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Abstract. Pairing computation requires a lot of efforts for portable
small devices such as smart cards. It was first considered concretely by
Chevallier-Mames et al. that the cards delegate computation of pairings
to a powerful device. In this paper, we propose more efficient protocols
than those of Chevallier-Mames et al. in two cases, and provide two new
variants that would be useful in real applications.

1 Introduction

Pairing based cryptosystem has become one of the most popular areas in mod-
ern cryptography since Boneh and Franklin had solved the open problem by
constructing identity based encryption based on pairings [5]. Unfortunately, al-
though many efforts have been put into improving the computation of pairings
[9, 2, 3, 1], it has been considered as a burden to implement cryptographic pro-
tocols [8], specially in a small device that has limited computational power.

As a solution to this problem, Chevallier-Mames et al. recently proposed
simple protocols, so called, secure delegation of pairing computation that enables
a computationally limited device to delegate the computation of pairings to a
powerful device [7]. They focused on the privacy of the limited device in such a
way that

1. the powerful device learns nothing about the points A and B when the
computation of pairing e(A,B) is delegated,

2. the limited device is able to detect when the powerful device is cheating.

Their protocols are divided according to the condition for A and B. They first
presented a general description concerning private A and B, and then extended
it to several other cases, where one of the points of A and B, or both are already
publicly known or constant.

In this paper, we propose an improved delegation protocol for private A
and B, and further derive several efficient variants according to the condition
for A and B. Our protocols satisfy security requirements and offer efficiency
improvements over the previous ones.
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The rest of this paper is organized as follows. We briefly review several def-
initions in Section 2. In Section 3, we describe a basic delegation protocol and
prove its security. Then several variants are derived in Section 4. Finally, we
draw our conclusion in Section 5.

2 Preliminaries

Let G1, G2 denote prime order subgroups of an elliptic curve E over the field
Fq. Let the order of G1 and G2 be denoted by ℓ and define k to be the smallest
integer such that ℓ|qk − 1. And let G1 and G2 be the generators of G1 and
G2, respectively. By a pairing we shall mean a non-degenerate bilinear map
e : G1 × G2 → GT , where GT be a multiplicative subgroup of F∗

qk of order ℓ if

1. For all a, b ∈ Zℓ, P ∈ G1 and Q ∈ G2, e(aP, bQ) = e(P,Q)ab is efficiently
computable;

2. The map is non-degenerate, namely, e(G1, G2) ≠ 1.

Now, we provide the security notions for secure pairing delegation. The for-
mal security notions derived from the general framework of secure multiparty
computation was first considered in [7].

Definition 1. A protocol for pairing delegation is secure if it satisfies the three
following requirements:

Completeness The limited device obtains e(A,B) when the protocol has pro-
cessed with honest powerful device.

Secrecy Points A and B should be kept secret. Formally speaking, there is a
simulator S so that for any A,B, the output of S is computationally indis-
tinguishable from the powerful device’s view.

Correctness When a powerful device cheats, the limited device should be capable
of detecting except with negligible probability.

3 Efficient delegation of elliptic curves

We describe our efficient secure pairing delegation protocol. It is assumed that
the card knows the pairing value e(G1, G2).

Step-1: The card generates a random g1, g2 ∈ Zℓ and requests three following
pairings to the terminal:

α1 = e(g1A,G2), α2 = e(G1, g2B), α3 = e(g1A, g2B).

Step-2: The card checks that α1, α2, α3 ∈ GT by checking αℓ
i = 1. Otherwise,

the card outputs ⊥ and halts.
Step-3: The card generates two random values r1, r2 ∈ Zℓ and requests the

pairing:
α4 = e(A + r1G1, B + r2G2).
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Step-4: The card finally computes:

α′
4 = α

(g1g2)
−1

3 · α1
g−1
1 r2 · αg−1

2 r1
2 · e(G1, G2)r1r2 ,

and checks that α′
4 = α4. In this case, the card outputs α

(g1g2)
−1

3 =
e(A,B); otherwise it outputs ⊥.

Our protocol might be seen as being quite similar with that by Chevallier-
Mames et al. in [7, Section 4.1]. The difference is that we use g1A, g2B,A+r1G1

and B + r2G2 in place of A + g1G1, B + g2G2, a1A + r1G1 and a2B + r2G2,
respectively. As a result, our protocol requires 4 scalar multiplications in G1, G2

and 7 exponentiations in GT whereas the protocol by Chevallier-Mames et al.
requires 2 scalar multiplications, 2 simultaneous scalar multiplications in G1, G2

and 10 exponentiations in GT . Now we show that this protocol satisfies security
notions in Definition 1.

Theorem 1. The above protocol is a secure pairing delegation protocol.

Proof. The completeness property is easily checked as below. Recall

α1 = e(g1A, G2) = e(A,G2)g1 ,

α2 = e(G1, g2B) = e(G1, B)g2 ,

α3 = e(g1A, g2B) = e(A,B)g1g2 ,

α4 = e(A + r1G1, B + r2G2) = e(A,B) · e(A, r2G2) · e(r1G1, B) · e(r1G1, r2G2)
= e(A,B) · e(A,G2)r2 · e(G1, B)r1 · e(G1, G2)r1r2 .

This gives α4 = α
(g1g2)

−1

3 · α1
g−1
1 r2 · α2

g−1
2 r1 · e(G1, G2)r1r2 .

The secrecy property is guaranteed from the fact that delivered points such
as g1A, g2B,A + r1G1, B + r2G2 are random points in G1, G2. This implies that
A, B are kept secret.

The correctness property is guaranteed as follows: If α3 is not equal to
e(A,B)g1g2 , then α′

4 is almost uniformly distributed among GT . So the prob-
ability of α4 = α′

4 is roughly 1/ℓ. We compute it more concretely as below.
Let U = A+r1G1, V = B+r2G2, W = g1A, Z = g2B and let A = aG1, B =

bG2, U = uG1, V = vG2,W = wG1, Z = zG2 where a, b, u, v, w, z ∈ Zℓ. This
gives

u = a + r1, v = b + r2, w = g1a, and z = g2b. (1)

Suppose β1, β2, β3, β4 ∈ Zℓ such that

α1 = e(g1A,G2) · e(G1, G2)β1 = e(A, G2)g1 · e(G1, G2)β1 ,

α2 = e(G1, g2B) · e(G1, G2)β2 = e(G1, B)g2 · e(G1, G2)β2 ,

α3 = e(g1A, g2B) · e(G1, G2)β3 = e(A,B)g1g2 · e(G1, G2)β3 ,

α4 = e(A + r1G1, B + r2G2) · e(G1, G2)β4 .
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The terminal’s view includes the points U, V,W and Z, and its view is entirely
determined by (β1, β2, β3, β4, u, v, w, z, r) where r is terminal’s randomness. It
is obvious that α3 is e(A, B)g1g2 iff β3 = 0. Next, we show that if β3 ̸= 0 then
the card outputs ⊥ except with negligible probability. From the equation (1),
we have

α′
4 = α

(g1g2)
−1

3 · α1
g−1
1 r2 · α2

g−1
2 r1 · e(G1, G2)r1r2

= e(A + r1G1, B + r2G2) · e(G1, G2)β3(g1g2)
−1+g−1

1 r2β1+g−1
2 r1β2 .

In order to derive the probability of α′
4 = α4, we should know the probability

of holding the equation

β4 = β3(g1g2)−1 + g−1
1 r2β1 + g−1

2 r1β2 mod ℓ.

This can be rewritten as

(g1g2)−1(β3 − zβ1 − wβ2) + g−1
1 (vβ1) + g−1

2 (uβ2) = β4 mod ℓ

by using the Eq. (1). If u, v ̸= 0, then β3 ̸= 0 implies (β3−zβ1−wβ2, vβ1, uβ2) ̸=
(0, 0, 0). By [7, Lemma 1], the number of solutions under this condition is at
most 2ℓ − 1. Since g1 and g2 are uniformly distributed independent from the
terminal’s view, the probability of β′

4 = β4 is at most 2ℓ−1
ℓ2 ≤ 2

ℓ . Moreover, u = 0
or v = 0 with probability at most 2/ℓ, we conclude that the card can detect if
α3 ̸= e(A, B)g1g2 except with probability at most 4/ℓ that is negligible.

4 Several Variants

Here, we present variant protocols according to the condition for the input values
of the pairing. Security proof of each protocol is easily followed along with small
modifications of proof of Theorem 1, so we only describe protocols and their
efficiency.

4.1 Private A, Public B

In this subsection, we consider the case when the point B is already pub-
licly known. As commented in [7, Section 5], when decrypting with Boneh and
Franklin’s identity-based encryption scheme, the point A is the user’s private
key, and the point B is a part of given ciphertext. In this case, the point B does
not need to be protected. Thus, we set g2 = 1 and apply several appropriate
changes to the previous protocol. Assume that e(G1, G2) has been known to the
card in advance.

Step-1: The card generates a random number g1 ∈ Zℓ and requests the three
following pairings to the terminal:

α1 = e(g1A,G2), α2 = e(G1, B), α3 = e(g1A,B).
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Step-2: The card checks that α1, α2, α3 ∈ GT by checking αℓ
i = 1. Otherwise,

the card outputs ⊥ and halts.
Step-3: The card generates random values a2, r1, r2 ∈ Zℓ and requests the pairing

α4 = e(A + r1G1, a2B + r2G2).

Step-4: The card finally computes:

α′
4 = α

g−1
1 a2

3 · αg−1
1 r2

1 · αa2r1
2 · e(G1, G2)r1r2

and checks that α′
4 = α4. In this case, the card outputs α

g−1
2

3 = e(A,B);
otherwise it outputs ⊥.

This protocol requires 2 scalar multiplications and 1 simultaneous scalar mul-
tiplication in G1, G2 and 8 exponentiations in GT . The protocol in [7, Section
5.1] requires 1 scalar multiplication and 2 simultaneous scalar multiplications in
G1, G2 and same number of exponentiations in GT . Thus, our protocol is a bit
more efficient. It’s security can be proved in the same way with Theorem 1.

4.2 Private A, constant private B

To decrypt a ciphertext C = (X,Y, Z) generated by the ID-based encryption
scheme of Boneh and Boyen [4], the card needs to compute e(X + rY,K) for a
given private key SID = (r,K). One can regard X + rY and K as private and
constant private points, respectively. For this case, we propose a new variant. It
is assumed that the card already knows e(Q,B) for a random point Q in G1.
The points Q,B and the value e(Q,B) are kept secret by the card.

Step-1: The card generates random numbers r1, r2, g1, g2 ∈ Zℓ and requests the
following pairings to the terminal

α1 = e(A + r1Q, r2B), α2 = e(g1A, g2B).

Step-2: The card checks α1 = α
(g1g2)

−1r2
2 ·e(Q,B)r1r2 and αℓ

1 = 1. If it is satisfied,
it outputs α

(g1g2)
−1

2 = e(A,B), otherwise it outputs ⊥.

This protocol requires 4 scalar multiplications in G1, G2 and 4 exponentiations
in GT . This protocol reduces the exponentiation in GT from 7 to 4 compared to
the protocol in Section 3.

4.3 Private A and constant public B

In the ID-based signature scheme of Hess [10], the signing stage requires one
pairing computation e(P1, P ) for a randomly chosen P1 ∈ G1 and a system
parameter P ∈ G2. Since P1 should not be exposed to anyone else but signer,
one can regard it as a private point. For the delegation protocol in this case, we
modify our basic delegation protocol. It is assumed that the card knows e(Q,B)
for a random point Q in G1. The point Q and the value e(Q,B) are kept secret
by the card.
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Step-1: The card generates a random r1, g1 ∈ Zℓ and requests the following
pairings to the terminal, α1 = e(A + r1Q, B) and α2 = e(g1A,B).

Step-2: The card computes α
g−1
1

2 that is supposed to be e(A,B).

Step-3: The card checks that α1 = α
g−1
1

2 ·e(Q, B)r1 and that αr
2 = 1. In this case,

it outputs α
g−1
1

2 ; otherwise it outputs ⊥.

This protocol can also be applied to cryptographic schemes based on the sig-
nature scheme of Hess, for example ring signature scheme [11]. Our protocol
requires 2 scalar multiplications in G1 and 3 exponentiations in GT .

5 Efficiency Comparison and Conclusion

The main purpose of this paper is to improve delegation protocols for pairing
computation and to cover some cases that have not been considered in [7].

Here we provide a concrete comparison of efficiency between Chevallier-
Mames et al.’s and our protocols in terms of scalar multiplications in G1, G2

and exponentiations in GT . In Table 1, SM, SSM and EXP denote scalar multi-
plication in G1, G2, simultaneous scalar multiplication in G1, G2, and exponen-
tiation in GT , respectively. Since SSM requires more computational efforts than
SM in G1 or G2, we can easily deduce that our protocol is more efficient than
the previous approach.

Table 1. Comparison

Efficiency
[7] Ours

SM SSM EXP SM SSM EXP

Private A, Private B 2 2 10 4 0 7
B constant - 4 0 4

Private A, Public B 1 2 8 2 1 8
B constant - 2 0 3
A constant 3 0 3 -
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