q = r. In contrast, when it interacts with the simulator A this
always happens. Thus, B’s execution time under “simulation” is much longer than its execution
time in a real interaction. We stress that this problem is not just hypothetical. Rather, as we
have mentioned earlier, many concrete protocols and expected polynomial-time simulators suffer
from this exact problem. A good example of this phenomenon (for the protocol of [12], and not a
contrived protocol) is demonstrated in Appendix A; there, an expected polynomial-time verifier is
described that tries to “detect” that it is in a simulated execution and not a real one. In case it
does detect this, it runs for a very long time. The simulator of the zero-knowledge protocol of [12]
fails for this verifier because the overall expected running time of the simulation is superpolynomial.
Simple solutions to this problem (such as truncating the execution after some polynomial number
of steps) do not work; see [3] for some discussion on this.

Ideally, we would like to present conditions under which closure under oracle composition can
be achieved for expected polynomial-time machines. If we can then also construct an expected
polynomial-time simulator fulfilling these conditions, we would then achieve simulation even when
the adversary runs in expected polynomial time. Toward this goal, we prove a theorem that
shows how to automatically modify a class of black-box simulators (characterized by a certain
property) so that the resulting simulation remains expected polynomial time even if the adversary
runs in expected polynomial time. Before describing this property, note that if we have a black-
box simulator with the property that its oracle queries are always distributed identically to the
messages sent in a real protocol (let us call this as a perfect simulator), then there would be no

6In measuring the time complexity of an oracle machine A, calls to its oracle are counted as a single step. However,
when we measure the complexity of the composed machine AB , the running time includes the steps of both A and B.
See Section 2.

5

problem dealing with expected polynomial-time adversaries. This is because in such a case, if the
adversary runs for a very long time in the simulation it would also have to run for a very long time
in a real execution (and so it would not run in expected polynomial time). For this reason, known
simulators for perfect zero-knowledge proofs and arguments seem not to have any difficulty dealing
with expected polynomial-time verifiers.

We are now ready to describe a special property of a black-box simulator that will enable us to
claim that simulation still runs in expected polynomial time even if the verifier runs in expected
polynomial time. The property is a relaxation of a perfect simulator: instead of requiring that every
oracle query is distributed identically to messages sent in a real execution, we require that every
oracle query is indistinguishable from messages sent in a real execution – where indistinguishability
must hold even for slightly superpolynomial distinguishers. More precisely, let S be a black-box
simulator with the following strong indistinguishability property:

For all A, every oracle query that S makes to its oracle A is “strongly indistinguishable”
from some partial transcript (i.e., truncated transcript of the appropriate length) of a
real protocol execution involving A. By “strongly indistinguishable”, we mean compu-
tationally indistinguishable even for machines running in some superpolynomial time
α(k) = kω(1).

Let now A be an expected polynomial-time adversary and let S be a simulator that fulfills the
above property. We show that by truncating SA at O(α(k)) steps, we obtain a “good” simulator
that runs in expected polynomial time. The basic idea is that in α(k) steps the adversary A does
not have time to detect that it is receiving simulated messages instead of real messages. Therefore,
its running time in a simulation cannot be much longer than in a real execution (similar to the
case of a perfect simulator as discussed above). We thus obtain a restricted form of closure under
oracle composition that suffices for our application.

The above result holds even for the stronger class of adversaries running in expected polynomial
time with respect to the protocol under consideration. We remark that, assuming α(k) hardness
assumptions, all “natural” simulators of which we are aware can be converted in a straightforward
way into simulators satisfying the above property (the conversion essentially works by replacing
primitives having “standard” polynomial security with primitives that are secure even against
adversaries running in time α(k)).

Coming back to our initial example with A and B, one can see that the “simulator”/oracle
machine A does not satisfy the above property if things are cast appropriately. In particular, say
that the “protocol” calls for sending a random message q (of length k) to the “adversary” B. Now
consider the deterministic adversary B̂ that does the following: upon receiving message q, if q = 0k

then run for 2k steps and halt; otherwise, output 0k. Adversary B̂ runs in expected polynomial
time w.r.t. the protocol (since the input message q it receives is randomly chosen). On the other
hand, A does not satisfy the above indistinguishability property (even in the usual sense) relative
to B̂ since the second message sent by A to B̂ is always 0k (whereas such a message is sent only
with probability 2−k in a real execution with B̂).

The restricted form of closure under oracle composition that we have stated above allows us to
prove the following very informally-stated theorem:

(Informally Stated) Theorem 1.1 (closure theorem): Let π be a protocol that securely com-
putes some functionality f for strict polynomial-time adversaries, in the sense that for any such
adversary there exists an appropriate black-box simulator that runs in expected polynomial time and
furthermore satisfies the above strong indistinguishability property. Then, π also securely computes
f for adversaries that run in expected polynomial time (with respect to the protocol).

6

An important corollary of our result is that, under a suitable superpolynomial hardness assump-
tion, there exist computational zero-knowledge proofs for all of NP that remain zero-knowledge
(with respect to expected polynomial-time simulation) even if the adversarial verifier runs in ex-
pected polynomial time. With reference to Table 1, that is, we show the existence of all types of
proofs/arguments for expected polynomial-time verifiers that were previously unknown. We note
the following caveat: our simulator for the zero-knowledge proof system is guaranteed to run in
expected polynomial time only when given a statement x that is in the language L; see Section 3.3
for more details.7

2. A composition theorem for expected polynomial-time simulation. The above result
achieves security against adversaries running in expected polynomial time, but only for protocols
proven secure using simulators satisfying a particular technical property. Our second result shows a
composition theorem for protocols proven secure using arbitrary black-box simulation, but guaran-
tees security against strict polynomial-time adversaries only. Specifically, under a superpolynomial
hardness assumption, we prove an analogue of the modular (sequential) composition theorem of
Canetti [5] for protocols that are proven secure for strict polynomial-time adversaries using ex-
pected polynomial-time simulation. Loosely speaking, the composition theorem of [5] states that
if a secure protocol π contains sequential ideal calls to some functionalities, then it remains secure
even when these ideal calls are replaced by sequential executions of sub-protocols that securely
realize these functionalities. The original result of [5] was previously known to hold only for proto-
cols proven secure via strict polynomial-time simulation (in fact, in Appendix B we show that the
proof of [5] fails in general for protocols proven secure via expected polynomial-time simulation).
In contrast, we prove that under superpolynomial hardness assumptions the theorem of [5] holds
even if the component protocols are proven secure using expected polynomial-time simulation. We
pay a price, however, for achieving our stronger result: our proof requires hardness assumptions,
in contrast to the unconditional proof of [5]. We remark that we use superpolynomial hardness
assumptions only when constructing and analyzing our simulator; we do not modify the underlying
protocols and do not require that they be secure for superpolynomial adversaries. In summary, we
have the following theorem:

(Informally Stated) Theorem 1.2 (composition for expected polynomial-time simulation): Let
π be a protocol utilizing “sequential ideal calls” to a functionality f . Say π securely computes a
functionality g in the sense that there exists an appropriate expected polynomial-time simulator for
every strict polynomial-time adversary. Say ρ is a protocol that securely computes functionality
f in the same sense. Then, under the assumption that there exist families of functions that are
pseudorandom to all adversaries running in (mildly) superpolynomial time, the composed protocol
πρ securely computes the functionality g in the same sense.

A caveat regarding Theorem 1.2 is that our proof holds only if the simulator for ρ runs in expected
polynomial time in any interaction. (Note that a simulator in the setting of secure computation
interacts with a trusted party. It is therefore an interactive machine, and so the different notions
of expected polynomial time for interactive machines apply to it as well.)

7Standard definitions of zero knowledge require the simulator to generate a distribution that is indistinguishable
from the view of the verifier only when it receives a statement x ∈ L. The question of what complexity a simulator
should be when it is invoked on x 6∈ L has not been considered. The straightforward approach is to require the
simulator to maintain its complexity even when invoked on inputs x 6∈ L. As we describe in Section 3.3, this also has
significant advantages regarding applications of zero knowledge. Unfortunately, our simulators are only guaranteed
to run in expected polynomial-time for inputs x ∈ L. (We remark that when the simulator runs in strict polynomial
time on inputs x ∈ L, then its execution can be safely truncated at some fixed polynomial number of steps and so
we may simply assume that it runs in strict polynomial time even on inputs x 6∈ L.)

7

1.4 Techniques

In this section, we describe our techniques at a high level. Our aim is to provide an intuitive
explanation as to how we deal with the problem of expected polynomial-time adversarial behavior.
Some of this intuition has been described briefly above; we present it in more detail here.

Superpolynomial truncation. As we have mentioned, a problem we encounter with proving
Theorem 1.1 is that an expected polynomial-time adversary may sometimes have very long exe-
cutions. This causes a problem when the probability of obtaining such a long execution is higher
during simulation than during a real execution (thereby causing the expected running time of the
simulation to be superpolynomial). A first attempt at solving this problem is to simply truncate
the execution of the adversary if it exceeds its expected running time by “too much.” One can thus
obtain an adversary running in strict polynomial time and then standard simulation techniques
can be applied. The problem with this strategy is that it is unclear when to truncate. There are
two natural possibilities:

1. Truncate when the adversary exceeds p(k) times its expected running time, where p(·) is some
polynomial and k is the security parameter: In this case, the truncated adversary clearly runs
in strict polynomial time. However, the distribution generated by the truncated adversary
may be noticeably far (i.e., distance 1/p(k)) from the distribution generated by the original
adversary. Therefore, the simulation (applied to the truncated adversary) will no longer be
indistinguishable from a real execution of the original adversary.

2. Truncate when the adversary has run a superpolynomial number of steps: In this case, the
resulting distribution of the truncated adversary will be indistinguishable from the original
one. This is due to the fact that if the adversary runs in expected polynomial time, it can only
run a superpolynomial number of steps with negligible probability. However, this strategy is
problematic because, as described above, the adversary may still run for a “long” time during
simulation much more often than it does in a real execution. Therefore, we may still obtain
an overall expected superpolynomial running time when simulating for this adversary.

Our solution is to adopt the strategy of superpolynomial truncation, but to ensure that the proba-
bility that the adversary runs for a very long time during the simulation is close to the probability
that it does so in a real execution. Loosely speaking, we achieve this as follows. Let α(k) be
any superpolynomial function, and assume that circuits of size α(k) can distinguish a simulator-
generated message from a real message with probability at most 1/α(k) (this is a reformulation of
the strong indistinguishability property introduced in the previous section). Now, in a real execu-
tion an adversary can exceed α(k) steps only with probability at most poly(k)/α(k); otherwise, it
would not run in expected polynomial time. Because of the strong indistinguishability property
we may now claim that the same must hold during simulation, or else a distinguisher of size α(k)
would be able to distinguish simulator messages from real ones (with probability at least 1/α(k)) by
monitoring the running time of the adversary. The reason we need a superpolynomial bound α(k)
is to make sure that the truncation does not noticeably affect the output distribution. This in turn
implies that the distinguisher must be allowed to run α(k) steps (since this is when differences in
the adversary’s running time might be manifested), and so α(k)-hardness assumptions are needed.

Stated less technically than above, we show that if the simulator satisfies the strong indistin-
guishability property then a real adversary running in expected polynomial time does not have
time to “detect” any difference between real and simulated executions. Therefore, its expected
running time must be approximately the same in both cases. This can then be used to show that
the simulated execution also runs in expected polynomial time.

8

Pseudo-independent oracle invocations. Our starting point for the proof of Theorem 1.2 is
a different one. Recalling the discussion of oracle composition (where an oracle machine A makes
calls to a machine B) from the previous section, we can see that one difficulty that arises is that
A calls B multiple times, and in each call B uses dependent random coins. (Specifically, it uses
identical random coins in the counterexample we gave.) Conversely, if A were to make a strict
polynomial number of calls to an expected polynomial-time machine B, and in each invocation
B used fresh random coins, then (by linearity of expectation) the total expected running time of
AB would be polynomial. (In fact, this holds even if A makes an expected polynomial number
of calls to B [4, Problem 22.9].) Unfortunately, if A represents a simulator and B represents an
expected polynomial-time adversary then A may not produce the appropriate output distribution
if it invokes B using fresh random coins each time (in fact, all known black-box simulators would
completely fail if forced to work this way).

We describe at a high level the strategy we use to resolve the above issue. The basic idea is
to consider the modified algorithm B′ that proceeds as follows: given random tape s and input q,
algorithm B′ computes r = Fs(q) and then runs B using random tape r and input q. If F is a
pseudorandom function, then the distributions on the output of B and B′ are indistinguishable. So,
intuitively, running the simulator A with access to B′ should produce output that is “just as good”
as running A with access to B. The key point is that even though the random tape of B′ is fixed,
the random tape used by B (when called by B′) is (pseudo)independently and (pseudo)uniformly
distributed each time B is invoked. (Without loss of generality, we may assume that A does not
query its oracle on the same input twice.) Thus, even though the random coins of A’s oracle B′

remain fixed, the “effective” coins used by B are freshly generated each time it is invoked. (Our
technique is somewhat reminiscent of similar ideas used in [7].)

Unfortunately, the above explanation is overly simplistic. A problem that may arise when
constructing B′ from B is that B′ may no longer run in expected polynomial time (since B′

runs B using pseudorandom coins rather than random ones). Indeed, the issue here is exactly
analogous to the issue that arose with respect to non-perfect simulators (as discussed earlier).
In order to prevent this from happening, we must use a function F that is pseudorandom even
against adversaries running in some superpolynomial time α(k). We also use the superpolynomial
truncation technique described previously in order to ensure that B′ runs in expected polynomial
time yet its behavior is not noticeably different.

1.5 Open Questions

In this paper, we present the first techniques for dealing with some difficulties that arise due to the
use of expected polynomial-time simulation strategies. We view our results as first steps in solving
these problems, and not as final solutions. The main weaknesses of our results are:

1. In both results, we rely on superpolynomial hardness assumptions rather than standard ones.

2. In order to prove the closure theorem (Theorem 1.1), we need to assume a black-box simulator
with the “strong indistinguishability property.”

3. In order to prove the sequential composition theorem (Theorem 1.2), we need to assume that
the simulator for the sub-protocol ρ runs in expected polynomial time in any interaction.
This result is therefore highly sensitive to the definition of expected polynomial time.

Thus, we still do not have truly satisfactory solutions to the problems that arise due to expected
polynomial-time simulation.

9

2 Defining the Running Time of Probabilistic Machines

The security parameter is denoted by k; for conciseness, we equate the security parameter with
the input length. (We therefore consider security for “sufficiently-long inputs.”) We denote by
A(x, z, r) the output of machine A on input x, auxiliary input z, and random coins r. The running
time of A is measured in terms of the length of its input x (where |x| = k), and the exact running
time of the deterministic computation A(x, z, r) is denoted by timeA(A(x, z, r)). Machine A runs
in strict polynomial time if there exists a polynomial p(·) such that for all x, z, and all r, it holds
that timeA(A(x, z, r)) ≤ p(|x|). A runs in expected polynomial time if there exists a polynomial
p(·) such that for all x and z, it holds that Expr[timeA(A(x, z, r))] ≤ p(|x|).
A technical issue. A technical problem that arises when considering expected polynomial-time
algorithms is that the expected running time is not machine independent. As an example, consider
an algorithm which, in some model of computation, runs for 2k steps with probability 2−k, and
runs for 1 step otherwise. In this model, the algorithm runs in expected polynomial time. However,
if this algorithm is implemented in a second model of computation which, for sake of argument, has
quadratic overhead with respect to the first model, we end up with an algorithm that runs for 22k

steps with probability 2−k and therefore no longer runs in expected polynomial time (this example
is due to [10]). To avoid these difficulties, we implicitly fix a model of computation throughout our
discussion.

Running time for interactive machines. If A is an interactive Turing machine (ITM), we
let A(x, z, r; ·) denote the “next message function” of A on inputs x, z, and random coins r. The
ITM A runs in strict polynomial time if there exists a polynomial p(·) such that for all x, z, r, and
any sequence of messages m, it holds that timeA(A(x, z, r; m)) ≤ p(|x|). That is, A replies to any
message within p(|x|) steps.

Defining expected polynomial-time ITMs is more complicated, and at least two such definitions
have been considered. We first present the definition of Feige [8]. As mentioned in the Introduction,
the idea behind this definition is that any adversarial strategy that is efficient when run against the
specified target (i.e., the honest parties running the protocol) should be considered feasible. Thus,
the running time of an adversary when interacting with an arbitrary ITM (that is not the honest
party under attack) is irrelevant. Informally, an ITM A is said to run in expected polynomial time
with respect to a particular protocol π if there exists a polynomial p(·) such that for all inputs, the
expected running time of A when interacting with honest parties running π is at most p(|x|). (The
expectation here is taken over the random coins of both A and the honest parties.) More formally,
let timeA(〈A(x, zA, r), B(y, zB, s)〉) denote the exact running time of A with input x, auxiliary input
zA, and random coins r, when interacting with B holding input y, auxiliary input zB, and random
coins s. Then:

Definition 1 An ITM A runs in expected polynomial time with respect to an ITM B if there exists
a polynomial p(·) such that for all x, y with |x| = |y| and all auxiliary inputs zA, zB ∈ {0, 1}∗, the
following holds:

Expr,s [timeA(〈A(x, zA, r), B(y, zB, s)〉)] ≤ p(|x|).
Let π = (P1, P2) be a two-party protocol. Then an adversary A corrupting P1 (resp., P2) runs in
expected polynomial time with respect to π if it runs in expected polynomial time with respect to P2

(resp., P1). If f is a (probabilistic) function, then A runs in expected polynomial time with respect
to f if it runs in expected polynomial time with respect to any ITM computing f .

10

The above definition relates to two-party protocols. The extension to the multiparty case is straight-
forward.

A definition of the above sort makes sense in a cryptographic context, but is arguably a strange
way of defining a “complexity class” since, as we have mentioned earlier, the fact that an adversary
A runs in expected polynomial time with respect to a protocol π implies nothing about its running
time when it interacts with other machines. An alternative approach advocated by Goldreich [10]
therefore states that an ITM runs in expected polynomial time if there exists a polynomial p(·) such
that for all inputs, the expected running time of A when interacting with any (even all powerful)
ITM B is at most p(|x|). Here, the expectation is taken over the random coins of A only, because
we can assume without loss of generality that B is deterministic. In such a case, we say that A
runs in expected polynomial time in any interaction. More formally:

Definition 2 An ITM A runs in expected polynomial time in any interaction if for every ITM B it
holds that A runs in expected polynomial time with respect to B (as defined in Definition 1).

It is immediate that if an ITM A runs in expected polynomial time in any interaction, then A also
runs in expected polynomial time with respect to any protocol π. Furthermore, it is not difficult
to show a protocol π for which the class of adversaries running in expected polynomial time with
respect to π is strictly larger than the class of adversaries running in expected polynomial time in
any interaction.

Running time for oracle machines. The running time of an oracle machine A (whether in-
teractive or not) is defined along the lines of what has already been discussed. However, we will
distinguish between the running time of A itself (counting A’s calls to its oracle as a single step)
and the running time of the composed machine AB for some particular machine B. In more detail,
let A be an oracle machine with oracle access to an ITM B. It will always be the case, and we will
henceforth implicitly require, that A and B hold inputs of the same length (i.e., it is always the
case that A and B use the same value for the security parameter k). In the execution of A with
B, denoted by AB(y,zB ,s;·)(x, zA, r), machine A receives input x, auxiliary-input zA, and random
tape r, and provides queries of the form m to its oracle which are answered as B(y, zB, s; m). We
distinguish between two notions of running time for the composed machine AB:

1. timeA(AB(y,zB ,s;·)(x, zA, r)) denotes the exact running time of A on input x, auxiliary-input
zA, and random tape r when interacting with the oracle B(y, zB, s; ·), counting calls to B as
a single step (i.e., we only “count” the steps taken by A).

2. timeA+B(AB(y,zB ,s;·)(x, zA, r)) denotes the exact running time of both A and B in the analogous
execution. Here, the steps taken by B to answer A’s queries are also counted.

Given the above, we can define expected polynomial-time oracle machines. (We provide definitions
for the case that AB is a stand-alone machine, but the definitions can be extended exactly as
discussed earlier when AB is an ITM.) We say that the oracle machine A runs in expected polynomial
time if there exists a polynomial p(·) such that for every (even all powerful) machine B, all inputs x,
and every auxiliary input z, Expr[timeA(AB(x, z, r))] ≤ p(|x|). On the other hand, the composed
machine AB runs in expected polynomial time if8 there exists a polynomial p(·) such that for all
inputs x and y with |x| = |y|, and all auxiliary inputs zA and zB, it holds that

Expr,s[timeA+B(AB(y,zB ,s;·)(x, zA, r))] ≤ p(|x|).
8Since AB is just a regular Turing machine, this definition is exactly the one given earlier (note that r, s are exactly

the random coins of the composed machine AB). We repeat the definition for convenience.

11

For any strict polynomial-time B, if A runs in expected polynomial time then so does the composed
machine AB. (This assumes that A and B use the same value of the security parameter k, as we
indeed require.) We stress, however, that this does not necessarily hold when B runs in expected
polynomial time (under either definition considered earlier).

3 Simulation for Expected Polynomial-Time Adversaries

In this section, we show how protocols proven secure against strict polynomial-time adversaries us-
ing a certain class of black-box simulation can in fact be proven secure against expected polynomial-
time adversaries as well. That is, assuming that the original simulator for the protocol runs in ex-
pected polynomial time for any strict polynomial-time adversary, we obtain a simulator that runs
in expected polynomial time even for adversaries running in expected polynomial time. The results
of this section hold for the stronger class of adversaries running in expected polynomial time with
respect to the protocol, but we obtain a simulator guaranteed to run in expected polynomial time
only with respect to the ideal functionality9 in question (even if the adversary runs in expected
polynomial time in any interaction).

3.1 Preliminaries

As we have mentioned in the Introduction, the results of this section hold for a certain class of
black-box simulators. We begin with a high-level review of secure computation, and then define
the class of simulators we consider. For the sake of simplicity, we present the results here for the
case of two-party protocols. The natural extension to the multiparty case also holds.

Secure two-party computation. We provide a very brief and informal overview of the defi-
nition of security for two-party computation; for more details, see [5, 11]. In the setting of two-
party computation, two parties wish to jointly compute a (possibly probabilistic) functionality
f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f = (f1, f2). That is, upon respective inputs x and y,
the parties wish to compute f(x, y) so that party P1 receives f1(x, y) and party P2 receives f2(x, y).
Furthermore, the parties wish to ensure that nothing more than the output is revealed and that the
function is correctly computed, even if one of the parties behaves adversarially. These requirements
(and others) are formalized by comparing a real protocol execution to an ideal execution involving
a trusted party (an “ideal functionality”). In an ideal execution with f , the parties send their inputs
x and y to a trusted party who computes f(x, y) and sends f1(x, y) to P1 and f2(x, y) to P2. The
adversary who controls one of the parties can choose to send any input it wishes to the trusted
party, while the honest party always sends its specified input.10 In a real execution of a protocol
π, the parties P1 and P2 run π, where one of the parties may be corrupted and thus be under the
complete control of the adversary A. (We always assume the adversary statically corrupts one of
the two parties.) Informally, a protocol π is secure if for every real-model adversary A interacting
with an honest party running π, there exists an ideal-model adversary Sim interacting with the
trusted party computing f , such that the output of A and the honest party in the real model is
computationally indistinguishable from the output of Sim and the honest party in the ideal model.

9The simulator for a secure protocol is both an oracle machine as well as an interactive Turing machine that
interacts with a trusted party computing an ideal functionality (see the following section). Thus, we must also
explicitly state whether the simulator runs in expected polynomial time in any interaction, or only with respect to
the ideal functionality under consideration.

10The adversary also has control over the delivery of the output from the trusted party to the honest party.
Therefore, fairness and output delivery are not guaranteed.

12

Notation. Let π = (P1, P2) be a two-party protocol and let f be a two-input functionality. We
denote by realπ,A(z)(x, y) the output of a real execution of π, where party P1 has input x, party
P2 has input y, and the adversary A has input z in addition to the input of the corrupted party
(i.e., x if P1 is corrupted and y if P2 is corrupted). The output of an execution is defined to be
the output of the honest party (which is simply the output dictated by the protocol) along with
the output of the adversary (which, without loss of generality, is its view). Likewise, we denote by
idealf,Sim(z)(x, y) the output of an ideal execution with f where the respective inputs are as noted.

When considering black-box simulation, the ideal-world adversary Sim will take the form SA
where S is called the “black-box simulator.” Here, Sim chooses a random tape r for A and then
runs SA(z,r). The black-box simulator S is given the input of the corrupted party and oracle access
to A(z, r), but is not given the auxiliary input z nor the randomness r used by A. For visual
convenience, we explicitly provide S with input 1k (recall |x| = |y| = k, and running times of all
parties are measured in terms of k). The black-box simulator S is both an oracle machine as well
as an ITM (since it interacts with the trusted party computing the functionality f in the ideal
model). In the previous section we have already defined what it means for S to run in expected
polynomial time. To be explicit, however, we repeat some of that discussion here.

• We denote by timeS(idealf(rf),SA(z)(1k,s)(x, y)) the running time of S (not counting the steps
of A) when S has random tape s and the trusted party computing f uses random tape rf .
For the sake of clarity, we will use shorthand and denote the expected running time of S
in this case by Exps,rf

[timeS(ideal)]. (Following our conventions for oracle machines, we
require that S runs in expected polynomial time even when A is computationally unbounded.
Therefore, we do not make the random coins of A explicit when defining the running time
in this case, and the expectation of S’s running time is not taken over A’s coins r.) The
fact that we include f ’s coins rf is due to the fact that we consider simulators S that may
run in expected polynomial time with respect to f . (Note, however, that even when f is a
deterministic functionality it may still be the case that S runs in expected polynomial time
with respect to f , but does not run in expected polynomial time in any interaction. This can
occur if, for example, it runs for a very long time when it receives a value that is not in the
range of f .)

• We denote by timeS+A(idealf(rf),SA(z,r)(1k,s)(x, y)) the running time of the composed machine
SA (i.e., including A’s steps) when the inputs are as indicated. As above, for the sake of
clarity, we write Expr,s,rf

[timeS+A(ideal)] as shorthand for the expectation of this running
time. (Note that here the coins r of A are included.)

Since SA is the ideal-world adversary whose existence provides the intuitive security guarantee
we are after, we will require in our definition of security (below) that the composed machine
SA run in expected polynomial time (i.e., it is not enough that S runs in expected polynomial
time). Of course, when A runs in strict polynomial time the two requirements are equivalent.

We are now ready to present the definition of security.

Definition 3 Let f and π be as above. Protocol π is said to securely compute f for strict polynomial-
time adversaries with a black-box simulator that runs in expected polynomial time with respect to f if
there exists an interactive oracle machine (black-box simulator) S that runs in expected polynomial
time with respect to f , such that for every strict polynomial-time real-model adversary A, every
non-uniform polynomial-time distinguisher D, every polynomial p(·), all sufficiently-long inputs x

13

and y such that |x| = |y|, and all z ∈ {0, 1}∗,
∣∣∣Pr[D(idealf,SA(z)(1k)(x, y)) = 1]− Pr[D(realπ,A(z)(x, y)) = 1]

∣∣∣ <
1

p(|x|) .

Protocol π is said to securely compute f for expected polynomial-time adversaries with a black-box
simulator that runs in expected polynomial time with respect to f if the above holds even for A which
run in expected polynomial time with respect to π and, furthermore, if the composed machine SA
runs in expected polynomial time with respect to f even for such A.

Of course, one could modify the second part of the definition for the case of adversaries/simulators
running in expected polynomial time in any interaction.

Strong black-box simulation. We now define a stronger notion of simulation which, informally,
requires not only that the final output of idealf,SA be indistinguishable from realπ,A, but also
that each partial (truncated) transcript generated during the simulation is indistinguishable from
a partial transcript of the same length in a real execution of the protocol. Furthermore, we require
indistinguishability to hold in a “strong” sense even against algorithms running in some slightly
superpolynomial time.

All protocols from the literature (proven secure for strict polynomial-time adversaries in the
sense of the above definition) of which we are aware seem naturally to satisfy the notion of strong
black-box simulation under an appropriate superpolynomial hardness assumption. On the other
hand, it is easy to construct “unnatural” counterexamples that fail to satisfy this notion.

Let π be a protocol that securely computes some functionality f for strict polynomial-time
adversaries in the sense of the above definition. Let S be a black-box simulator for π (as required
by the above definition), and let A be an adversary. If A sends its messages in the odd rounds
(i.e., A sends the first message of the protocol), then each query query made by S to A has the
form query = (m1, . . . , mj), where mi represents a (2i)th-round message sent by the uncorrupted
party to A (we do not include the responses of A in query since these are redundant given A and
its inputs [including its random coins]). In this case we say j is the number of messages in query.
We also allow the possibility that query = ε (i.e., j = 0), in which case query represents S’s query
for the initial message sent by A. The case when A sends its messages in even rounds (i.e., the
uncorrupted party sends the first message of the protocol) is handled in an analogous manner.

Define the following distributions:

1. simf,SA(x, y, z, r, i) is defined by the following experiment: choose random tapes s, rf and run
idealf(rf),SA(z,r)(1k,s)(x, y). Let queryi be the ith oracle query made by S to A; if no such
query is made (i.e., if S makes fewer than i queries), set queryi = ⊥. Output queryi.

2. realπ,A(x, y, z, r, i) is defined by the following experiment: choose random s′ and then run
realπ,A(z)(x, y) with the honest party using random tape s′ and A using random tape r.
Let T be the vector of messages sent by the honest party to A in this execution, and let T j

denote the first j messages in T .

Next, run the experiment simf,SA(x, y, z, r, i) above (choosing fresh coins s, rf) and obtain
queryi. If queryi = ⊥, then output ⊥. Otherwise, let j denote the number of messages in
queryi, and output T j .

The sim experiment is run in the second case in order to decide the length of the partial transcript
to output. That is, we wish to compare the distribution of queryi to a partial transcript (of a

14

real execution) of the same length. This length is obtained from the invocation of sim. Note that
Pr[queryi 6=⊥] is exactly the same in both the sim and real experiments, since the event is due
in each case to the outcome of the simf,SA(x, y, z, r, i) experiment. Furthermore, this probability
is exactly the probability that the output of the experiment is not ⊥ (because the output of each
experiment is ⊥ if and only if queryi =⊥).

For any distinguisher D, define ∆D(x, y, z, r, i) as follows: If Pr[queryi 6=⊥] 6= 0, then:

∆D(x, y, z, r, i) def=
∣∣∣Pr[D(simf,SA(x, y, z, r, i)) = 1 | queryi 6=⊥]

− Pr[D(realπ,A(x, y, z, r, i)) = 1 | queryi 6=⊥]
∣∣∣ (1)

and if Pr[queryi 6=⊥] = 0, then ∆D(x, y, z, r, i) = 0. (If Pr[queryi 6=⊥] = 0, then both sim and
real always output ⊥. We define ∆D as we do because when Pr[queryi 6=⊥] = 0, the conditional
probability in Eq. (1) is undefined.)

We are now ready to present the definition of strong simulation. Informally, the definition
requires that when queryi 6=⊥, it holds that the ith query in the sim experiment is strongly indis-
tinguishable from a partial transcript of the same length in a real execution.

Definition 4 (α-strong black-box simulation): Let π be a two-party protocol that securely computes
some functionality f in the sense of Definition 3, and let S be a black-box simulator for π (as required
by that definition). We say that S is an α-strong black-box simulator for π (and say that π securely
computes f under α-strong black-box simulation) if for every adversary running in time at most
α(k), every non-uniform algorithm D running in time at most α(k), all sufficiently large x and y,
all z, r ∈ {0, 1}∗, and all i ∈ N,

∆D(x, y, z, r, i) <
1

α(k)
.

A consequence. As we have mentioned, Pr[queryi 6= ⊥] is the same in both the sim and real
experiments. Assuming the above definition holds, it therefore follows that:
∣∣Pr[D(simf,SA(x, y, z, r, i)) = 1 ∧ queryi 6=⊥]− Pr[D(realπ,A(x, y, z, r, i)) = 1 ∧ queryi 6=⊥]

∣∣
= Pr[queryi 6= ⊥] ·∆D(x, y, z, r, i)

<
Pr[queryi 6=⊥]

α(k)

for large enough x, y. (The above holds even if Pr[queryi 6=⊥] = 0.) This consequence of Definition 4
will be used in our proof below.

Extended black-box simulation. Finally, we introduce a generalization of black-box simulation
in which the black-box simulator S is allowed to truncate its oracle A if A exceeds some (poly-time
computable) number of steps α. Formally, we can define each oracle query to be a pair (α, q); if A
responds to q within α steps then S is given the response, otherwise S is given ⊥. (We will ignore
this formalism from here on.) We call such a simulator extended black-box. Note that standard
black-box simulators cannot perform such truncation since they are oblivious to how many steps
their oracle uses in response to a query. However, requiring α to be polynomial-time computable
ensures that any extended black-box simulator can be implemented by a non black-box simulator.
We remark that when computing timeS(SA), oracle calls are still considered a single step (even if
S truncates A after some number of steps). The definition of timeS+A(SA) remains unchanged.

15

3.2 Simulation for Expected Polynomial-Time Adversaries

We are now ready to show how (and under what assumptions) it is possible to convert a simulation
strategy that works for strict polynomial-time adversaries into a simulation strategy that works for
expected polynomial-time adversaries.

Theorem 5 Let α(k) = kω(1) be a superpolynomial function that is polynomial-time computable,
and let π be a protocol that securely computes some functionality f for strict polynomial-time
adversaries with an α-strong (extended) black-box simulator that runs in expected polynomial time
with respect to f . Then π securely computes f for adversaries that run in expected polynomial
time with respect to the protocol. Furthermore, π has an α-strong extended black-box simulator that
runs in expected polynomial time with respect to f .

Proof: The idea behind the proof of this theorem is as follows. Let S be an α-strong (extended)
black-box simulator for π which outputs a “good” simulation for strict polynomial-time adversaries,
and let A be an expected polynomial-time adversary. We first truncateA at O(α(k)) steps to obtain
an adversary Â which performs “essentially” the same as A. Now, since each query made by the
α-strong simulator S to Â is indistinguishable from a partial real transcript even for non-uniform
algorithms running in time α(k), it follows that Â cannot behave noticeably different when receiving
an oracle query from S than when it receives a real partial transcript. In particular, Â cannot run
“much” longer when it receives an oracle query than it would run when interacting in a real protocol
execution, and we know that Â runs in expected polynomial time in the latter case. We use this
to argue that the composed machine SÂ runs in expected polynomial time, and that the resulting
transcript is close to the one generated by SA. We proceed with a formal description of the above
steps.

Throughout the proof, we let |x| = |y| = k. We assume without loss of generality that α(k) =
O(2k). Let S be an α-strong black-box simulator for π (for strict polynomial-time adversaries) that
is assumed to exist, and define Â as the algorithm that behaves exactly as A except that it outputs
⊥ if it ever exceeds α(k)/2 steps. By definition, S runs in expected polynomial time with respect
to f , and A runs in expected polynomial time with respect to π.

We construct an extended black-box simulator Ŝ that receives oracle access to A and emulates
an execution of SÂ. That is, Ŝ chooses a random tape s ∈ {0, 1}∗ and invokes S with random tape
s. Then, all oracle queries from S are forwarded by Ŝ to its own oracle A and the oracle replies are
returned to S unless A exceeds α(k)/2 steps while answering the query, in which case the current
execution of A is aborted and Ŝ returns ⊥. Furthermore, all communication between S and the
trusted party computing f is forwarded unmodified by Ŝ. Note that Ŝ is an extended black-box
simulator because it truncates its oracle. (It makes no difference whether S is an extended black-
box simulator or not. The only technicality is that if S is an extended black-box simulator, then if
S requests to truncate a query at some point, so does Ŝ.) Notice that ŜA = SÂ.

Our goal is to show that Ŝ satisfies the second part of Definition 3. We first show that ŜA runs
in expected polynomial time with respect to f even when A runs in expected polynomial time with
respect to π (and thus also if A runs in expected polynomial time in any interaction).

Claim 6 If A runs in expected polynomial time with respect to π and oracle machine S runs in
expected polynomial time with respect to f , then the composed machine ŜA defined above runs in
expected polynomial time with respect to f .

Proof: In the proof below, we assume without loss of generality that Ŝ is given input x; i.e., A
corrupts the first party P1. We show that for any expected polynomial-time adversary A there

16

exists a polynomial p such that for all sufficiently long x, y, and all z:

Expr,s,rf
[timeŜ+A(ŜA(z,r)(x, s))] ≤ p(k).

To prove the claim, first recall that ŜA is exactly the same as SÂ. Now, the running time of SÂ
consists of two components: the steps taken by S and the steps taken by Â in answering the oracle
queries of S. Using linearity of expectation, it suffices to show that the expectation of each of these
components is polynomial. Since S is an expected polynomial-time oracle machine, its expected
running time is polynomial when interacting with any oracle. It therefore remains only to bound
the total number of steps taken by Â. This is equal to Expr,s,rf

[
∑τ

i=1 simtimeÂ(z,r)(i)], where τ is

a random variable denoting the number of oracle queries made by S to Â and simtimeÂ(z,r)(i) is a

random variable denoting the running time of Â(z, r) in answering the ith query from S. (These
random variables may depend on r, s, rf and the inputs x, y.) We first write

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)(i)

]
=

∞∑

j=1

Pr
r,s,rf

[τ = j] ·Expr,s,rf

[
j∑

i=1

simtimeÂ(z,r)(i)
∣∣∣ τ = j

]

=
∞∑

j=1

Pr
r,s,rf

[τ = j]
j∑

i=1

Expr,s,rf

[
simtimeÂ(z,r)(i) | τ = j

]

=
∞∑

j=1

Expr,s,rf

[
simtimeÂ(z,r)(j) | τ ≥ j

]
· Pr

r,s,rf

[τ ≥ j] , (2)

where the second equality uses the linearity of expectation, and the third follows by rearranging
the probabilities (the full derivation appears in Appendix C). Continuing, and using the fact that
Â runs for at most α(k)/2 steps, we have:

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)(i)

]
=

∞∑

j=1

Expr,s,rf

[
simtimeÂ(z,r)(j) | τ ≥ j

]
· Pr

r,s,rf

[τ ≥ j]

=
∞∑

j=1

∞∑

t=1

t · Prr,s,rf

[
simtimeÂ(z,r)(j) = t | τ ≥ j

]
· Pr

r,s,rf

[τ ≥ j]

=
∞∑

j=1

α(k)/2∑

t=1

Prr,s,rf

[
simtimeÂ(z,r)(j) ≥ t | τ ≥ j

]
· Pr

r,s,rf

[τ ≥ j]

=
∞∑

j=1

α(k)/2∑

t=1

Prr,s,rf

[
simtimeÂ(z,r)(j) ≥ t ∧ τ ≥ j

]
. (3)

For any fixed r, the distribution on the message sequence input to Â when defining simtimeÂ(z,r)(j)
(namely, the jth query from S) is exactly that given by sim

f,SÂ(x, y, z, r, j). Let realtimeÂ(z,r)(j) be

a random variable denoting the running time of Â(z, r) when run on input distributed according
to realπ,Â(x, y, z, r, j). (Recall that when queryj 6= ⊥ this is a message that Â receives in a real
execution.) We claim that for large enough x and y, for any z, r, j, and any t ≤ α(k)/2,

∣∣∣Prs′,s,rf
[realtimeÂ(z,r)(j) ≥ t ∧ τ ≥ j]− Prs,rf

[simtimeÂ(z,r)(j) ≥ t ∧ τ ≥ j]
∣∣∣ <

Prs,rf
[τ ≥ j]

α(k)
. (4)

17

(Recall that in realπ,Â(x, y, z, r, j), the random tape s′ is that belonging to the honest party
running protocol π, while s, rf are used to run sim and thereby determine whether to output ⊥.)
Noticing that the event “τ ≥ j” is exactly the event “queryj 6= ⊥,” the bound in Eq. (4) holds
because otherwise we obtain a non-uniform distinguisher that distinguishes between real and
sim, in contradiction to the fact that S is an α-strong black-box simulator (by the consequence
of Definition 4 as discussed immediately following that definition). The distinguisher works by
counting how long Â runs for, using this to distinguish the sim and real distributions. In more
detail, given an auxiliary input z′ = (z, r, t) with t ≤ α(k)/2, and the result O of either experiment
sim

f,SÂ(x, y, z, r, j) or realπ,Â(x, y, z, r, j), proceed as follows: if O is ⊥, output 1. Otherwise, O

is a sequence of i messages T i. In that case, run Â(z, r) on message sequence T i, and output 1
if and only if Â runs for at least t steps. For large enough k, the total running time of this
distinguishing algorithm (including the overhead for maintaining a counter and running Â) is at
most α(k). Therefore, by the discussion following Definition 4, it follows that Eq. (4) holds. We
remark that the non-uniformity of Definition 4 is essential here. We also note that this argument
is the main conceptual point in the proof of this claim.

Continuing, from Eq. (4) it follows that:

α(k)/2∑

t=1

Pr
r,s,rf

[
simtimeÂ(z,r)(j) ≥ t ∧ τ ≥ j

]

<

α(k)/2∑

t=1

(
Pr

r,s′,s,rf

[
realtimeÂ(z,r)(j) ≥ t ∧ τ ≥ j

]
+

Prr,s,rf
[τ ≥ j]

α(k)

)

=
Prr,s,rf

[τ ≥ j]
2

+
α(k)/2∑

t=1

Pr
r,s′,s,rf

[
realtimeÂ(z,r)(j) ≥ t ∧ τ ≥ j

]
. (5)

Using the simple observations that:

1. realtimeÂ(z,r)(j) ≤ realtimeÂ(z,r) (where the latter expression refers to the total running time

of Â(z, r) in a real execution), and

2. realtimeÂ(z,r) ≤ realtimeA(z,r) (because Â is truncated whereas A is not),

and combining Equations (3) and (5), we obtain the following:

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)(i)

]
<

∞∑

j=1

Prr,s,rf

[τ ≥ j]
2

+
α(k)/2∑

t=1

Pr
r,s′,s,rf

[
realtimeA(z,r) ≥ t ∧ τ ≥ j

]

 .

We bound each of the two terms above by a polynomial. First, recall that S is an expected
polynomial-time oracle machine, and thus runs in expected polynomial time for any r. Therefore,
the expected value of τ is polynomial (for any r), and we have

∞∑

j=1

Prr,s,rf
[τ ≥ j]
2

=
Expr,s,rf

[τ]

2
=

q(k)
2

,

for some polynomial q(·). Next,

∞∑

j=1

α(k)/2∑

t=1

Pr
r,s′,s,rf

[
realtimeA(z,r) ≥ t ∧ τ ≥ j

]

18

=
∞∑

j=1

α(k)/2∑

t=1

Pr
r,s′

[
realtimeA(z,r) ≥ t

] · Pr
r,s′,s,rf

[
τ ≥ j | realtimeA(z,r) ≥ t

]

=
α(k)/2∑

t=1

Pr
r,s′

[
realtimeA(z,r) ≥ t

] ·
∞∑

j=1

Pr
r,s′,s,rf

[
τ ≥ j | realtimeA(z,r) ≥ t

]
. (6)

Fix t, and consider the expression
∞∑

j=1

Pr
r,s′,s,rf

[
τ ≥ j | realtimeA(z,r) ≥ t

]
= Expr,s′,s,rf

[
τ | realtimeA(z,r) ≥ t

]
.

Recall again that S is an expected polynomial-time oracle machine and thus runs in expected
polynomial time for any r. In particular, it runs in expected polynomial time even when r and s′

(the random coins of A and the honest party) are such that realtimeA(z,r) ≥ t. This implies that

∞∑

j=1

Pr
r,s′,s,rf

[
τ ≥ j | realtimeA(z,r) ≥ t

]
= Expr,s′,s,rf

[
τ | realtimeA(z,r) ≥ t

]

≤ q(k). (7)

Combining Equations (6) and (7) we obtain:

∞∑

j=1

α(k)/2∑

t=1

Pr
r,s′,s,rf

[
realtimeA(z,r) ≥ t ∧ τ ≥ j

]

=
α(k)/2∑

t=1

Pr
r,s′

[
realtimeA(z,r) ≥ t

] ·
∞∑

j=1

Pr
r,s′,s,rf

[
τ ≥ j | realtimeA(z,r) ≥ t

]

≤
α(k)/2∑

t=1

Pr
r,s′

[
realtimeA(z,r) ≥ t

] · q(k)

≤ q(k) ·Expr,s′
[
realtimeA(z,r)

]
,

which is polynomial because A runs in expected polynomial time with respect to π. This completes
the proof of Claim 6.

We have shown that the composed machine ŜA runs in expected polynomial time with respect to f .
It remains to show that it is an α-strong (extended black-box) simulator for expected polynomial-
time adversaries. We first show that it provides a “good” simulation; namely:

Claim 7 For any A running in expected polynomial time with respect to π, every non-uniform
polynomial-time distinguisher D, every polynomial p(·), all sufficiently-long inputs x and y such
that |x| = |y|, and all z ∈ {0, 1}∗,

∣∣∣Pr[D(idealf,ŜA(z)(1k)(x, y)) = 1]− Pr[D(realπ,A(z)(x, y)) = 1]
∣∣∣ <

1
p(|x|) .

Proof: Assume the claim does not hold. Then there exists a non-uniform polynomial-time
distinguisher D, an infinite sequence {(xi, yi, zi)}i∈N (with |xk| = |yk| = k), and a constant c > 0
such that for infinitely-many values of k:

∣∣∣Pr[D(ideal
f,SÂ(zk)(1k)

(xk, yk)) = 1]− Pr[D(realπ,A(zk)(xk, yk)) = 1]
∣∣∣ ≥ 1

kc
. (8)

19

(We drop the subscripts on x, y, z from now on.) Recall that ŜA is identical to SÂ, and thus
Eq. (8) is the negation of the claim (even though the actual claim relates to SÂ and not to ŜA).
Let m(k) be the maximum of the expected running times of A (when interacting with π) and SÂ;
since both run in expected polynomial time, m(k) is polynomial as well. Define Ã to be identical
to A except that it halts immediately (with output ⊥) if it ever exceeds 4m(k)kc steps; note that
Ã runs in strict polynomial time. We have that the statistical difference between realπ,A(z)(x, y)
and realπ,Ã(z)(x, y) is at most k−c/4 for large enough k, and similarly for ideal

f,SÂ(z)(1k)
(x, y)

and ideal
f,SÃ(z)(1k)

(x, y). We conclude that

∣∣∣Pr[D(ideal
f,SÃ(z)(1k)

(x, y)) = 1]− Pr[realπ,Ã(z)(x, y)) = 1]
∣∣∣ ≥ 1

kc/2
.

Since Ã runs in strict polynomial time, however, the above contradicts the assumed security of π
against strict polynomial-time adversaries.

It remains to show that Ŝ is in fact an α-strong simulator. This follows quite easily from the
facts that for any A we have ŜA = SÂ (where Â is the truncation of A at α(k)/2 steps), and the
assumption that S is an α-strong simulator. This completes the proof of the theorem.

3.3 Zero-Knowledge Proofs: A Corollary

Consider the zero-knowledge functionality for a language L ∈ NP. This function is defined by
f(x, x) = (λ, χL(x)), where χL(x) = 1 if and only if x ∈ L (here λ denotes the empty string). A
zero-knowledge protocol π securely realizes f for strict polynomial-time adversaries. Now, for the
sake of concreteness, consider the zero-knowledge protocol of Goldreich, Micali, and Wigderson [16].
Assuming the existence of commitment schemes that are hiding for non-uniform algorithms running
in time α(k), it is easy to verify that the black-box simulator provided by [16] is α-strong. Applying
Theorem 5, we obtain that the protocol of [16] is also secure for adversaries that run in expected
polynomial time with respect to the protocol. We thereby obtain the first computational zero-
knowledge proof system that remains zero-knowledge for expected polynomial-time adversaries
(with respect to either of the definitions in Section 2).11 Thus, as a corollary of Theorem 5,
we partially resolve the open questions from [8, 20] discussed in the Introduction. The result is
only “partial” because we need superpolynomial hardness assumptions. In addition, there is an
important caveat regarding this result, which we describe now.

Zero-knowledge simulation and inputs x 6∈ L. In order to describe the caveat regarding the
above corollary, we need to discuss a subtle issue regarding zero-knowledge simulation. The issue
that we refer to relates to the behavior of the simulator when run on an input x 6∈ L. On the one
hand, the definition of zero-knowledge requires nothing of the output distribution of the simulator
in this case (since a real prover will never execute the protocol when x 6∈ L); indistinguishability
from a real execution is only required if x ∈ L. On the other hand, since the simulator is assumed
to be an expected (or strict) polynomial-time machine, its running time should be preserved even
when run on an input x 6∈ L. This implicit requirement regarding the running time is not just
for the sake of aesthetics. In many proofs of security, the zero-knowledge simulator is actually run
on an input x 6∈ L. For example, consider a “commit-and-prove” protocol where a party commits

11These are also the first computational zero-knowledge arguments for adversaries that run in expected polynomial
time with respect to the protocol. Previously, these were known only for adversaries that run in expected polynomial
time in any interaction; see Table 1.

20

to a value and then proves some property of that value in zero-knowledge (this is exactly what
happens in the proof of [17]). The proof of security (stating that the committed value is not
learned) typically works by first replacing the zero-knowledge proof with a simulated one. Next,
the commitment is replaced with a commitment to garbage. Since the zero-knowledge proof is
already simulated, and so does not relate to the actual committed value, the indistinguishability of
this last step follows from the hiding property of the commitment. It is therefore possible to derive
that the real protocol is indistinguishable from one where garbage is first committed to, and then
a simulated zero-knowledge proof is provided.

The important point to notice here is that when the commitment is “real,” the simulator is run
on an input x ∈ L. However, when the commitment is “garbage,” the simulator is run on an input
x 6∈ L. Now, if the simulator does not run in expected polynomial time in the event that it is given
input x 6∈ L, the above proof of security fails. Specifically, the hiding property of commitments no
longer guarantees anything because the distinguisher (who runs the zero-knowledge simulator) may
exceed a polynomial number of steps. We conclude that the scenario of running a simulator on an
input x 6∈ L arises in many contexts, and so it is important that a simulator remains (expected or
strict) polynomial time in such a case.

Our simulator is not guaranteed to run in expected polynomial time in case it receives an input
x 6∈ L. The reason for this, informally, is that α-strongness may no longer hold in this case; in
particular, a distinguisher D may be able to distinguish “real” from “simulated” transcripts just
by checking if the statement is in the language. (This is easiest to see for the case when L is an
“easy” language; say L ∈ P.) On the positive side, if the language L is such that inputs x ∈ L
cannot be distinguished from inputs x 6∈ L by non-uniform machines running in time α(k) with
probability better than 1/α(k), then the α-strong simulation property once again holds and so the
simulator is guaranteed to run in expected polynomial time. We conclude that the “commit and
prove” subprotocol described above can be used, as long as the commitment scheme is hiding (to
within probability 1/α(k)) even for non-uniform machines running in time α(k).

3.4 Protocol Composition and Other Scenarios

Our result above has been stated for the stand-alone setting of secure computation. However,
it actually holds for any setting, as long as the black-box simulator is α-strong for that setting.
In particular, the result holds also for the setting of protocol composition where many protocol
executions are run (and thus the simulator interacts with the trusted party many times).

4 Modular Sequential Composition

Our goal in this section is to prove a modular sequential composition theorem for secure multi-party
computation that is analogous to the result of Canetti [5], but which holds even for protocols that
have been proven secure using a simulation strategy that runs in expected polynomial time (for
strict polynomial-time adversaries). The sequential composition theorem of [5] can be informally
described as follows. Let π be a multi-party protocol computing a function g, designed in an ideal-
ized model in which the parties have access to a trusted party who evaluates functions f1, . . . , fm;
furthermore, assume that at most one ideal function call is made during any round of π. This model
is called the (f1, . . . , fm)-hybrid model, denoted hybridf1,...,fm , because parties send real messages
as part of the protocol π and also interact with a trusted party computing functions f1, . . . , fm. Let
ρ1, . . . , ρm be multi-party protocols such that ρi computes fi, and let πρ1,...,ρm denote the “com-
posed protocol” in which each ideal call to fi is replaced by an invocation of ρi (we stress that

21

each executed protocol ρi is run to completion before continuing the execution of π). The modular
sequential composition theorem then states that if π securely computes g in the (f1, . . . , fm)-hybrid
model, and if each ρi securely computes fi, then the composed real protocol πρ1,...,ρm securely com-
putes g. The work of [5] only considers the case where π, as well each of the component protocols
ρi, is proven secure via strict polynomial-time simulation (for strict polynomial-time adversaries).
In fact, the proof of [5] fails for the case when one (or more) of the ρi subprotocols is proven secure
via expected polynomial-time simulation; a specific counterexample is shown in Appendix B.

In this section, we show that a suitable modification of the approach of [5] can be used to prove
an analogous modular composition theorem even when π and each of the component protocols ρi is
proven secure via expected polynomial-time simulation for strict polynomial-time adversaries. With
this change, the composition theorem we prove is analogous to the one shown in [5] for the case of
protocols proven secure using strict polynomial-time simulation. Our proof holds only when π is
proven secure using a black-box simulator, and each ρi is proven secure using a simulator that runs
in expected polynomial time in any interaction. We also require the existence of pseudorandom
functions that are secure even for adversaries running in time α(k) for some α(k) = kω(1). In
contrast, the result of [5] holds regardless of the type of simulation used to prove π and the ρi

secure, and is unconditional.

4.1 Preliminaries

Since we deal here explicitly with n-party protocols, and because of the need to introduce additional
notation, some of the discussion here overlaps with that of Section 3.1. Due to the high-level
similarity of our proof to the proof of [5], wherever possible we make our notation consistent with
that of [5].

A distribution ensemble X = {X(k, a)}k∈N,a∈{0,1}∗ is an infinite sequence of probability distri-
butions, where a distribution X(k, a) is associated with each value of k and a. Two distribution
ensembles X,Y are computationally indistinguishable, denoted X

c≡ Y , if there exists a negligible
function µ such that for every non-uniform polynomial-time algorithm D, all a, and all auxiliary
information z we have

∣∣∣Pr[D(1k, a, z, X(k, a)) = 1]− Pr[D(1k, a, z, Y (k, a)) = 1]
∣∣∣ ≤ µ(k).

We present a definition of security for n-party protocols computing a (probabilistic) function f
in the presence of a non-adaptive adversary. We will work exclusively in the computational (rather
than information-theoretic) setting, and therefore do not assume private channels but instead allow
the adversary to monitor all communication in the network.

The real-world model. We assume a set of parties P1, . . . , Pn, where party Pi begins with
input (1k, xi) and random tape ri. An adversary A begins with an input containing the security
parameter 1k, the identities of the corrupted parties I, the inputs of the corrupted parties, and
their random tapes. In addition, A has an auxiliary input z and a random tape rA (since we are
allowing non-uniform adversaries, we could assume that A is deterministic; however, we find it
conceptually easier to let A be probabilistic).

Computation proceeds in rounds, in the standard way. At the end of the computation, all
parties locally generate their outputs. Honest parties output what is specified by the protocol,
while corrupted parties output a special symbol ⊥. Denote the output of party Pi by vi, and
let ~v = (v1, . . . , vn). In addition, the adversary outputs an arbitrary function of its view of the
computation, where the view consists of the corrupted parties’ inputs, the adversary’s auxiliary

22

input, and all messages sent and received throughout the computation. It is stressed that the
outputs ~v are a function of the protocol π, the adversary A, the set of corrupted parties I, and the
values (k, ~x, z, ~r), where ~x is the vector of all parties’ inputs and ~r consists of all the parties’ random
tapes, including the random tape rA of the adversary. Thus, formally, ~v is denoted as a function
~vπ,A,I(k, ~x, z, ~r). Likewise, we denote by outπ,A,I(k, ~x, z, ~r) the output of A, with auxiliary input
z and controlling the parties in I, when running an execution of π with parties having input ~x and
random tapes ~r, and with security parameter k. Finally, define:

realπ,A,I(k, ~x, z, ~r) def= outπ,A,I(k, ~x, z, ~r) ◦ ~vπ,A,I(k, ~x, z, ~r).

Let realπ,A,I(k, ~x, z) denote the probability distribution of realπ,A,I(k, ~x, z, ~r) when ~r is randomly
chosen, and let realπ,A,I denote the distribution ensemble {realπ,A,I(k, ~x, z)}k∈N,〈~x,z〉∈{0,1}∗ .

The ideal process. An adversary S in the ideal world again begins with input that includes a
security parameter, identities and inputs of the corrupted parties, auxiliary input, and a random
tape rS . The adversary interacts with a trusted party (computing an ideal functionality) in the
standard way and, in particular, obtains an output value from the trusted party for each of the
corrupted parties. Honest parties output the value given to them by the trusted party, and corrupted
parties output ⊥. Denote the output of party Pi by vi and let ~v = (v1, . . . , vn). As above, ~v is a
function of f , S, I and the values (k, ~x, z, ~r). However, here ~r consists only of the random tape of
the adversary and of the trusted party. The adversary outputs an arbitrary function of its view,
and we denote this by outf,S,I(k, ~x, z, ~r). Define

idealf,S,I(k, ~x, z, ~r) def= outf,S,I(k, ~x, z, ~r) ◦ ~vf,S,I(k, ~x, z, ~r).

Let idealf,S,I(k, ~x, z) denote the probability distribution of idealf,S,I(k, ~x, z, ~r) when ~r is randomly
chosen, and let idealf,S,I denote the distribution ensemble {idealf,S,I(k, ~x, z)}k∈N,〈~x,z〉∈{0,1}∗ .

We now define security of a protocol. We stress that the following definition does not require
black-box simulation.

Definition 8 Let f be an n-input functionality and let π be an n-party protocol. We say that π
t-securely computes f for strict polynomial-time adversaries and with a simulator that runs in expected
polynomial time with respect to f if for every strict polynomial time real-world adversary A there
exists an ideal-process adversary S that runs in expected polynomial time with respect to f , such
that for every I ⊆ [n] with |I| ≤ t, it holds that

idealf,S,I
c≡ realπ,A,I .

We refer to such an S as a simulator for A.

The definition can be modified in the natural way to allow ideal-world simulators that run
in expected polynomial time in any interaction. We stress that we allow the ideal-world adver-
sary/simulator S to run in expected polynomial time (with respect to f), unlike [5] where a strict
polynomial-time adversary/simulator is required.

Black-box simulation. A more restricted notion of security requires the existence of a black-box
simulator. The definition below is the same as Definition 3, rephrased using the present notation
for convenience.

23

Definition 9 Let f and π be as above. Protocol π is said to t-securely compute f for strict
polynomial-time adversaries with a black-box simulator that runs in expected polynomial time with
respect to f if there exists an oracle machine (black-box simulator) S that runs in expected polyno-
mial time with respect to f , such that for every strict polynomial-time real-world adversary A and
every I ⊆ [n] with |I| ≤ t, it holds that

idealf,SA,I
c≡ realπ,A,I .

The hybrid model and modular composition. We start by specifying the (f1, . . . , fm)-hybrid
model in which a protocol evaluating g is run with the assistance of a trusted party who evaluates
functions f1, . . . , fm. This trusted party will be invoked at special rounds determined by the
protocol, and we require (as in [5]) that at most one function call is made at any round. (As
in [5], we assume that the number m of functions to be evaluated, the rounds in which these
functions are called, and the functions themselves are fixed for any particular value of the security
parameter.12) Upon termination of the protocol each honest party outputs the value prescribed
by the protocol while each corrupted party outputs ⊥; denote the output of party Pi by vi and let
~v = (v1, . . . , vn). The hybrid-model adversary, controlling parties I, outputs an arbitrary function
of its view, denoted outf1,...,fm

π,A,I (k, ~x, z, ~r) (note that ~r now includes the random tapes of the honest
parties, the adversary, and the trusted party). Define:

hybridf1,...,fm

π,A,I (k, ~x, z, ~r) def= outf1,...,fm

π,A,I (k, ~x, z, ~r) ◦ ~vf1,...,fm

π,A,I (k, ~x, z, ~r).

Let hybridf1,...,fm

π,A,I (k, ~x, z) denote the distribution of hybridf1,...,fm

π,A,I (k, ~x, z, ~r) when ~r is chosen at

random, and let hybridf1,...,fm

π,A,I denote the ensemble {hybridf1,...,fm

π,A,I (k, ~x, z)}k∈N,〈~x,z〉∈{0,1}∗ .
We define security in the hybrid model in a way similar to before:

Definition 10 Let f1, . . . , fm and g be n-party functions, and let π be a protocol in the (f1, . . . , fm)-
hybrid model. Then π is said to t-securely compute g in the (f1, . . . , fm)-hybrid model for strict
polynomial-time adversaries with a simulator that runs in expected polynomial time with respect to g if
for any strict polynomial-time (f1, . . . , fm)-hybrid-model adversary A there exists an ideal-process
adversary/simulator S that runs in expected polynomial time with respect to g, and such that for
every subset I ⊆ [n] with |I| ≤ t we have

idealg,S,I
c≡ hybridf1,...,fm

π,A,I .

The notion of π t-securely evaluating g with a black-box simulator is defined in the same way as in
Definition 9.

In a real-world execution, calls to a trusted party evaluating the fi are replaced by an execution
of a protocol ρi. This is done in the natural way, as described in [5]. We let πρ1,...,ρm denote the
real-world protocol that results from replacing each fi with ρi.

Families of α-pseudorandom functions (α-PRFs). Our proof of the modular sequential
composition theorem for the case of expected polynomial-time simulation relies on the existence of
function ensembles that are pseudorandom for adversaries running in time α(k), where α(k) = kω(1)

is some superpolynomial function. We formally define this notion now.
12As pointed out in [5], any protocol not fulfilling these assumptions can be easily converted into a protocol that

does fulfill the assumptions. However, we stress that our composition theorem, like the theorem of [5], only refers to
protocols that indeed fulfill the assumptions.

24

Definition 11 Let F ` = {Fs : {0, 1}`(|s|) → {0, 1}}s∈{0,1}∗ be a set of functions such that Fs is
computable in time polynomial in |s|, and where each Fs has domain {0, 1}`(|s|) and range {0, 1}.
We denote by H`,k the space of all functions with domain {0, 1}`(k) and range {0, 1}. We say that
F ` is a family of α-secure pseudorandom functions with input length ` if for any distinguisher D
running in time at most α(k), any auxiliary input z, and all sufficiently-large k, we have:

∣∣∣∣ Pr
s←{0,1}k

[
DFs(·)(1k, z) = 1

]
− Pr

f←H`,k

[
Df(·)(1k, z)

]∣∣∣∣ <
1

α(k)
.

If there exists a one-way function f such that for some superpolynomial function α′(k) = kω(1), no
adversary running in time α′(k) can invert f with probability greater than 1/α′(k), then there exist
α-secure pseudorandom functions for every polynomial `, for some α(k) = kω(1). This is obtained
by using a superpolynomially hard one-way function in order to construct superpolynomially hard
pseudorandom generators [19], which are then in turn used to construct superpolynomially hard
pseudorandom functions [14].

4.2 Proving the Modular Composition Theorem

We now state and prove our main theorem of this section.

Theorem 12 Assume that for every polynomial `, there exists a superpolynomial function α(k) =
kω(1) and a family of α-secure pseudorandom functions with input length `. Let f1, . . . , fm and g
be n-party functions, let π be an n-party protocol that t-securely computes g in the (f1, . . . , fm)-
hybrid model (for strict polynomial-time adversaries and with a black-box simulator that runs in
expected polynomial time with respect to g) and in which no more than one ideal evaluation call is
made at each round, and let ρ1, . . . , ρm be n-party protocols such that each ρi t-securely computes
fi (for strict polynomial-time adversaries and with a simulator13 that runs in expected polynomial
time in any interaction). Then protocol πρ1,...,ρm t-securely computes g (for strict polynomial-time
adversaries and with a simulator that runs in expected polynomial time with respect to g).

We require the stronger property that the simulator for each ρi runs in expected polynomial time in
any interaction, while the resulting simulator for πρ1,...,ρm “only” runs in expected polynomial time
with respect to g. However, it is sufficient that the simulator for π runs in expected polynomial
time with respect to g. We also do not know how to extend the theorem to show that the stronger
assumption that the simulator for π runs in expected polynomial time in any interaction yields the
stronger consequence that the resulting simulator for πρ1,...,ρm runs in expected polynomial time in
any interaction. Resolving the issue in either of these directions would be an interesting result.

Proof: We begin by describing the high-level structure of the proof and the motivation for our
strategy. We follow the structure and notation of the proofs of [5, Theorems 5, 15] and [5, Corollaries
7, 17] as closely as possible. We focus on the case m = 1; the general case follows using the
techniques described here. We begin with an informal, high-level overview of our proof, stressing
where it diverges from [5]: Let f = f1 be an n-party functionality, π a protocol in the f -hybrid
model, ρ a protocol that t-securely computes f , and πρ the composed protocol. Given a strict
polynomial-time adversary A in the real world (who interacts with parties running πρ), our goal
is to construct an ideal-world adversary S (interacting with a trusted party who evaluates g) that
runs in expected polynomial time with respect to g and such that for every I ⊆ [n] with |I| ≤ t, it
holds that idealg,S,I

c≡ realπρ,A,I . (In the remainder of the proof, we omit I as a subscript in an
attempt to reduce visual clutter.) We proceed in the following steps:

13We stress that the simulator for each of the ρi need not be a black-box simulator.

25

• As in [5], we first construct from A the (natural) real-world adversary Aρ who interacts
with parties running ρ as a stand-alone protocol (see Figure 1). Adversary Aρ runs in strict
polynomial time, and so the security of ρ implies the existence of a simulator Sρ, who interacts
with a trusted party evaluating f , such that idealf,Sρ

c≡ realρ,Aρ . Simulator Sρ runs in
expected polynomial time in any interaction.

• As in [5], using A and Sρ we construct an adversary Aπ interacting with parties running π in
the f-hybrid model and satisfying hybridf

π,Aπ

c≡ realπρ,A. SinceAπ runs Sρ as a sub-routine,
and the latter runs in expected polynomial time, we cannot at this point claim the existence
of an expected polynomial-time ideal-world adversary S such that idealg,S

c≡ hybridf
π,Aπ

(such a claim, if true, would complete the proof as in [5]).

• Instead, we first construct from Aπ a modified adversary A′π (still interacting with parties
running π in the f -hybrid model) that runs in expected polynomial time with respect to π

in the f -hybrid model, and for which hybridf
π,A′π

c≡ hybridf
π,Aπ

under the assumption that
α-secure pseudorandom functions exist. (See Claims 13 and 14.) This is the crux of our proof,
and further details are given below.

• Let Sπ denote a black-box simulator for π (as required by Definition 9). We construct an
ideal-world adversary S that runs a slightly modified version of Sπ with oracle access to A′π.
We then prove that (1) S runs in expected polynomial time with respect to g (even when
taking the running time of A′π into account); and (2) idealg,S

c≡ hybridf
π,A′π . (See Claims 15

and 16.)

See Table 2 for a high-level summary of the above.

Adversary Attack setting Running time Comments
A πρ (real world) strict poly-time original adversary
Aρ ρ (real world) strict poly-time constructed by ignoring

π-messages of A
Sρ f (ideal world) expected poly-time in any

interaction
constructed from Aρ us-
ing security of ρ

Aπ π (f -hybrid model) expected poly-time in any
interaction

constructed from A and
Sρ

A′π π (f -hybrid model) expected poly-time w.r.t.
π (in f -hybrid model)

modification of Aπ (see
text)

S g (ideal world) expected poly-time w.r.t. g constructed using A′π
and black-box simulator
Sπ for π

Table 2: Informal summary of adversaries/simulators used in the proof.

Motivation for the proof. Before continuing with the details, we provide an informal overview
of the key idea behind the proof of the theorem. Let Sπ be the black-box simulator for π, and
recall that Aπ invokes Sρ as a sub-routine. Näıvely following the approach of [5], one runs into
the problem that the expected running time of SAπ

π , counting steps of both machines, may not be
polynomial (in any sense). In particular, if Sπ “rewinds” Aπ, then it also (effectively) “rewinds”

26

Sρ. In this case, an expected polynomial-time machine Sρ is invoked multiple times with the same
random tape. This introduces a dependency between the executions, and we can no longer claim
that the total running time of Aπ (including the running time of Sρ) is polynomial. An example
of why this is problematic was described in the Introduction, regarding the composition of two
expected polynomial-time machines A and B. We also provide a counterexample for the specific
case of modular sequential composition in Appendix B.

A first solution that comes to mind is to have Sπ choose an independent random tape for Aπ

every time it invokes Aπ (with the consequence that Sρ will be called using a fresh random tape
each time). The problem with this approach is that Definition 9 places no limitations on how Sπ

sets the random tape of Aπ. In particular, the resulting simulation output by Sπ may no longer
be “good” if Sπ is forced to invoke Aπ with a new random tape in each oracle call. This concern
is not only definitional. Rather, typical “rewinding” simulation strategies rely heavily on the fact
that the random tape of the adversary is fixed throughout.

Instead, our solution is to modify Aπ (resulting in A′π as described above) so that it invokes Sρ

with a random tape that is determined by applying a pseudorandom function to the auxiliary input
provided to Sρ (this is reminiscent of a similar technique used in [7]). This has the effect that even
when A′π is run with a fixed random tape (that includes the key for the pseudorandom function),
Sρ is effectively invoked with a fresh random tape each time. That is, even when A′π is “rewound”
during simulation the random tape used by Sρ upon each “rewinding” will be computationally
independent from all past random tapes. (This holds unless A′π is invoked with a series of incoming
messages that was already sent in the past. However, in this case, since A′π uses a fixed random
tape, the exact same response will be given as previously. We could also assume without loss of
generality that Sπ never repeats a query toA′π.) The technical portion of the proof then comes down
to showing that if an α-secure pseudorandom function is used to do this, the resulting simulation
is “good.” The intuition as to why this is the case, and the techniques used in the proof (including
superpolynomial truncation of the adversary’s execution), are similar to those used in the proof of
Theorem 5.

Adversary Aρ, interacting with parties P1, . . . , Pn running protocol ρ, begins
with the following inputs: security parameter 1k, identities I of corrupted parties
along with their inputs ~xI , auxiliary input z, and random tape rA. Do:

1. Let `ρ be the round in which πρ calls protocol ρ. Interpret z as an internal
state of A, controlling the parties in I, at round `ρ − 1.

2. Run A from internal state z. Messages sent by uncorrupted parties in the
real world (running ρ) are forwarded to A. Messages sent by A on behalf
of corrupted parties are forwarded to the appropriate real-world recipients.

3. Once execution of ρ is done, Aρ outputs the current internal state of A.

Figure 1: The description of adversary Aρ.

Proof details. We now proceed with the proof in detail. The first steps of our proof as described
in the above outline — namely, the construction of Aρ, Sρ, and Aπ — are exactly as in [5], but
are nevertheless described in Figures 1 and 2 for convenience. Recall that we begin with a real-
world adversary A interacting with parties running protocol πρ. As described earlier and shown
in Figure 1, we first construct a real-world adversary Aρ attacking protocol ρ. Note that Aρ runs

27

in strict polynomial time. Security of ρ thus implies the existence of an ideal-process adversary Sρ

that runs in expected polynomial time in any interaction and such that idealf,Sρ

c≡ realρ,Aρ . We
remind the reader again that we do not assume or require that ρ black-box securely computes f .

Next, we construct the adversaryAπ attacking parties running protocol π in the f -hybrid model.
Loosely speaking, Aπ runs A until the protocol ρ is supposed to begin. At this point, A expects
to run ρ, whereas Aπ should use an ideal call to f . Therefore, Aπ invokes Sρ using the current
internal state zρ of A as its auxiliary input, and forwarding the messages between Sρ and the
trusted party computing f . The output of Sρ is an internal state of A at the end of the execution
of ρ. Adversary Aπ continues by invoking A from this state and running A until the conclusion of
π. This is described in Figure 2. In describing Aπ we explicitly have it parse its random tape into
two portions: a portion r used to run A and a portion r∗ used to run Sρ (we will use this fact later).
Exactly as in [5] (and so we do not repeat the proof here), it holds that hybridf

π,Aπ

c≡ realπρ,A.

Adversary Aπ, interacting with parties P1, . . . , Pn running protocol π in the f -
hybrid model, begins with the following inputs: security parameter 1k, identities
I of corrupted parties along with their inputs ~xI , auxiliary input z, and random
tape rA parsed as r, r∗. Do:

1. Invoke A on 1k, I, ~xI , z using random tape r, and follow the instructions
of A up to round lρ − 1.

2. At the onset of round lρ, A expects to interact with parties running ρ (as
a subroutine), whereas parties P1, . . . , Pn actually call a trusted party to
evaluate f . To continue the run of A, invoke simulator Sρ as follows:

(a) Sρ is given 1k, I, and arbitrary values (say, all 0’s) for the inputs of
the parties in I. The auxiliary input zρ for Sρ is set to the current
internal state of A. The random tape for Sρ is r∗.

(b) When Sρ wishes to send the trusted party the inputs of the corrupted
parties, send these values to the trusted party, and hand the values
returned by the trusted party back to Sρ.

3. The output of Sρ is an internal state of A at the end of the execution of
ρ. Run A using this internal state and resume following A’s instructions
until the completion of π. Then output whatever A outputs and halt.

Figure 2: The description of adversary Aπ.

Aπ runs in expected polynomial time in any interaction (this is due to the fact that the only part
of Aπ that does not run in strict polynomial time is the invocation of Sρ, and the latter is done only
once). However, π is only guaranteed to be secure for strict polynomial-time adversaries. Therefore,
we cannot immediately claim the existence of an appropriate ideal-world simulator corresponding
to the hybrid-model adversary Aπ. Dealing with this issue forms the crux of our proof.

Let α(k) be as in the theorem statement, and assume without loss of generality that α(k) =
O(2k). We modify Aπ to construct an adversary A′π as described in Figure 3. Let F ` be an α-
secure PRF taking inputs of an appropriate length (namely, k plus the length of zρ, as described

28

in Figure 3).14 The random tape of A′π is now parsed as r, s, where r is used as before (namely,

Adversary A′π, interacting with parties P1, . . . , Pn running protocol π in the f -
hybrid model, begins with the following inputs: security parameter 1k, identities
I of corrupted parties along with their inputs ~xI , auxiliary input z, and random
tape rA parsed as r, s with |s| = k. Do:

1. A′π keeps track of the total number of steps run below, counting each
invocation of Fs(·) as a single step. If the total number of steps ever
exceeds α(k)/2, halt with output ⊥.

2. Invoke A on 1k, I, ~xI , z using random tape r, and follow the instructions
of A up to round lρ − 1.

3. At the onset of round lρ, invoke simulator Sρ as follows:

(a) Sρ is given 1k, I, and arbitrary values (say, all 0’s) for the inputs of the
parties in I. The auxiliary input zρ for Sρ is set to the current internal
state of A. The random tape for Sρ is determined as described below.

(b) The random tape r∗ for Sρ is generated bit-by-bit, as needed, in the
following way: the ith random bit needed by Sρ is set to Fs(zρ‖〈i〉),
where 〈i〉 is the k-bit binary representation of i. (Note that A′π aborts
anyway if Sρ ever requires more than α(k)/2 random bits. Since
k > log(α(k)/2) for k large enough [recall α(k) = O(2k)], a k-bit
counter is sufficient to run Sρ to completion.)

(c) When Sρ wishes to send the trusted party the inputs of the corrupted
parties, send these values to the trusted party, and hand the values
returned by the trusted party back to Sρ.

4. The output of Sρ is an internal state of A at the end of the execution of
ρ. Run A using this internal state and resume following A’s instructions
until the completion of π. Then output whatever A outputs and halt.

Figure 3: The description of adversary A′π.

to run A) while s is used as a key to an α-secure pseudorandom function. Then A′π generates the
random tape r∗ for Sρ as a pseudorandom function of zρ (see Figure 3 for details). In addition, A′π
halts with output ⊥ if it ever exceeds α(k)/2 steps overall (not including steps used in computing
Fs). Otherwise, A′π works in exactly the same way as Aπ. We stress the differences between Aπ

and A′π:

1. A′π chooses Sρ’s random tape by invoking a pseudorandom function on the internal state of
A, whereas Aπ chooses it uniformly.

2. A′π truncates its execution after α(k)/2 steps, whereas Aπ does not.

We now prove that A′π runs in expected polynomial time with respect to π in the f -hybrid model,
and that hybridf

π,A′π
c≡ hybridf

π,Aπ
.

14In the theorem statement we have assumed that α-secure PRFs exist for any polynomial domain length `(k).
Since zρ is the internal state of a strict polynomial-time machine, ` is a fixed polynomial (depending only on A).

29

Claim 13 If F ` is an α-secure pseudorandom function for some α(k) = kω(1), the original adver-
sary A runs in strict polynomial time, and Sρ runs in expected polynomial time in any interaction,
then A′π runs in expected polynomial time with respect to π in the f hybrid model.

Proof: All we need for the proof of this claim is that Sρ runs in expected polynomial time with
respect to f . Nevertheless, since Sρ runs in expected polynomial time in any interaction anyway,
we will rely on this stronger assumption to simplify the proof. (We will need Sρ to run in expected
polynomial time in any interaction in order to prove Claim 15.)

We will actually prove a slightly stronger result: namely, that for any setting of the random
coins of the other parties (i.e., the honest parties running π as well as the trusted party computing
f), the expected running time of A′π — over the random coins used by A′π — when interacting
with these parties is polynomial. Consider an adversary Âπ which is identical to Aπ except that it
halts with output ⊥ if it ever exceeds α(k)/2 steps. (In particular, Âπ chooses a truly random tape
r∗ for Sρ instead of a pseudorandom one.) For any fixed set of global values global (which contains
the security parameter 1k, inputs and random coins for the honest parties and the trusted party
computing f , inputs to Âπ, and the initial portion r of the random tape of Âπ), let timeX(global) be
a random variable (over choice of coins used to run Sρ) denoting the running time of the algorithm
X ∈ {A′π, Âπ} when interacting with parties running π in the f -hybrid model, counting calls to
Fs(·) as a single step in the case of A′π. We first claim that

Expr∗ [timeÂπ
(global)] ≤ q(k) (9)

for some polynomial q(·). This is simply due to the facts that Sρ runs in expected polynomial time
in any interaction, and that A runs in strict polynomial time. (Therefore, aside from the call to
Sρ, the adversary Aπ runs in strict polynomial time. Furthermore, the overhead due to the counter
maintained by Âπ introduces only a multiplicative polynomial factor, and this is the only difference
between Aπ and Âπ.) We proceed by showing that replacing the uniform coins r∗ (used by Âπ

when running Sρ) with α-strong pseudorandom coins (used by A′π when running Sρ) does not make
a “significant” difference to the running time of Âπ.

If we can bound Exps[timeA′π(global)] by a polynomial it would follow that A′π runs in expected
polynomial time with respect to π in the f -hybrid model, since the additional overhead due to
computing Fs introduces at most a multiplicative polynomial factor. The crux of the proof is that
for every value of global, all t ≤ α(k)/2, and all large enough values of k:

∣∣∣Prs[timeA′π(global) ≥ t]− Prr∗ [timeÂπ
(global) ≥ t]

∣∣∣ <
1

α(k)
. (10)

Intuitively, if this were not the case, then the running time of A′π could be used to distinguish
F ` from a random function. Formally, given (global, t, k) such that Eq. (10) does not hold we can
construct a distinguisher D that takes these values as auxiliary input and runs A′π (using global to
simulate the actions of the honest parties and the trusted party computing f) but using its oracle
to generate the random tape for Sρ. (Namely, D generates the ith random bit for Sρ, as needed,
by querying zρ‖〈i〉 to its oracle.) If the running time of A′π exceeds t steps, then D outputs 1;
otherwise, it outputs 0. The running time of D is strictly bounded by α(k) (for large enough k).
We therefore have:

Pr
s←{0,1}k

[
DFs(·)(1k, global, t) = 1

]
= Pr

s←{0,1}k

[
timeA′π(global) ≥ t

]

and

Pr
f←H`,k

[
Df(·)(1k, global, t) = 1

]
= Pr

r∗←{0,1}∗

[
timeÂπ

(global) ≥ t
]

30

(where, recall, H`,k represents the space of all boolean functions with domain `(k)). Since F ` is an
α-secure PRF, Equation (10) follows. We conclude that the expected running time of A′π for large
enough k and all global inputs global is bounded by:

Exps[timeA′π(global)] =
∞∑

t=1

t · Prs[timeA′π(global) = t]

=
α(k)/2∑

t=1

t · Prs[timeA′π(global) = t]

=
α(k)/2∑

t=1

Prs[timeA′π(global) ≥ t]

≤
α(k)/2∑

t=1

(
Prr∗ [timeÂπ

(global) ≥ t] +
1

α(k)

)

=
1
2

+ Expr∗ [timeÂπ
(global)],

where the second equality is due to the fact that A′π truncates its execution if it ever exceeds α(k)/2
steps. Using Eq. (9), we conclude that A′π runs in expected polynomial time with respect to π in
the f -hybrid model.

The reader may wonder why we are unable to show that A′π runs in expected polynomial time in
any interaction. In fact, Âπ does run in expected polynomial time in any interaction; however,
Eq. (10) may no longer hold when A′π interacts with an arbitrary ITM M . The problem is that, in
proving Equation (10), in constructing D, we need to construct a distinguisher D that can simulate
the actions of ITM M in time α(k); however, it is not clear how to do this for arbitrary M since,
in particular, M might be all-powerful.

In the next claim, we show that the behavior of A′π is “close” to that of Aπ.

Claim 14 If F ` is an α-secure pseudorandom function for some α(k) = kω(1), then

hybridf
π,A′π

c≡ hybridf
π,Aπ

.

Proof: Let Âπ be as in the previous claim. Since Aπ runs in expected polynomial time (in any
interaction), the probability that Aπ exceeds α(k)/2 steps in any execution is negligible (using
Markov’s inequality). Hence hybridf

π,Âπ
and hybridf

π,Aπ
are statistically close. Now, Âπ is identi-

cal to A′π except that Âπ uses a truly random tape r∗ for Sρ whereas A′π uses a pseudorandom tape
for Sρ. Since Âπ and A′π both run in at most α(k)/2 steps (for the case of A′π, not counting the
time required to compute Fs), the assumption that F ` is an α-secure PRF implies that hybridf

π,A′π
is computationally indistinguishable from hybridf

π,Âπ
. In fact, we claim something stronger: for

any value of global (recall, this includes the inputs and randomness used by all parties except for
the random tape used to run Sρ), any poly-time distinguisher D, all auxiliary input z, and all large
enough values of k:

∣∣∣Pr[D(1k, global, z, hybridf
π,A′π(global)) = 1]

− Pr[D(1k, global, z, hybridf

π,Âπ
(global)) = 1]

∣∣∣ <
1

α(k)

31

(this is stronger both because α(k) is superpolynomial and also because we are fixing all random
coins except those used by Sρ). If the above does not hold, then we can construct a distinguisher D′

for F ` in the natural way: given (k, global, z) for which the above does not hold, D′ takes these values
as input, runs A′π (simulating the actions of all other parties using global), but uses its oracle to
generate the random tape for Sρ. It runs D on the output of A′π, and outputs whatever D outputs.
It is not hard to see that D′ runs for at most α(k) steps (for large enough k) and distinguishes F `

from a random boolean function with probability better than 1/α(k), a contradiction.

Constructing the simulator S. Until now, we have constructed an f -hybrid adversary A′π that
runs in expected polynomial time with respect to π in the f -hybrid model, and has the property
that the output distribution of an execution of π in the f -hybrid model with A′π is computationally
indistinguishable from a real execution of the composed protocol πρ with adversary A. It remains
to construct the ideal-model simulator S that interacts with a trusted party computing g.

Since π black-box securely computes g, there exists an oracle machine Sπ satisfying the condi-
tions of Definition 9 (with appropriate modifications for consideration of the f -hybrid model). Our
simulator S works by simply invoking Sπ with oracle A′π, with the limitation that S halts with
output ⊥ if it (i.e., S) ever exceeds α(k)/2 steps (including the running time of A′π but, as always,
not including time spent computing Fs). In order to prove the theorem, we need to show that

1. S runs in expected polynomial time with respect to g (even when taking the running time of
A′π into account)

2. hybridf
π,A′π

c≡ idealg,S .

We stress that neither of these claims are immediate since A′π is an expected polynomial-time
adversary, and the simulator Sπ is only guaranteed to “work” when it is given a strict polynomial-
time oracle. However, as we have discussed in the motivation to the proof, the fact that A′π
essentially uses a new (pseudo)random tape for every invocation of Sρ ensures that the expected
overall running time is polynomial.

Claim 15 Assuming that F ` is an α-secure pseudorandom function for some α(k) = kω(1), as-
suming that Sπ is an oracle machine that runs in expected polynomial time with respect to g, and
assuming that Sρ runs in expected polynomial time in any interaction, the simulator S runs in
expected polynomial time with respect to g.

Proof: First imagine a simulator S̃ that differs from S in the following way: whenever Sρ is called
from within A′π, simulator S̃ monitors the value of zρ at that point. Let zρ

i denote the value of zρ

the ith time Sρ is called. Now, in contrast to S, adversary S̃ generates the random tape r∗i bit-by-
bit, as needed, in the following way: if zρ

i = zρ
j for some j < i, then set r∗i = r∗j . Otherwise, choose

r∗i uniformly at random. We first show that S̃ runs in expected polynomial time with respect to g,
and then show (as in the proof of Claim 13) that the expected running times of S̃ and S cannot
differ “too much.” Intuitively, S̃ runs in expected polynomial time because it invokes Sρ with fresh
random coins each time. Thus, there is no dependence between the different invocations.

Formally, the running time of S̃ is the sum of three components: timeSπ , the running time of
black-box simulator Sπ (counting its oracle calls to A′π as a single step); timeA′π , the running time
of A′π (when answering oracle calls of Sπ) but excluding time spent running Sρ; and timeSρ , the
total running time of Sρ when called by A′π (over all invocations of Sρ; recall that A′π invokes Sρ

once in each invocation). By linearity of expectations, it suffices to bound the expectation of each
of these components individually. The expected value of timeSπ is polynomial since oracle machine

32

Sπ runs in expected polynomial time with respect to g (and, as defined in Section 2, this holds
regardless of the oracle with which Sπ interacts). Furthermore, since A′π runs in strict polynomial
time when excluding the steps of Sρ, and since Sπ makes an expected polynomial number of calls
to A′π, the expected value of timeA′π (excluding Sρ’s steps) is polynomial as well.

It remains to analyze timeSρ . Since Sπ makes at most timeSπ oracle calls, we have

timeSρ ≤
timeSπ∑

i=1

timeSρ(i),

where timeSρ(i) represents the running time of Sρ in its ith execution. We thus have:

Exp
[
timeSρ

] ≤ Exp

timeSπ∑

i=1

timeSρ(i)

=
∞∑

`=1

(
Pr [timeSπ = `] ·Exp

[∑̀

i=1

timeSρ(i) | timeSπ = `

])

=
∞∑

`=1

(
Pr [timeSπ = `] ·

∑̀

i=1

Exp
[
timeSρ(i) | timeSπ = `

]
)

Now, recall that Sρ runs in expected polynomial time in any interaction. This means that for
every input x and every auxiliary input z, the expected running time of Sρ (taken over its own
random tape) is polynomial. Now, since S̃ invokes Sρ with a fresh random tape each time, the only
dependence between the execution of Sρ and the random variable timeSπ is due to the auxiliary-input
z that Sρ receives. We conclude that Exp

[
timeSρ(i) | timeSπ = `

]
is bound by a fixed polynomial

pSρ(·). We stress that Sρ is invoked by S̃, who also “plays” the ideal functionality for Sρ. Since
we have no control over the strategy of S̃ (which is derived from Sπ), it is possible that S̃ does not
reply as the trusted party computing f would reply to Sρ. It is for this reason that we need that Sρ

be expected polynomial time in any interaction (rather than just being expected polynomial time
with respect to f).

Continuing, we obtain:

Exp
[
timeSρ

] ≤
∞∑

`=1

(
Pr [timeSπ = `] · ` · pSρ(k)

)

= pSρ(k) ·Exp [timeSπ] .

Since the expected running time of Sπ is polynomial, this completes the proof that S̃ runs in
expected polynomial time with respect to g.

Exactly as in the proof of Claim 13, we now use the fact that F ` is an α-secure PRF to show
that S also runs in expected polynomial time with respect to g. Let timeS denote the running time
of S, counting calls to Fs(·) as a single step (as usual, if the expectation of timeS is polynomial,
then the expectation of the true running time of S — which includes the time required to compute
Fs — is polynomial as well). We first claim that for all values global (this includes the inputs of all
honest parties, the inputs and auxiliary input given to the simulator, and the random coins used
in computing g), all t ≤ α(k)/2, and all large enough values of k:

∣∣Pr[timeS(global) ≥ t]− Pr[time eS(global) ≥ t]
∣∣ <

1
α(k)

. (11)

33

Otherwise, we construct a distinguisher D for F `. Specifically, let (k, global, t) be such that the
above does not hold. Then D, on input 1k and auxiliary input global, will run the strategy of S/S̃
while using its oracle to generate the random tape for Sρ, as needed. Finally, if the running time
exceeds t steps, D outputs 1; otherwise, it outputs 0. Note that D runs for at most α(k) steps.
Furthermore, when D’s oracle is a function from F `, then it exactly simulates S; on the other hand,
when D’s oracle is a random boolean function, then it exactly simulates S̃. Using the fact that F `

is an α-secure PRF, Eq. (11) follows. We conclude that the expected running time of S on any set
of inputs global is bounded by

α(k)/2∑

t=1

Pr[timeS ≥ t] ≤
α(k)/2∑

t=1

Pr[time eS ≥ t] +
1

α(k)

= Exp
[
time eS]

+
1
2
.

Since, as we have already shown, the expected running time of time eS is polynomial with respect to
g, it follows that S runs in expected polynomial time with respect to g as well.

To complete the proof of the theorem, we prove the following claim:

Claim 16 idealg,S
c≡ hybridf

π,A′π .

Proof: The proof is similar to the proof of Claim 7. Assume the claim does not hold. Then there
exists a non-uniform polynomial-time distinguisher D, an input (global, z), and a constant c > 0
such that for infinitely-many values of k:

∣∣∣Pr
[
D(1k, global, z, hybridf

π,A′π(global)) = 1
]

− Pr
[
D(1k, global, z, idealg,S(global)) = 1

]∣∣∣ > k−c.

Let q(k) be the maximum, for security parameter k, of the expected running times of A′π (with
respect to π in the f -hybrid model) and S (with respect to g); since both of these expected running
times are polynomial, q(k) is polynomial as well. Define Ã′π to be identical to A′π except that it halts
immediately (with output ⊥) if it ever exceeds 4q(k)kc steps. Define S̃ to be identical to S except
that whenever S (via Sπ) makes an oracle call to A′π, if the running time of A′π in answering that
query exceeds 4q(k)kc steps we simply answer the query with ⊥. (Thus, effectively, we are using Ã′π
as the oracle rather than A′π.) Since the statistical difference between hybridf

π,A′π and hybridf

π,Ã′π
is at most k−c/4 (and similarly for idealg,S and idealg,S̃), we have that for infinitely-many values
of k,

∣∣∣Pr
[
D(1k, global, z, hybridf

π,Ã′π
(global)) = 1

]

− Pr
[
D(1k, global, z, idealg,S̃(global)) = 1

]∣∣∣ > k−c/2. (12)

Now, since Ã′π runs in strict polynomial time, we are guaranteed that

ideal
g,SÃ′ππ

c≡ hybridf

π,Ã′π
(13)

and furthermore that SÃ′ππ runs in expected polynomial time with respect to g. Note that S̃ is
identical to SÃ′ππ except that S̃ halts if its running time ever exceeds α(k)/2 steps. Since SÃ′ππ runs

34

in expected polynomial time, this implies that ideal
g,SÃ′ππ

and idealg,S̃ are statistically close. But

this and Eq. (13) imply
idealg,S̃

c≡ hybridf

π,Ã′π
,

contradicting Eq. (12).

This completes the proof of Theorem 12.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106–115,
2001.

[2] B. Barak and O. Goldreich. Universal Arguments and their Applications. 17th IEEE Confer-
ence on Computational Complexity, pages 194–203, 2002.

[3] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. SIAM Journal
on Computing, 33(4):783–818, 2004.

[4] P. Billingsley. Probability and Measure, 2nd edition. Wiley, New York, 1986.

[5] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[6] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In 42nd FOCS, pages 136–145, 2001.

[7] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge. In 32nd
STOC, pages 235–244, 2000.

[8] U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. Ph.D. Thesis, Weizmann
Institute, 1990.

[9] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In CRYPTO’89,
Springer-Verlag (LNCS 435), pages 526–544, 1989.

[10] O. Goldreich. Foundations of Cryptography, Volume 1: Basic Tools. Cambridge University
Press, 2001.

[11] O. Goldreich. Foundations of Cryptography, Volume 2: Basic Applications. Cambridge Uni-
versity Press, 2004.

[12] O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge Proof Sys-
tems for NP . Journal of Cryptology, 9(3):167–190, 1996.

[13] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM
Journal on Computing 25(1):169–192, 1996.

[14] O. Goldreich, S. Goldwasser and S. Micali. How to Construct Random Functions. Journal of
the ACM, 33(4):792–807, 1986.

35

[15] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[16] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but Their Validity or All
Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM 38(1):691–729,
1991.

[17] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987. For details
see [11].

[18] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Jour-
nal of Cryptology 7(1):1–32, 1994.

[19] J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any
One-way Function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[20] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. Jour-
nal of Cryptology, 16(3):143–184, 2003.

A The Simulator of [12] and Expected Polynomial-Time Verifiers

In this appendix, we repeat the result of [20] showing that the simulator provided for the zero-
knowledge proof system of Goldreich and Kahan [12] does not necessarily remain expected poly-
nomial time when simulating for an expected polynomial-time verifier. We stress that we do not
claim that it is impossible to construct a different simulator that will have this property. However,
it seems from our analysis below that it would be difficult to construct such a simulator.

For this section, we assume familiarity with the proof system of [12]. Recall that in this proof
system, the verifier begins by committing to its random query string (using a perfectly hiding
commitment scheme). The parties then continue by running the zero-knowledge proof for 3-coloring
of [16] in parallel, using the verifier’s queries from the first step. That is, the prover sends (perfectly
binding) commitments to randomly permuted colorings of the graph. Then, the verifier decommits,
revealing its query string. Finally, the prover answers according to the revealed queries. The exact
soundness of the system depends on the number of parallel executions and is negligible. We denote
the soundness of the proof system by µ(k) (i.e., the probability that V accepts and the graph is
not 3-colorable is less than µ(k)). We stress that the exact value of µ(k) can be calculated and this
does not depend on any computational assumptions.

Before proceeding, we note that the prover’s commitments (to the colorings) are only com-
putationally hiding. Therefore, given enough time, it is possible to break them and extract the
committed values (which in this case equals the coloring itself). In particular, in time 2k (where k
is the security parameter), it is possible to break these commitments.

Loosely speaking, we will construct a verifier that with probability 2−k runs for 2k steps and
breaks the prover’s commitments. Then, the verifier checks if these commitments are “real” or
“convincing garbage”, where convincing garbage is a commitment that would convince the verifier,
yet does not constitute a legal 3-coloring. Then, if it finds that it received convincing garbage,
it enters a very long loop (and otherwise continues like the honest verifier). The key point is
that although the simulator can generate convincing garbage, the probability that any (even all-
powerful) machine can do the same is negligible. Therefore, when interacting in a real protocol
execution, the verifier enters the loop with very small probability. On the other hand, the simulator

36

always generates convincing garbage. By correctly choosing the number of steps run by the verifier
in the loop, we can ensure that its overall expected-time during simulation is superpolynomial.
Note that this verifier strategy is expected polynomial time in any interaction (and thus also with
respect to the protocol). We now describe the expected polynomial-time verifier V ∗ in detail:

The Verifier V ∗:

1. Send the prover a perfectly-hiding commitment to a random query string q, exactly according
to the protocol specification.

2. Upon receiving the prover’s commitments (to many 3-colorings) do the following:

• With probability 2−k, break the prover’s commitments and obtain the values. (This
takes time at most 2k.)
If the commitments are such that none of them constitute a valid 3-coloring, yet they
all answer the query string q perfectly,15 then run for 2k/µ(k) steps.

3. Continue in the same way as the honest verifier.

We first claim that V ∗ runs in expected polynomial time in any interaction. This can be seen
as follows. V ∗ attempts to break the commitments with probability 2−k. Therefore, the 2k time
it takes to do this contributes only a single step to its expected running time. Furthermore, the
probability that any machine sends a commitment of the form that causes V ∗ to run for 2k/µ(k)
steps is at most µ(k) (by the soundness of the proof system). Therefore, V ∗ runs for 2k/µ(k) steps
only with probability 2−k ·µ(k) and this also contributes only a single step to its expected running
time. That is, the expected running time of V ∗ is at most:

1
2k
·
(

2k + µ(k) · 2k

µ(k)
+ p(k)

)
+

(
1− 1

2k

)
· p(k) = poly(k)

where p(k) equals the running time of the honest verifier.
Next, we claim that the expected running time of the simulator of [12] is superpolynomial when

simulating for this V ∗. This is because the simulator of [12] always sends a commitment that causes
V ∗ to run in time 2k/µ(k) (in the event that the verifier breaks open the commitments). Therefore,
the expected running time of the simulator of V ∗ is greater than:

1
2k
·
(

2k + 1 · 2k

µ(k)
+ p(k)

)
+

(
1− 1

2k

)
· p(k) >

1
µ(k)

Since µ(k) is a negligible function, we have that the expected running time of the simulator is
superpolynomial. Therefore, the simulator presented by [12] for demonstrating the zero-knowledge
property of their proof system does not necessarily run in expected polynomial time, if the verifier
runs in expected polynomial time.

15A commitment answers the query string perfectly if for every edge in the query string, it turns out that the
committed colors of the vertices specified by the edge are different. Therefore, such a commitment would convince
the honest verifier in the proof.

37

B Counterexample for the Case of Modular Composition

In this section, we show that the proof of Canetti [5] does not necessarily hold when expected
polynomial-time simulation strategies are used for real adversaries that run in strict polynomial
time. We stress that our example does not show that the modular composition theorem fails to
hold in this setting (indeed, we prove such a composition theorem in Section 4 under reasonable
assumptions), but merely indicates that a different analysis than that appearing in [5] is necessary.

Our counterexample is comprised of an idiotic functionality, an idiotic protocol, and an idiotic
simulation strategy. Nevertheless, this suffices for justifying a different analysis than that used
in [5]. Somewhat more natural examples can be presented, although the more natural examples
known to us are still rather artificial. Our example below consists of an outer protocol π and an
inner protocol ρ, where the outer protocol calls the inner one. We begin by describing the inner
protocol.

The inner functionality f , protocol ρ, and simulator Sρ. We consider a two-party ideal
functionality f that receives no input and generates no output. Consider the following protocol ρ
that securely computes f :

1. Party P2 chooses a random string r2 ∈ {0, 1}k and sends it to party P1.

2. Party P1 receives r2 from P2. It then sends a random string r1 ∈ {0, 1}k to P2.

This concludes the protocol. Since f receives no input and generates no output, every protocol
securely computes f and therefore so does ρ. Nevertheless, we will use the following black-box
ideal-model simulator Sρ (we consider only the case where P2 is corrupted):

1. Let Ra, Rb denote the first and second k bits of Sρ’s random tape, respectively.

2. Upon receiving a string r2 from the corrupted P2, simulator Sρ checks if r2 = Ra. If yes, Sρ

runs for 2k steps, hands P2 the string r1 = Rb, and outputs whatever P2 outputs. Otherwise,
Sρ hands P2 the string r1 = Ra and outputs whatever P2 outputs.

Oracle machine Sρ runs in expected polynomial time because the probability that r2 = Ra is at
most 2−k. Furthermore, Sρ provides a statistically-close simulation for ρ.

The outer functionality g, protocol π, and simulator Sπ. The functionality g is the same as
f and does not receive any input or generate any output. However, the outer protocol π is different,
and calls the inner functionality f . The protocol description of π is as follows:

1. Party P1 chooses a random string s1 ∈ {0, 1}k and sends it to party P2.

2. Parties P1 and P2 both call the ideal functionality f .

3. Party P2 chooses a random string s2 ∈ {0, 1}k and sends it to P1.

As before, it is clear that π securely computes g (because every protocol does). Nevertheless, we
will use the specific black-box simulator Sπ that acts in the following “strange” way. (Again, we
deal only with the case where P2 is corrupted). Sπ executes π three times:

1. The first time:

(a) Sπ sends a random string s1 ∈ {0, 1}k to the corrupted P2.

38

(b) Sπ “calls” the ideal functionality f . (Note that this call is made by Sπ within a simu-
lated execution of the protocol π, and is not being made to the external trusted party
computing g.)

(c) Sπ receives s2 from P2.

2. Sπ rewinds the adversary and runs π a second time:

(a) Sπ sends the string s′1 = s2 to P2 (where s2 is the string that it received from P2

previously).

(b) Sπ calls the ideal functionality f .

(c) Sπ receives s′2 from P2.

3. Sπ rewinds the adversary and runs π a third time. This time Sπ behaves exactly as it did the
first time, using a fresh random s′′1 ∈ {0, 1}k. Finally, Sπ outputs whatever P2 outputs.

Sπ is a good simulator for π because the view of P2 in the third run of π with Sπ is exactly the
same as its view in a real execution with P1. Furthermore, Sπ runs in strict polynomial time.

Composing π with ρ. We now show that the simulator for the composed protocol πρ obtained
by the proof of [5] does not run in expected polynomial time. This holds even for a real adversary
running in strict polynomial time. Intuitively, the reason for this is that the outer protocol can be
used to “leak” information to the inner protocol.

We begin by describing a real adversary A who controls the corrupted P2 and runs the composed
protocol πρ with the honest P1. Adversary A receives the first message s1 of π from P1. Then,
in the first message of ρ (that is run next), A sends r2 = s1 (where s1 is the message it received
from P1). A then receives r1 from P1, concluding the inner protocol ρ. Finally, A concludes the
execution of π by sending P1 the second message s2 = r1 (where r1 is the message it received from
P1 in ρ). Note that A essentially relays P1’s message from the outer protocol to the inner protocol,
and P1’s message from the inner protocol to the outer one. A runs in strict polynomial time, as
required.

Let us now step through the simulation strategy of Canetti [5]. (See the discussion at the very
beginning of the proof of Theorem 12.) First construct the strict polynomial-time adversary Aρ

which, essentially, takes as auxiliary input some state s1; outputs s1 as its first ρ-message r2; receives
the second ρ-message r1; and concludes by outputting final state r1. Next, consider the ideal-world
adversary/simulator SAρ

ρ that interacts with a trusted party computing f . This simulator runs in
expected polynomial time.

1. (Running A:) Receive s1 from P1. The state of A is set to s1.

2. Make an ideal call to f and run SAρ(s1)
ρ (Ra, Rb). In more detail: (1) receive

r2 = s1 from Aρ; (2) if s1 = Ra, run for 2k steps and give Aρ the message
r1 = Rb; otherwise, give Aρ the message r1 = Ra. Then, (3) Aρ outputs
state r1.

3. (Running A using state r1:) Send s2 = r1 to P1.

Figure 4: Execution of Aπ using random tape Ra, Rb.

39

Then construct the expected polynomial-time adversary Aπ interacting with parties running π
in the f -hybrid model. See Figure 4. Finally, the simulator for πρ is obtained by running SAπ

π using
random coins s1, s

′′
1 for the black-box simulator Sπ and random coins Ra, Rb for the adversary Aπ.

(We stress that these coins are fixed throughout the entire execution.)
Note, however, what happens in an execution of SAπ(Ra,Rb)

π (s1, s
′′
1):

1. The first iteration of Sπ:

(a) Sπ sends s1 to Aπ (cf. step 1 of Aπ).

(b) Sπ calls the ideal functionality f (cf. step 2 of Aπ). As a consequence, Aρ outputs state
r1 = Ra except with probability 2−k.

(c) Sπ receives s2 = r1 = Ra from Aπ (cf. step 3 of Aπ).

2. The second iteration of Sπ:

(a) Sπ sends the string s′1 = s2 = r1 = Ra to Aπ.

(b) Sπ calls the ideal functionality f . As a consequence, Aρ “responds” with s′1 = Ra and
then Aπ runs for 2k steps (cf. step 2 of Aπ).

(c) The simulation continues. . .

The remainder of the simulation is not important because we have already demonstrated that the
simulation always runs for 2k steps.

Although the above example is truly idiotic, it demonstrates a real issue in simulation proofs
that use rewinding. Specifically, the internal state of the adversary (Aπ in the above example) is
learned during rewinding. If this internal state is used in a detectable way at a later stage of the
simulation, it can cause the overall simulation to run for a superpolynomial number of steps.

C The Full Derivation of Equation (2)

In the proof of Claim 6, we state that

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)(i)

]
=

∞∑

j=1

Expr,s,rf

[
simtimeÂ(z,r)(j) | τ ≥ j

]
· Pr

r,s,rf

[τ ≥ j] .

A full derivation of this equality follows:

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)(i)

]
=

∞∑

j=1

Pr
r,s,rf

[τ = j] ·Expr,s,rf

[
j∑

i=1

simtimeÂ(z,r)(i)
∣∣∣ τ = j

]

=
∞∑

j=1

Pr
r,s,rf

[τ = j]
j∑

i=1

Expr,s,rf

[
simtimeÂ(z,r)(i) | τ = j

]

=
∞∑

i=1

∞∑

j=i

Pr
r,s,rf

[τ = j] ·Expr,s,rf

[
simtimeÂ(z,r)(i) | τ = j

]
,

40

where the second equality is by the linearity of expectations, and the third is obtained by simply
re-arranging terms. Fix an arbitrary i. Using the definition of expectation and then making a series
of straightforward re-arrangements we obtain:

∞∑

j=i

Pr
r,s,rf

[τ = j] ·Expr,s,rf

[
simtimeÂ(z,r)(i) | τ = j

]

=
∞∑

j=i

Pr
r,s,rf

[τ = j] ·
∞∑

t=0

t · Pr
r,s,rf

[
simtimeÂ(z,r)(i) = t | τ = j

]

=
∞∑

t=0

t ·
∞∑

j=i

Pr
r,s,rf

[τ = j] · Pr
r,s,rf

[
simtimeÂ(z,r)(i) = t | τ = j

]

=
∞∑

t=0

t ·
∞∑

j=i

Pr
r,s,rf

[
simtimeÂ(z,r)(i) = t ∧ τ = j

]

=
∞∑

t=0

t · Pr
r,s,rf

[
simtimeÂ(z,r)(i) = t ∧ τ ≥ i

]

=
∞∑

t=0

t · Pr
r,s,rf

[
simtimeÂ(z,r)(i) = t | τ ≥ i

]
· Pr

r,s,rf

[τ ≥ i]

= Expr,s,rf

[
simtimeÂ(z,r)(i) | τ ≥ i

]
· Pr

r,s,rf

[τ ≥ i].

Since the above holds for arbitrary i, we conclude that

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)(i)

]
=

∞∑

i=1

∞∑

j=i

Pr
r,s,rf

[τ = j] ·Expr,s,rf

[
simtimeÂ(z,r)(i) | τ = j

]

=
∞∑

i=1

Expr,s,rf

[
simtimeÂ(z,r)(i) | τ ≥ i

]
· Pr

r,s,rf

[τ ≥ i]

which is the same as Eq. (2) (except that the above has “i” instead of “j”).

41

