
A Verifiable Secret Shuffle of Homomorphic Encryptions

Jens Groth∗

Department of Computer Science, UCLA
jg@cs.ucla.edu

July 27, 2005

Abstract

We suggest an honest verifier zero-knowledge argument for the correctness of a shuffle of homomor-
phic encryptions. A shuffle consists of a rearrangement of the input ciphertexts and a re-encryption of
them. One application of shuffles is to build mix-nets.

Our scheme is more efficient than previous schemes in terms of both communication and computa-
tional complexity. Indeed, the HVZK argument has a size that is independent of the actual cryptosystem
being used and will typically be smaller than the size of the shuffle itself. Moreover, our scheme is well
suited for the use of multi-exponentiation techniques and batch-verification.

Additionally, we suggest a more efficient honest verifier zero-knowledge argument for a commitment
containing a permutation of a set of publicly known messages. We also suggest an honest verifier zero-
knowledge argument for the correctness of a combined shuffle-and-decrypt operation that can be used in
connection with decrypting mix-nets based on ElGamal encryption.

All our honest verifier zero-knowledge arguments can be turned into honest verifier zero-knowledge
proofs. We use homomorphic commitments as an essential part of our schemes. When the commit-
ment scheme is statistically hiding we obtain statistical honest verifier zero-knowledge arguments, when
the commitment scheme is statistically binding we obtain computational honest verifier zero-knowledge
proofs.

Keywords: Shuffle, honest verifier zero-knowledge argument, homomorphic encryption, mix-net.

1 Introduction

Shuffle. A shuffle of ciphertextse1, . . . , en is a new set of ciphertextsE1, . . . , En so that both sets of
ciphertexts have the same plaintexts. If the cryptosystem is homomorphic we may shufflee1, . . . , en by
selecting a permutationπ ∈ Σn and settingE1 ← eπ(1)E(1), . . . , En ← eπ(n)E(1). If the cryptosystem is
semantically secure, publishingE1, . . . , En reveals nothing about the permutation. On the other hand, this
also means that nobody else can verify directly whether we shuffled correctly, substituted some ciphertexts,
or performed some other malicious action. Our goal is to construct efficient honest verifier zero-knowledge
(HVZK) arguments for the correctness of a shuffle.

Applications of HVZK shuffle arguments. Shuffling is the key building block in most mix-nets. A mix-
net is a multi-party protocol run by a group of mix-servers to shuffle elements so that nobody knows the
permutation linking the input and output. To mix ciphertexts we may let the mix-servers one after another
make a shuffle with a random permutation and prove correctness of their shuffle. The arguments of correct-
ness allow us to catch any cheater, and if at least one party is honest, it is impossible to link the input and
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output. In this role, shuffling constitutes an important building block in anonymization protocols and voting
schemes.

Shuffle arguments have also found use as sub-protocols in more complex protocols or zero-knowledge
arguments [KY04, Gro05b, Bra04].

Related work. Chaum invented mix-nets in [Cha81]. While being based on shuffling he did not suggest
any method to guarantee correctness of the shuffles. Subsequent papers on mix-nets [BG02, PBDV04, JJR02,
GJ04, JJ99, DK00, Jak98, OA00, Jak99, PIK93] have tried in many ways to guarantee correctness of a shuffle,
most of which have been partially or fully broken [AI03, NSN03, Wik03, PP89]. Remaining are suggestions
by [DK00, PBDV04, JJR02, Wik02], but they have various drawbacks. [DK00] require that only a small
fraction of the mix-servers is corrupt. [PBDV04] require that a fraction of the senders producing the input to
the mix-net is honest and restrict the class of possible permutations. [JJR02] allow mix-servers to compromise
the privacy of a few senders and/or modify a few messages although they do run the risk of being caught.
The mix-net in [Wik02] is less efficient than what one can build using the shuffle arguments in the present
paper. Mix-nets based on shuffling and zero-knowledge arguments of correctness of a shuffle do not have
these drawbacks.

Several papers have suggested zero-knowledge arguments for correctness of a shuffle, usually shuffling
ElGamal ciphertexts. Sako and Kilian [SK95] use cut-and-choose methods and is thus not very efficient. Abe
[Abe98](corrected in [AH01]) uses permutation networks and obtains reasonable efficiency. Currently there
are two main paradigms that both yield practical HVZK arguments for correctness of a shuffle. Furukawa
and Sako [FS01] suggest a paradigm based on permutation matrices. In this type of construction, you make a
commitment to a permutation matrix, argue that you have committed to a permutation matrix and argue
that the ciphertexts have been shuffled according to this permutation. It turns out that their protocol is
not honest verifier zero-knowledge [FMM+02], but it does hide the permutation [NSNK04]. Furukawa
[Fur04a] develops the permutation matrix idea further and obtains a practical shuffle. [NSNK04, OT04]
also use the permutation matrix idea of [FS01] to obtain HVZK arguments for correctness of a shuffle of
Paillier ciphertexts [Pai99]. Following this paradigm we also have [FMM+02, Fur04b] suggesting arguments
for correctness of a combined shuffle-and-decrypt operation, an operation that is used in some decrypting
mix-nets. The other paradigm is due to Neff [Nef01] and is based on polynomials being identical under
permutation of their roots. A subsequent version [Nef03] corrects some flaws in [Nef01] and at the same
time obtains higher efficiency. Unlike the Furukawa-Sako paradigm based arguments, Neff obtain an HVZK
proof, i.e., soundness is unconditional but the zero-knowledge property is computational.

Our contributions. We suggest a 7-move HVZK argument for the correctness of a shuffle of homomorphic
encryptions. We follow the Neff paradigm, basing the shuffle on invariance of polynomials under permutation
of their roots. We use homomorphic commitments as a building block in our construction. If instantiated
with a statistically hiding commitment we obtain a statistical HVZKargumentfor correctness of a shuffle.
On the other hand, if instantiated with a statistically binding commitment scheme we obtain an HVZKproof
of correctness of a shuffle.

The resulting HVZK argument is the most efficient HVZK argument for correctness of a shuffle that
we know of both in terms of computation and communication. The scheme is well suited for multi-
exponentiation techniques as well as randomized batch-verification giving us even higher efficiency. Unlike
the permutation-matrix based approach it is also possible to work with a short public key, whereas key gen-
eration can be a significant cost in the permutation matrix paradigm. The only disadvantage of our scheme
is the round-complexity. We use 7 rounds and the Furukawa-Sako paradigm can be used to obtain 3 round
HVZK arguments for correctness of a shuffle.

Improving on the early version of the paper [Gro03] we enable shuffling of most known homomorphic
cryptosystems. The size of the argument is almost independent of the cryptosystem that is being shuffled.
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Furthermore, the commitment scheme we use does not have to be based on a group of the same order as the
cryptosystem.

In Section 7, we give a more detailed comparison of our scheme and the other efficient HVZK arguments
for correctness of a shuffle suggested in the literature.

As a building block, we use a shuffle of known contents and a corresponding argument of correctness
of a shuffle of known contents. That is, given public messagesm1, . . . ,mn, we can form a commitment to
a permutation of these messagesc ← com(mπ(1), . . . ,mπ(n)). We present an argument of knowledge for
c containing a permutation of these messages. This has independent interest, for instance [Gro05b] uses an
argument of correctness of a shuffle of known contents, it is not necessary to use a full-blown argument of
correctness of a shuffle.

We also show how to modify our scheme into an HVZK argument of correctness of a shuffle-and-decrypt
operation. This operation can be useful in decrypting mix-nets, it can save computational effort to combine
the shuffle and decryption operations instead of performing each one of them by itself. [FMM+02, Fur04b]
already suggest arguments for the correctness of a shuffle-and-decrypt operation, however, while their argu-
ments hide the permutation they are not HVZK. We obtain a more efficient argument that at the same time is
HVZK.

2 Preliminaries

In this section, we define the three key concepts of this paper. We define homomorphic cryptosystems, since
we will be shuffling homomorphic ciphertexts. We define homomorphic commitments, since they constitute
an important building block in our schemes. Finally, we define honest verifier zero-knowledge (HVZK)
arguments, since this paper is about HVZK arguments for the correctness of a shuffle. The reader already
familiar with these concepts can go lightly over this section and return when needed.

2.1 Notation

All algorithms in protocols in this paper are envisioned as interactive probabilistic polynomial time uniform
Turing machines. Adversaries are modeled as interactive probabilistic polynomial time non-uniform Turing
machines. The different parties and algorithms get a security parameter as input, usually we omit writing this
security parameter explicitly. For an algorithmA, we writeoutput← A(input) for the process of selecting
randomnessr and making the assignmentoutput = A(input; r).

Recall that a functionν : N → [0; 1] is negligible if for all monic polynomialspoly we have for all
sufficiently largek thatν(k) < 1

poly(k) . For two functionsf1, f2 we writef1 ≈ f2 if |f1 − f2| is negligible.
We define security in terms of probabilities that become negligible as functions of the security parameter.

When referring to abelian groups, we will in this paper be thinking on “nice” groups, where membership
can be decided efficiently, we can sample random elements from the groups, we can compute group opera-
tions, etc. In particular, we will make use of the groupZq, where we represent group elements as numbers in
the interval[0; q).

2.2 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

Consider a pair of interactive algorithms(P, V ) called the prover and the verifier. They may have access to
a common reference stringσ generated by a key generation algorithmK. We consider a polynomial time
relationR, which may depend onσ. For an elementx we callw a witness if(σ, x, w) ∈ R. We define a
corresponding languageLσ consisting of elements that have a witness. We writeview ←< P (x), V (y) >
for the public view produced byP andV when interacting on inputsx andy. This view ends withV either
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accepting or rejecting. We sometimes shorten the notation by saying< P (x), V (y) >= b if V ends by
accepting,b = 1, or rejecting,b = 0.

Definition 1 (Argument) The triple(K, P, V ) is called an argument for relationR if for all adversariesA
we have

Completeness:

Pr
[
σ ← K(); (x,w)← A(σ) : (σ, x, w) /∈ R or < P (σ, x, w), V (σ, x) >= 1

]
≈ 1.

Soundness:
Pr

[
σ ← K();x← A(σ) : x /∈ Lσ and < A, V (σ, x) >= 1

]
≈ 0.

Consider a verifier that generates the challenges obliviously of the messages sent byP . We define spe-
cial honest verifier zero-knowledge (SHVZK) [CDS94] as the ability to simulate the view with any set of
challenges produced byV , but without access to the witness. We write< P (σ, x, w), challenges > for the
interactive protocol where the verifier simply forwards the specified challenges.

Definition 2 (Special honest verifier zero-knowledge)The quadruple(K, P, V, S) is called a special hon-
est verifier zero-knowledge argument forR if for all adversariesA we have

Pr
[
σ ← K(); (x,w, challenges)← A(σ);

view←< P (σ, x, w), challenges >: A(view) = 1
]

≈ Pr
[
σ ← K(); (x,w, challenges)← A(σ);

view← S(σ, x, challenges) : A(view) = 1
]
,

where we require thatA does indeed produce(x,w) so(σ, x, w) ∈ R.

We call a scheme statistical SHVZK if the SHVZK property holds for unbounded adversaries.

Witness-extended emulation. The standard definition of a system for proof of knowledge does not work
in our setting since we set up some public keys before making the argument of knowledge. A cheating prover
may have non-zero probability of computing some trapdoor from the public keys and use that information
in the argument. In this case, it may be impossible to extract a witness, but the standard definition calls for
100% probability of extracting the witness.

We shall define an argument of knowledge through witness-extended emulation, the name taken from
[Lin01]. This definition says, given an adversary that produces an acceptable argument with probabilityε,
there exists an emulator that produces a similar argument with probabilityε, but at the same time provides a
witness.

Definition 3 (Witness-extended emulation)We say the argument has witness-extended emulation if for all
deterministic polynomial timeP ∗ there exists an expected polynomial time emulatorE such that for all
adversariesA we have

Pr
[
σ ← K(); (x, s)← A(σ); view←< P ∗(σ, x, s), V (σ, x) >:

A(view) = 1
]

≈ Pr
[
σ ← K(); (x, s)← A(σ); (view, w)← E(σ, x, s) :

A(view) = 1 and ifview is accepting then(σ, x, w) ∈ R
]
.

4



We think ofs as being the state ofP ∗, including the randomness. Then we have an argument of knowledge
in the sense that from this states and the public dataσ, x the emulator should be able to extract a witness
wheneverP ∗ is able to make a convincing argument. This shows that the definition implies soundness.

Damg̊ard and Fujisaki [DF02] have also suggested a definition of argument of knowledge in the presence
of a public key. Their definition is a black-box definition. [Gro04] shows that black-box witness-extended
emulation implies knowledge soundness as defined by [DF02]. The security proofs in this paper obtain
black-box witness-extended emulation so our protocols have knowledge soundness as defined in [DF02].

SHVZK proofs. Sometimes unconditional soundness may be needed, i.e., soundness should hold even if
the adversary is allowed to be unbounded. We call such a scheme a proof instead of an argument. We will
construct both SHVZK arguments and SHVZK proofs in the paper.

2.3 Homomorphic commitment

We use a key generation algorithm to generate a public keypk. The public key specifies a message spaceM,
a randomizer spaceR and a commitment spaceC as well as an efficiently computable commitment function
com : M × R → C. There is also a probability distribution onR and we writec ← com(m) for the
operationr ← R; c = com(m; r).

We say the commitment scheme is hiding if a commitment does not reveal which message is inside. We
define this by demanding that for all adversariesA we have

Pr
[
pk ← K(); (m0,m1)← A(pk); c← com(m0) : m0,m1 ∈M andA(c) = 1

]
≈ Pr

[
pk ← K(); (m0,m1)← A(pk); c← com(m1) : m0,m1 ∈M andA(c) = 1

]
.

If this also holds for unboundedA, we call the commitment statistically hiding.
We say the commitment scheme is binding if it is impossible to change your mind about the content of

a commitment once it is made. We specify this as the infeasibility to open a commitment to two different
messages. For all adversariesA we have

Pr
[
pk ← K(); (m0, r0,m1, r1)← A(pk) :

(m0, r0), (m1, r1) ∈M×R,m0 6= m1 andcom(m0, r0) = com(m1; r1)
]
≈ 0.

If this also holds for unboundedA, we call the commitment statistically binding.
We are interested in commitment schemes where the message, randomizer and commitment spaces are

abelian groups(M,+, 0), (R,+, 0), (C, ·, 1). With overwhelming probability over the choice of the public
key, the commitment function must be homomorphic

∀(m0, r0), (m1, r1) ∈M×R : com(m0 + m1; r0 + r1) = com(m0; r0)com(m1; r1).

For our purposes, we use a homomorphic commitment scheme with message spaceZn
q , whereq is a

prime. Other choices are possible, for instance lettingq be a composite or using message spaceZn. The
reason we chooseq to be prime is that it simplifies the presentation slightly and is the most realistic choice in
practice. In particular, withq being prime we know that any non-trivialn-degree polynomialP (T ) ∈ Zq[T ]
has at mostn roots, which will be useful later on.

We need a root extraction property, which says it is infeasible to create an opening of a commitment raised
to a non-trivial exponent without being able to open the commitment itself. I.e., there is a root extraction
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algorithmRootExt so for all adversariesA we have

Pr
[
pk ← K(); (M,R, c, e)← A(pk); (m, r)← RootExt(M,R, c, e) :

if(M,R) ∈M×R, c ∈ C, gcd(e, q) = 1

andce = com(M ;R) then(m, r) ∈M×R, c = com(m; r)
]
≈ 1,

As an example of an unconditionally hiding commitment scheme with these properties, we offer the
following variation of the Pedersen commitment. We select primesq, p sop = kq + 1 andk, q are coprime.
The public key is(q, p, g1, . . . , gn, h), whereg1, . . . , gn, h are randomly chosen elements of orderq. Let Gk

be the multiplicative group of elements with order dividingk. We haveM = Zn
q ,R = Gk×Zq, C = Z∗

p. To
commit tom1, . . . ,mn using randomness(u, r) ∈ Gk×Zq we computec = ugm1

1 · · · gmn
n hr mod p. For the

hiding property to hold we can always chooseu = 1 and simply pickr ← Zq at random. This commitment
scheme is homomorphic and has the root extraction property. Our little twist, adding theu-factor, of the
Pedersen commitment scheme makes it extremely efficient to test membership ofC, we just have to verify
0 < c < p.

As an example of an unconditionally binding commitment scheme consider selecting the public key
(q, p, g1, . . . , gn, h) as above. The message space isM = Zn

q , the randomizer space isGn+1
k × Z, and

the commitment space isC = (Z∗
p)

n. We commit tom1, . . . ,mn using randomizer(u1, . . . , un, u, r) as
c = (u1g

r+m1
1 , . . . , ungr+mn

n , uhr). We can simply useu1 = · · · = un = u = 1 when making the
commitments, the hiding property follows from the DDH assumption.

2.4 Homomorphic cryptosystem

We use a key generation algorithm to generate a public key and a secret key. The public key specifies a
message spaceM, a randomizer spaceR and a ciphertext spaceC. It also specifies an encryption algorithm
E :M×R→ C. The secret key specifies a decryption algorithmD : C →M∪ {invalid }.

We require that with overwhelming probability the key generation algorithm specify keys such that de-
cryption of an encrypted message always yields the message, i.e.,

Pr
[
(pk, sk)← K() : ∀(m, r) ∈M×R : D(E(m; r)) = m

]
≈ 1.

We require the message, randomizer and ciphertext spaces to be finite abelian groups(M, ·, 1), (R,+, 0)
and(C, ·, 1). The encryption function must be homomorphic with overwhelming probability over the public
key

∀(m0, r0), (m1, r2) ∈M×R : E(m0m1; r0 + r1) = E(m0; r0)E(m1; r1).

In this paper, we demand that the order of the message space is divisible only by large prime-factors.
We also require any non-trivial root of an encryption of1 has the same plaintext.

∀R ∈ R∀E ∈ C∀e so gcd(e, |M|) = 1 andEe = E(1;R)∃r ∈ R soE = E(1; r).

This can be seen as a relaxed version of the root extraction property for homomorphic commitments, we know
the message is1, however, we may not be able to extract the randomnessr soE = E(1; r). Nonetheless,
several cryptosystems in the literature do allow us to extract the randomness, in particular, Paillier encryption
and ElGamal encryption allow full randomness extraction.

Various variants of ElGamal and Paillier encryption as well as other cryptosystems [Pai99, DJ01, DJ03,
OU98, Gro05a, ElG84, CS98, NBD01] have the properties mentioned in this section or can be tweaked into
cryptosystems with these properties.
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2.5 Setup and parameters.

The common reference string will consist of public keys for the homomorphic cryptosystem and the ho-
momorphic commitment scheme. We assume all parties, prover, verifier and adversary, know this common
reference string.

The verifier will select public coin challenges from{0, 1}`e . `e will be a sufficiently large length to make
the risk of breaking soundness become negligible. In practice a choice of`e = 80 suffices for interactive
protocols. If we make the HVZK argument non-interactive using a hash-function,`e = 160 may be sufficient.
Another security parameter is̀s. Here we require that for anya of length`a, we have thatd anda + d are
indistinguishable, whend is chosen at random from{0, 1}`a+`s . In practicè s = 80 will be fine.

We set up the commitment scheme with message spaceZn
q . We demand that|q| > `e + `s. The reason

for this choice is to makeq large enough to avoid overflows that require a modular reduction in Section 4
and 5. When the cryptosystem has a message space wheremq = 1 for all messages, this requirement can be
waived, see Section 6 for details. For notational convenience, we assume that the randomizer space of the
commitment scheme isZq, but other choices are possible.

3 HVZK Argument for Shuffle of Known Contents

Before looking into the question of shuffling ciphertexts, we investigate a simpler problem that will be used as
a building block. We have messagesm1, . . . ,mn. It is easy enough to pick a permutationπ and a randomizer
r and setc = com(mπ(1), . . . ,mπ(n); r). Can we prove knowledge of the permutationπ and the randomizer
r such that indeedc has been computed this way?

In this section, we present an SHVZK argument for a commitment containing a permutation of a set of
known messages. The main idea is from Neff [Nef01], namely that a polynomialp(X) =

∏n
i=1(mi − X)

is stable under permutation of the roots, i.e., for any permutationπ we havep(X) =
∏n

i=1(mπ(i) −X). A
way to test whether two polynomialsp(X), q(X) are identical is to choose a random pointx and evaluate
whetherp(x) = q(x). Vice versa, if two polynomials are identical over a fieldZq then they have the same
roots.

Using this idea, we formulate the following plan for arguing knowledge ofc containing messages
m1, . . . ,mn.

1. Use a standard HVZK argument with randomly chosen challengee to argue knowledge of an opening
µ1, . . . , µn, r of c. As a byproduct of the argument of knowledge we get valuesfi = eµi + di, where
di is fixed before receiving the randome.

2. Choose an evaluation pointx at random. It is straightforward to computefi − ex = e(µi − x) + di.

3. We have
∏n

i=1(fi − ex) = en
∏n

i=1(µi − x) + pn−1(e), wherepn−1(·) is a polynomial of degree
n− 1. We therefore wish to argue

∏n
i=1(fi − ex) = en

∏n
i=1(mi − x) + pn−1(e), which would mean∏n

i=1(µi − x) =
∏n

i=1(mi − x).

4. To argue the latter we roll up the partial product inFj = e
∏j

i=1(µi − x) + ∆j . We start with
F1 = f1 − ex. We then computeeF2 = F1(f2 − ex) + f∆1 , wheref∆1 is used to remove superfluous
factors. We computeF3, . . . , Fn in the same manner. We use∆n = 0, so in the end it is sufficient to
test whetherFn = e

∏n
i=1(mi − x).

Theorem 4 The protocol in Figure 1 is a 4-move public coin special honest verifier zero-knowledge argument
of knowledge forc being a commitment to a permutation of the messagesm1, . . . ,mn. If the commitment
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Shuffle of Known Content Argument

Prover Common input Verifier
c,m1, . . . ,mn and public keys

Prover’s input
π, r soc = com(mπ(1), . . . ,mπ(n); r)

x x← {0, 1}`e
�

d1, . . . , dn ← Zq, rd, r∆ ← Zq

∆1 = d1,∆2, . . . ,∆n−1 ← Zq,∆n = 0
ai =

∏i
j=1(mπ(j) − x), ra ← Zq

cd = com(d1, . . . , dn; rd)
c∆ = com(−∆1d2, . . . ,−∆n−1dn; r∆)
ca = com(∆2 − (mπ(2) − x)∆1 − a1d2, . . . ,

∆n − (mπ(n) − x)∆n−1dn − an−1dn; ra) cd, c∆, ca -

e e← {0, 1}`e
�

fi = emπ(i) + di, z = er + rd

f∆i = e(∆i+1 − (mπ(i+1) − x)∆i − aidi+1) f1, . . . , fn, z

−∆idi+1, z∆ = era + r∆ f∆1 , . . . , f∆n−1 , z∆ -

Checkcd, ca, c∆ ∈ C
Checkf1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆ ∈ Zq

Checkcecd = com(f1, . . . , fn; z)
Checkce

ac∆ = com(f∆1 , . . . , f∆n−1 ; z∆)
DefineF1, . . . , Fn so
F1 = f1 − ex, eF2 = F1(f2 − ex) + f∆1 , . . . ,
eFn = Fn−1(fn − ex) + f∆n−1

CheckFn = e
∏n

i=1(mi − x)

Figure 1: Argument of Knowledge of Shuffle of Known Content.

scheme is statistically hiding then the argument is statistical honest verifier zero-knowledge. If the commit-
ment scheme is statistically binding, then we have unconditional soundness, i.e., the protocol is a SHVZK
proof.

Proof. It is obvious that we are dealing with a 4-move public coin protocol. Completeness is straightforward
to verify. Remaining is to prove special honest verifier zero-knowledge and witness-extended emulation.

Special honest verifier zero-knowledge. Figure 2 describes how the simulator acts given challenges
x, e. The simulator does not use any knowledge ofπ, r. It first selectsf1, . . . , fn, z, F2, . . . , Fn−1, z∆ and
ca ← com(0, . . . , 0) and then adjusts all other parts of the argument to fit these values. In the same figure,
we describe a hybrid simulator that acts just as the simulator except when generatingca. In the generation
of ca, it does use knowledge ofπ to computedi, ai,∆i values. It then producesca in the same manner as a
real prover would do it using those values. Finally, for comparison we have the real prover’s protocol in an
unordered fashion.
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Simulator Hybrid Prover
fi ← Zq, z ← Zq fi = emπ(i) + di, z = er + rd

Fi ← Zq, z∆ ← Zq Fi = eai + ∆i, z∆ = era + r∆

F1 = f1 − ex, Fn = e
∏n

i=1(mi − x)
f∆i = eFi+1 − Fi(fi+1 − ex)

di = fi − emπ(i) di ← Zq, rd ← Zq

ai =
∏i

j=1(mπ(j) − x),ra ← Zq

∆i = Fi − eai ∆i ← Zq, r∆ ← Zq

ca ← com(0, . . . , 0) ca ← com(∆2 − (mπ(2) − x)∆1 − a1d2,

. . . , ∆n − (mπ(n) − x)∆n−1 − an−1dn; ra)
cd = com(f1, . . . , fn; z)c−e

c∆ = com(f∆1 , . . . , f∆n−1 ; z∆)c−e
a

Figure 2: Simulation of Known Shuffle Argument.

The simulated argument and the hybrid argument differ only in the content ofca. The hiding property
of the commitment scheme therefore gives us indistinguishability between hybrid arguments and simulated
arguments. If the commitment scheme is statistically hiding then the arguments are statistically indistinguish-
able.

A hybrid argument is statistically indistinguishable from a real argument. The only difference is that a
real prover starts out by pickingdi,∆i, rd, r∆ at random, however, in both protocols we getfi, f∆i , z, z∆

randomly distributed overZq. One can now check that indeed we computecd, c∆ so they are on the form
cd = com(d1, . . . , dn; rd) andc∆ = com(−∆1d2, . . . ,−∆n−1dn; r∆) when running the prover protocol
described in Figure 2.

Witness-extended emulation. The emulatorE first runsP ∗ with the algorithm of the real verifier. This is
the view thatE outputs and by construction it is perfectly indistinguishable from a real SHVZK argument. If
the view is rejecting, thenE halts withw = no witness . However, if the view is accepting thenE must
try to find a witnessw = (π, r).

To extract a witnessE rewinds and runsP ∗ on the same challengex until it gets another
acceptable argument. Call the two arguments(x, cd, c∆, ca, e, f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆) and
(x, cd, c∆, ca, e

′, f ′
1, . . . , f

′
n, z′, f ′

∆1
, . . . , f ′

∆n−1
, z′∆). We havececd = com(f1, . . . , fn; z) and ce′cd =

com(f ′
1, . . . , f

′
n; z′). This gives usce−e′ = com(f1 − f ′

1, . . . , fn − f ′
n; z − z′). If e 6= e′, E can run

the root extraction algorithm in an attempt to learn an openingµ1, . . . , µn, r of c. From such an opening we
can also find an openingd1, . . . , dn, rd of cd with di = fi − eµi, rd = z − er.

Let us at this point argue thatE runs in expected polynomial time. IfP ∗ is in a situation where it has
probability ε > 0 of making the verifier accept on challengex, then the expected number of runs to get an
acceptable view is1ε . Of course ifP ∗ fails, then we do not need to sample a second run. We therefore get a
total expectation of2 runs ofP ∗. A consequence ofE using an expected polynomial number of queries to
P ∗ is that it only has negligible probability of ending in a run wheree′ = e or any other event with negligible
probability occurs. Therefore, with overwhelming probability, we do not need a witness or we have found an
openingµ1, . . . , µn, r of c.

We still need to argue that the probability for extracting an opening ofc, yet µ1, . . . , µn

not being a permutation ofm1, . . . ,mn, is negligible. Assume there is a polynomialpoly
such that P ∗ has more than 1

poly() chance of producing a convincing argument. In that case

we can pick a challengex at random, and thereafter pick three random challengese, e′, e′′.

9



With probability at least 1
poly()3

P ∗ manages to create accepting arguments on all three of

these challenges. Call the first two arguments(x, cd, c∆, ca, e, f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆) and
(x, cd, c∆, ca, e

′, f ′
1, . . . , f

′
n, z′, f ′

∆1
, . . . , f ′

∆n−1
, z′∆). We havece

ac∆ = com(f∆1 , . . . , f∆n−1 ; z∆) and

ce′
a c∆ = com(f ′

∆1
, . . . , f ′

∆n−1
; z′∆) so ce−e′

a = com(f∆1 − f ′
∆1

, . . . , f∆n−1 − f ′
∆n−1

; z∆ − z′∆). From
this, we can extract an openingα1, . . . , αn−1, ra of ca. This also gives us an openingδ1, . . . , δn−1, r∆ of c∆,
whereδi = f∆i − eαi, r∆ = z∆ − era.

Consider now the third challengee′′. Since we know openings ofc, cd we havef ′′
i = e′′µi + di, and

since we know openings ofca, c∆ we havef ′′
∆i

= e′′αi + δi. From the way we build upF ′′
n and from

F ′′
n = e′′

∏n
i=1(mi − x) we deduce

(e′′)n
n∏

i=1

(mi − x) = (e′′)n−1F ′′
n = (e′′)n

n∏
i=1

(µi − x) + pn−1(e′′),

wherepn−1(·) is a polynomial of degreen−1. Sincee′′ is chosen at random this implies with overwhelming
probability that

∏n
i=1(µi − x) =

∏n
i=1(mi − x).

We now have two polynomials evaluating to the same value in a random pointx. With overwhelming
probability, they must be identical. This in turn implies thatµ1, . . . , µn is a permutation ofm1, . . . ,mn as
we wanted to show.

If the commitment scheme is statistically binding, then even an unbounded adversary is stuck with the
values that have been committed to, without any ability to change them. Withx, e chosen at random by the
verifier, even an unbounded adversary has negligible chance of cheating. �

4 HVZK Argument for Shuffle of Homomorphic Encryptions

A set of ciphertextse1, . . . , en can be shuffled by selecting a permutationπ, selecting randomizers
R1, . . . , Rn, and settingE1 = eπ(1)E(1;R1), . . . , En = eπ(n)E(1;Rn). The task for the prover is now
to argue that some permutationπ exists so that the plaintexts ofE1, . . . , En andeπ(1), . . . , eπ(n) are identi-
cal.

As a first step, we think of the following naı̈ve proof system. The prover informs the verifier of the

permutationπ. The verifier picks at randomt1, . . . , tn, computeset1
1 · · · etn

n andE
tπ(1)

1 · · ·Etπ(n)
n . Finally,

the prover proves that the two resulting ciphertexts have the same plaintext in common. Unlessπ really
corresponds to a pairing of ciphertexts with identical plaintexts the prover will be caught with overwhelming
probability.

An obvious problem with this idea is the lack of zero-knowledge. We remedy it in the following way:

1. The prover commits to the permutationπ asc← com(π(1), . . . , π(n)). He makes an HVZK argument
of knowledge ofc containing a permutation of the numbers1, . . . , n. At this step, the prover is bound
to some permutation he knows, but the permutation remains hidden.

2. The prover creates a commitmentcd ← com(d1, . . . , dn) to randomdi’s. The verifier selects at random
t1, . . . , tn and the prover permutes them according toπ. The prover will at some point reveal values
fi = tπ(i) + di, but since thedi’s are random this does not reveal the permutationπ. As part of the
argument, we will argue that thefi’s have been formed correctly, using the same permutationπ that
we used to formc.

3. Finally, the prover uses standard HVZK arguments of knowledge of multiplicative relationship and

equivalence to show that the productset1
1 · · · etn

n andE
tπ(1)

1 · · ·Etπ(n)
n differ only by an encryption of1

without revealing anything else. This last step corresponds to carrying out the naı̈ve proof system in
zero-knowledge using a secret permutationπ that was fixed before receiving theti’s.
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To carry out this process we need to convince the verifier thatc and f1, . . . , fn contain respectively
1, . . . , n andt1, . . . , tn permuted in the same order. It seems like we have just traded one shuffle problem
with another. The difference is that the supposed contents of the commitments are known to both the prover
and the verifier, whereas we cannot expect either to know the contents of the ciphertexts being shuffled. The
HVZK argument of knowledge for a shuffle of known content can therefore be used.

To see that the pairs(i, ti) match we let the verifier pickλ at random, and let the prover demonstrate that
cλcdcom(f1, . . . , fn; 0) contains a shuffle of1+λt1, . . . , n+λtn. If a pair(i, ti) does not appear in the same
spot in respectivelyc andf1, . . . , fn, then with high likelihood over the choice ofλ the shuffle argument will
fail.

Shuffle of Homomorphic Ciphertexts

Prover Common input Verifier
e1, . . . , en, E1, . . . , En and public keys

Prover’s input
π,R1, . . . , Rn soEi = eπ(i)E(1;Ri)

r ← Zq, Rd ← R
d1, . . . , dn ← Zq, rd ← Zq

c = com(π(1), . . . , π(n); r)
cd = com(−d1, . . . ,−dn; rd)
Ed =

∏n
i=1 E−di

i E(1;Rd) c, cd, Ed -

t1, . . . , tn
a ti ← {0, 1}`e

�

fi = tπ(i) + di

Z =
∑n

i=1 tπ(i)Ri + Rd f1, . . . , fn, Z -

λ λ← {0, 1}`e
�

Arg(π, ρ|cλcdcom(f1, . . . , fn; 0)
= com(λπ(1) + tπ(1),

� -�
-

. . . , λπ(n) + tπ(n); ρ))

Checkc, cd ∈ Ccom, Ed ∈ C
and2`e ≤ f1, . . . , fn < q,Z ∈ R
Verify Arg(π, ρ)
Check

∏n
i=1 e−ti

i

∏n
i=1 Efi

i Ed = E(1;Z)

aSee Section 6 for ways to chooset1, . . . , tn efficiently.

Figure 3: Argument of Shuffle of Homomorphic Ciphertexts.

Theorem 5 The protocol in Figure 3 is a 7-move public coin special honest verifier zero-knowledge argu-
ment of knowledge for correctness of a shuffle of homomorphic ciphertexts. If the commitment scheme is
statistically hiding and the argument of knowledge of a shuffle of known content is statistical SHVZK, then
the entire argument is statistical SHVZK. If the commitment scheme is statistically binding and we use a
SHVZK proof of shuffle of known contents, then the entire scheme is a SHVZK proof of a shuffle.
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Proof. Using the 4-move argument of knowledge for shuffle of known contents from this paper the protocol is
a 7-move public coin protocol. Recall that|q| > 2`e +`s, so with overwhelming probability2`e ≤ tπ(i)+di <
q when added as integers. With this in mind, it is straightforward to verify completeness. It remains to prove
zero-knowledge and witness-extended emulation.

Special honest verifier zero-knowledge. Given challengest1, . . . , tn, λ as well as challenges for the
known shuffle we wish to produce something that is indistinguishable from a real argument. We describe
in Figure 4 a simulator that simulates the argument without access to the permutationπ or the randomizers
R1, . . . , Rn. In the same figure, we also include a hybrid argument that works like the simulator except for
generating some commitments correctly. Finally, we include for comparison the real prover in a somewhat
unordered description.

Simulator Hybrid Prover
c← com(0, . . . , 0) c← com(π(1), . . . , π(n))

di = fi − tπ(i) di ← Zq

cd ← com(0, . . . , 0) cd ← com(−d1, . . . ,−dn)
fi ← Zq fi = tπ(i) + di

Z ← R Rd ← R, Z =
∑n

i=1 tπ(i)Ri + Rd

Ed = E(1;Z)
∏n

i=1 eti
i

∏n
i=1 E−fi

i Ed =
∏n

i=1 E−di
i E(1;Rd)

SimulateArg(π, ρ| Arg(π, ρ|
cλcdcom(f1, . . . , fn; 0) cλcdcom(f1, . . . , fn; 0)
= com(λπ(1) + tπ(1), = com(λπ(1) + tπ(1),

. . . , λπ(n) + tπ(n); ρ) . . . , λπ(n) + tπ(n); ρ)

Figure 4: Simulation of Shuffle Argument.

Simulated arguments and hybrid arguments only differ in the content ofc andcd. The hiding property of
the commitment scheme therefore implies indistinguishability between simulated arguments and hybrid argu-
ments, and if the commitment scheme is statistically hiding, then the two types of arguments are statistically
indistinguishable.

Since|q| > `e+`s there is overwhelming probability that we do not need to make any modular reductions
when computing thedi’s andfi’s and that thefi’s are at least2`e . Under this condition, we have for the
prover that

∏n
i=1 E−di

i E(1;Rd) = E(1;Z)
∏n

i=1 eti
i

∏n
i=1 E−fi

i , so there is no difference in the wayEd

is computed. The only remaining difference is that the hybrid argument contains a simulated argument of
knowledge of shuffle of known content, whereas the prover makes a real proof. The SHVZK property of this
argument gives us indistinguishability between hybrid arguments and real arguments, and statistical SHVZK
gives us statistical indistinguishability.

Witness-extended emulation. We first runP ∗ on randomly chosen challengest1, . . . , tn, λ and the HVZK
argument of known shuffle. This gives us a correctly formed view. IfP ∗ fails to produce an acceptable
argument, then we output(view, no witness ). On the other hand, if the argument is acceptable, then we
must attempt to extract a witness forE1, . . . , En being a shuffle ofe1, . . . , en. In the following we letε be
the probability ofP ∗ outputting an acceptable argument.

In order to extract a witness we runP ∗ on randomly chosen challengest1, . . . , tn, λ and use the witness-
extended emulator for the argument of shuffle of known contents. We do this until we have obtainedn + 3
acceptable arguments. Recall from the proof of Theorem 4 that the witness-extended emulator for the shuffle
of known contents has exactly the same distribution on the public view as that produced in a real argument
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with P ∗. Therefore, each attempted run has probabilityε of leading to an acceptable argument and we use an
expected(n+3)/ε runs. Since we only need to extract a witness whenP ∗ produced a valid argument we get
an expected number ofn + 3 runs. In each run, the witness-extended emulator for the argument of shuffle
of known contents is fed with polynomial size input and all runs have the same size of input. This means we
can simply sum the expected polynomial time run times. The witness-extended emulator of the argument of
a shuffle of homomorphic ciphertexts therefore uses expected polynomial time.

Since the witness-extended emulator uses expected polynomial time there is overwhelming probability
that either we do not get an acceptable argument, or alternatively we do get an acceptable argument but no
event with negligible probability occurs. In particular, with overwhelming probability we do not break the
commitment scheme, unsuccessfully run root extractors, etc.

From the sampling process we have two acceptable argumentsc, cd, Ed, t1, . . . , tn, f1, . . . , fn, Z, λ and
c, cd, Ed, t

′
1, . . . , t

′
n, f ′

1, . . . , f
′
n, Z ′, λ′ as well as witnessesπ, r and π′, r′ for cλcdcom(f1, . . . , fn; 0) and

cλ′cdcom(f ′
1, . . . , f

′
n; 0) containing shuffles ofλi + ti andλ′i + t′i respectively. This gives us

cλ−λ′ = com(f ′
1−f1+λπ(1)+tπ(1)−λ′π′(1)−t′π′(1), . . . , f

′
n−fn+λπ(n)+tπ(n)−λ′π′(n)−t′π′(n); r−r′).

We run the root extractor and find an openings1, . . . , sn, r of c. Given this opening we can then compute an
opening−d1, . . . ,−dn, rd of cd with −di = λπ(i) + tπ(i) − λsi − fi and0 ≤ di < q.

Next, we wish to argue thats1, . . . , sn is a permutation of1, . . . , n, i.e., they define a unique permutation
π. Suppose for some polynomialpoly() in the security parameter thatP ∗ has more than 1

poly() chance of
producing a valid argument. We runP ∗ with randomly chosen challengest1, . . . , tn, λ and from the witness-
extended emulator we get a permutationπ soλsi − di + fi = λπ(i) + tπ(i). Sincefi is chosen beforeλ this
has negligible chance of happening unlesssi = π(i). We conclude that indeeds1, . . . , sn is a permutation
of 1, . . . , n. This in turn tells us thatfi = tπ(i) + di for the argument to go through with not negligible
probability. Since2`e ≤ fi < q this equality holds over the integers as well.

The remainingn + 1 acceptable arguments we enumeratej = 1, . . . , n + 1. Call thet1, . . . , tn used in
the j’th argument fort(j)1 , . . . , t

(j)
n . We have corresponding answersf

(j)
i = t

(j)
π(i) + di, Z

(j). Consider the

integer vectors(t(j)1 , . . . , t
(j)
n , 1) and the corresponding matrixT containing these as row vectors. For any

prime dividing |M|, there is overwhelming probability that the vectors are linearly independent modulop
since|M| only has large prime divisors. This meansgcd(det(T ), p) = 1 for all p dividing the order ofM
and thusgcd(det(T ), |M|) = 1. Let A be the transposed cofactor matrix ofT , then we have

AT = det(T )I.

Calling the entries ofA for akj , we have

n+1∑
j=1

akj(t
(j)
1 , . . . , t(j)n , 1) = (0, . . . , 0,det(T ), 0, . . . , 0),

wheredet(T ) is placed in positionk. For allj the verification gives us

n∏
i=1

e
−t

(j)
i

i

n∏
i=1

E
t
(j)
π(i)

i (
n∏

i=1

Edi
i Ed)1 =

n∏
i=1

e
−t

(j)
i

i

n∏
i=1

E
f
(j)
i

i Ed = E(1;Z(j)).

For allk = 1, . . . , n we have

(e−1
k Eπ−1(k))

det(T ) =
n∏

i=1

(e−1
i Eπ−1(i))

∑n+1
j=1 akjt

(j)
i (

n∏
i=1

Edi
i Ed)

∑n+1
j=1 akj1
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=
n∏

i=1

e
−

∑n+1
j=1 akjt

(j)
i

i

n∏
i=1

E

∑n+1
j=1 akjt

(j)
π(i)

i (
n∏

i=1

Edi
i Ed)

∑n+1
j=1 akj1

=
n+1∏
j=1

( n∏
i=1

e
−t

(j)
i

i

n∏
i=1

E
t
(j)
π(i)

i (
n∏

i=1

Edi
i Ed)1

)akj

=
n+1∏
j=1

E(1;Z(j))akj = E(1;
n+1∑
j=1

akjZ
(j)).

We now know from the root extraction property that there exists anRπ−1(k) soe−1
k Eπ−1(k) = E(1;Rπ−1(k)).

This way we have witnesses for allk for ek andEπ−1(k) having the same plaintext. If the cryptosystem has
the root extraction property, we can run the root extractor to obtain the randomizersR1, . . . , Rn.

If the commitment scheme is statistically binding, then even an unbounded adversary cannot change its
mind about the values it has committed to. Assume furthermore that the argument of knowledge for a shuffle
of known content is a SHVZK proof. The proof shows that in this case we extract a witness even when we
face an unbounded adversary, so we actually have a SHVZK proof for shuffle of ciphertexts. �

5 Combining Shuffling and Decryption

To save time it is possible to combine the shuffling and decryption into one operation. Consider for instance
the case where we are using ElGamal encryption and share the secret key additively between the mix-servers.
Instead of first mixing, then performing threshold decryption, it makes sense to combine the shuffle opera-
tions and the decryption operations. This saves computation and each mix-server only has to be activated
once instead of twice. While restricting the choice of parameters, namely we must use an ElGamal like cryp-
tosystem and we must share the secret key additively between all the mix-servers, this is a realistic real-life
scenario. In particular, it protects against any single honest-but-curious mix-server.

The public key is on the form(g, y1, . . . , yN ), whereyj = gxj andxj is the secret key of serverj. Inputs
to the mix-net are ElGamal encryptions under the key(g,

∏N
j=1 yj) on the form(gr, (

∏N
j=1 yj)rm). The

first server shuffles and decrypts with respect to its own key. This leaves us with encryptions under the key
(g,

∏N
j=2 yj) that the second server can shuffle and decrypt, etc. Once the last server shuffles and decrypts

we get the plaintexts out.
Servers gets input ciphertexts on the form(u1, v1), . . . , (un, vn) under the key(g,

∏N
j=s yj). It selects

a permutationπ at random, as well as randomizersR1, . . . , Rn. The output is(U1, V1), . . . , (Un, Vn) under
the key(g, Y =

∏N
j=s+1 yj), where

Ui = gRiuπ(i) andVi = Y Rivπ(i)u
−xs

π(i) .

What we need is an HVZK argument of knowledge for correctness of such a shuffle-and-decrypt operation.
A couple of papers have already investigated this problem [FMM+02, Fur04b], but their arguments are

not HVZK. Instead, they use a weaker security notion saying that an adversary does not learn anything about
the permutation. We will suggest an argument that is SHVZK and at the same time is more efficient in terms
of computation and communication but has worse round-complexity.

The argument is essentially the same as the argument for correctness of a shuffle of ciphertexts, we
have written out everything using the ElGamal notation in this section. The only difference from the shuffle
argument is that we add some extras to argue also correctness of the partial decryption. We prove knowledge
of the secret keyxs, and argue that it has been used to make partial decryptions. For this purpose, we add an
initial messageD = gdx . Later, the prover will receive a challengee and respond withf = exs + dx. We
use the hiddenxs to ensure thatuxs

i is removed as intended from the output ciphertexts. Due to thee-factor,
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we raise an entire part of the verification toe. Thedx-part that is used to hidexs forces us to add some extra
elements into the protocol, but this part will not be raised toe.

The full protocol can be seen in Figure 5. The cryptosystem is ElGamal encryption over a group of prime
orderQ. We include in the public keys an additional homomorphic commitment schemeCOM, which has
ZQ as message space. For notational convenience, we assume the randomizers for these commitments are
chosen at random fromZQ. The public keys include a generatorg for the groupGQ of orderQ over which
we do the ElGamal encryption, and two public keysys andY .

Theorem 6 The protocol in Figure 5 is a 7-move public coin special honest verifier zero-knowledge argument
of knowledge for correctness of a shuffle and partial decryption of ElGamal ciphertexts. If the commitment
schemes are statistically hiding and the argument of knowledge of a shuffle of known content is statistical
SHVZK, then the entire argument is statistical SHVZK. If the commitment schemes are statistically binding
and we are using a SHVZK proof of shuffle of known content, then the entire argument is a SHVZK proof.

Sketch of proof.Obviously, we have a 7-move public coin protocol. Completeness is straightforward to
verify.

Special honest verifier zero-knowledge. To argue special honest verifier zero-knowledge we describe
a simulator that runs without knowledge ofπ,R1, . . . , Rn, xs and also a hybrid simulator that does use
knowledge of these secret values.

The simulator gets the challengest1, . . . , tn, λ, e as well as challenges for the argument of knowl-
edge of a shuffle of known contents as input. It selects at randomf1, . . . , fn ← Zq, Z, f, fV , zV ←
ZQ, c, cd ← com(0, . . . , 0), C1 ← COM(0) andVd ← GQ. It computesUd = gZ

∏n
i=1 uti

i

∏n
i=1 U−fi

i , U =
Y eZgfV (

∏n
i=1 u−ti

i )f (
∏n

i=1 v−ti
i

∏n
i=1 V fi

i Vd)−e, D = gfy−e
s andC2 = COM(fV ; zV )C−e

1 . It also simu-
lates the argument of knowledge of shuffle of known contents.

The hybrid simulator also selectsf1, . . . , fn ← Zq, Z, f, fV , zV ← ZQ. It computesc ←
com(π(1), . . . , π(n)), di ← fi − tπ(i), cd ← com(−d1, . . . ,−dn). It selectsrV ← ZQ and C1 ←
COM(rV ). It sets Vd = Y Z(

∏n
i=1 u−ti

i )xs
∏n

i=1 vti
i

∏n
i=1 V −fi

i grV . As the simulator it computes
Ud = gZ

∏n
i=1 uti

i

∏n
i=1 U−fi

i , U = Y eZgfV (
∏n

i=1 u−ti
i )f (

∏n
i=1 v−ti

i

∏n
i=1 V fi

i Vd)−e, D = gfy−e
s and

C2 = COM(fV ; zV )C−e
1 and simulates the argument of knowledge of shuffle of known contents.

Let us argue that simulated arguments and hybrid arguments are indistinguishable. In both distributions,
Vd is random, in the simulation becauseVd is selected at random, in the hybrid argument because of thegrV

factor. The only difference between the two types of arguments is the way we compute the commitments. In
the simulated argument we computec, cd, C1 as commitments to 0, while in the hybrid argument we compute
them as commitments toπ(1), . . . , π(n),−d1, . . . ,−dn andrV . The hiding properties of the two commit-
ment schemes give us indistinguishability between simulated arguments and hybrid arguments. Furthermore,
if both commitment schemes are statistically hiding, then we have statistical indistinguishability between
simulated arguments and hybrid arguments.

Next, we argue that hybrid arguments and real arguments are indistinguishable. First, we note that
f1, . . . , fn, Z, f, fV , zV have the same distribution in the two arguments. Letr1 be the randomness used in
formingC1. In the hybrid argument we can computedi = fi − tπ(i), dV = fV − erV , r2 = zV − er1, Rd =
Z −

∑n
i=1 tπ(i)Ri, dx = f − exs. These values have the same distribution as they would have if chosen by a

real prover. Furthermore, it is straightforward to verify thatc, cd, Ud, Vd, D, U, C1, C2 attain the same values
as computed by a real prover. The only difference between hybrid arguments and real arguments is therefore
in the simulation of the argument of knowledge of a shuffle of known contents. The SHVZK property of this
argument of shuffle of known contents implies indistinguishability between hybrid arguments and real argu-
ments. Moreover, if the argument of shuffle of known contents is statistical SHVZK then hybrid arguments
and real arguments are statistically indistinguishable.
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Shuffle and Decryption of ElGamal Ciphertexts

Prover Common input Verifier
(u1, v1), . . . , (un, vn)
(U1, V1), . . . , (Un, Vn)

and public keys

Prover’s input
π, xs, R1, . . . , Rn soys = gxs and
(Ui, Vi) = (gRiuπ(i), Y

Rivπ(i)u
−xs

π(i))

r ← Zq, Rd ← R
d1, . . . , dn ← Zq, rd ← Zq

c = com(π(1), . . . , π(n); r)
cd = com(−d1, . . . ,−dn; rd)
Ud =

∏n
i=1 U−di

i gRd

Vd =
∏n

i=1 V −di
i Y RdgrV

dx, rV , dV , r1, r2 ← ZQ, D = gdx

C1 = COM(rV ; r1), C2 = COM(dV ; r2) c, cd, Ud, Vd, D, C1, C2 -

t1, . . . , tn ti ← {0, 1}`e
�

fi = tπ(i) + di, Z =
∑n

i=1 tπ(i)Ri + Rd

U = gdV (
∏n

i=1 u−ti
i )dx f1, . . . , fn, Z, U -

λ, e λ, e← {0, 1}`e
�

Arg(π, ρ|cλcdcom(f1, . . . , fn; 0)
= com(λπ(1) + tπ(1),

�
-� -

. . . , λπ(n) + tπ(n); ρ))

f = exs + dx, fV = erV + dV , zV = er1 + r2 f, fV , zV -

Checkc, cd ∈ Ccom, Ud, Vd, D, U ∈ GQ

andC1, C2 ∈ CCOM

and2`e ≤ f1, . . . , fn < q,Z, f, fV , zV ∈ ZQ

Verify Arg(π, ρ)
Check

∏n
i=1 u−ti

i

∏n
i=1 Ufi

i Ud = gZ

Check(
∏n

i=1 u−ti
i )−f (

∏n
i=1 v−ti

i

∏n
i=1 V fi

i Vd)eU = Y eZgfV

Checkye
sD = gf andCe

1C2 = COM(fV ; zV )

Figure 5: Argument of Shuffle and Decryption of ElGamal Ciphertexts.

Witness-extended emulation. As in the proof of Theorem 5 we use an emulator that runs the proverP ∗

on a real verifier and outputs this view. In case the argument is acceptable the emulator rewinds and runsP ∗

until it hasn + 3 acceptable arguments. By a similar argument, this emulator runs in expected polynomial
time.
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As in the proof of Theorem 5, we can extract openings ofc and cd. As argued there we can find a
permutationπ so c containsπ(1), . . . , π(n). We call the opening ofcd for −d1, . . . ,−dn. This gives us
f1, . . . , fn on the formfi = tπ(i) + di.

From the equationsye
sD = gf andye′

s D = gf ′ we getye−e′
s = gf−f ′ . If e 6= e′ we then haveys = gxs ,

wherexs = (f − f ′)(e− e′)−1. This also meansD = gfy−e
s = gf−exs , soD = gdx , wheredx = f − exs.

We now haveπ andxs, but still need to extract the randomizersR1, . . . , Rn.
We also haveCe

1C2 = COM(fV ; zV ) andCe′
1 C2 = COM(f ′

V ; z′V ) soCe−e′

1 = COM(fV−f ′
V ; zV−z′V ).

The root extraction property gives us an openingrV , r1 of C1, and from this we can compute an opening
dV , r2 of C2. With overwhelming probability the prover must usefV = erV + dV when forming acceptable
arguments.

As in the proof of Theorem 5 we form the matrixT containing challenge rows on the form
(t(j)1 , . . . , t

(j)
n , 1) for j = 1, . . . , n + 1. Calling the entries of the transposed cofactor matrixakj , we have

n+1∑
j=1

akj(t
(j)
1 , . . . , t(j)n , 1) = (0, . . . , 0,det(T ), 0, . . . , 0),

wheredet(T ) is placed in positionk.
For all j, the verification gives us

n∏
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i
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.

For allk = 1, . . . , n we have

(u−1
k Uπ−1(k))

det(T ) =
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.

DefineRk = (
∑n+1

j=1 akjZ
(j)) det(T )−1. Then we haveUπ−1(k) = g

Rπ−1(k)uk.

The final part of the proof is to show that for alli we haveVi = Y Rivπ(i)u
−xs

π(i) . From the equations
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V
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i Vdg
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u
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i U (j)g−dV = Y e(j)Z(j)
.

Given any challenget(j)1 , . . . , t
(j)
n there is negligible probability overe(j) of producing an acceptable argu-

ment unless
n∏

i=1

(viu
−xs
i )−t

(j)
i

n∏
i=1

V
f
(j)
i

i Vdg
−rV = Y Z(j)

.
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Using the same matrixT as before we get fork = 1, . . . , n

(v−1
k uxs

k Vπ−1(k))
det(T ) =

n∏
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i uxs
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.

We then haveVπ−1(k) = Y
Rπ−1(k)vku

−xs
k .

Finally, if the commitment schemes are statistically binding and we use a proof of knowledge of shuffle
of known content, then the proof shows that we have a SHVZK proof of a shuffle. �

6 Speed, Space and Tricks

Adjusting the key length of the commitment scheme. When carrying out the shuffle argument we use
a homomorphic commitment scheme. If we use for instance the Pedersen commitment scheme, then the
public key for the commitment scheme containsn + 1 elements and the cost of making a commitment is a
multi-exponentiation of thosen + 1 elements. Depending on the group sizes, it may be costly to compute
and distribute such a long key.

It is possible to trade off key length and computational cost when making a commitment. Assume for
simplicity in the following thatn = kl. Assume furthermore that we have a homomorphic commitment
scheme that allows us to commit tok elements at once. We can now commit ton elementsm1, . . . ,mn by
setting

c =
(
c1, . . . , cl

)
←

(
com(m1, . . . ,mk), . . . , com(mk(l−1)+1, . . . ,mkl)

)
.

Using the Pedersen commitment scheme, this forces us to makel multi-exponentiations ofk + 1 elements
when making a commitment, but permits a shorter public key.

Batch verification. In the verification phase, the argument of shuffle of known contents has us checking

cecd = com(f1, . . . , fn; z) andce
acd = com(f∆1 , . . . , f∆n−1 , 0; z∆).

Here we have implemented the latter commitment, which is a commitment ton − 1 elements, by using the
n-element commitment and adding a dummy zero. We note that the important thing here is not the fact that
z is the randomizer, but rather that we know some randomizer such that the above equations hold.

If we use one of the commitment schemes suggested in Section 2.3 we can verify both commitments at
once using randomization techniques. Namely, pickα← {0, 1}`e at random and verify

(cecd)αce
ac∆ = com(αf1 + f∆1 , . . . , αfn + 0;αz + z∆).

Suppose, this equality holds for two differentα, α′, then

((cecd)−1com(f1, . . . , fn; z))α−α′ = com(0, . . . , 0; 0).
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We can now run the root extractor to findu so

(ce
acd)−1com(f1; . . . , fn; z) = com(0, . . . , 0;u).

In other words, we have an openingf1, . . . , fn, z − u of ce
acd. We also have an opening

f∆1 , . . . , f∆n−1 , 0, αu + z∆ of ce
ac∆. This means that with overwhelming probability we can find open-

ings ofcecd andce
dc∆ to respective messagesf1, . . . , fn andf∆1 , . . . , f∆n−1 .

The randomization method generalizes to the case where we have multiple commitment equations to
verify. As the number of commitment equation increases the cost of each of them goes down. In addi-
tion, if we use a key of lengthk + 1 elements for the commitments, then we havel commitments that we
can verify with these techniques. In the latter case, we havec = (c1, . . . , cl), cd = (cd,1, . . . , cd,l), ca =
(ca,1, . . . , ca,l), c∆ = (c∆,1, . . . , c∆,l). We pickα1, . . . , αl, β1, . . . , βl ← {0, 1}` and verify

(
l∏

j=1

c
αj

j c
βj

a,j)
e

l∏
j=1

c
αj

d,jc
βj

∆,j

= com
( l∑

j=1

(αjfk(j−1)+1 + βjf∆,k(j−1)+1), . . . ,
l∑

j=1

(αjfkj + βjf∆,kj);
l∑

j=1

(αjzj + βjz∆,j)
)
.

This costs4l + k + 2 exponentiations, mostly tòe-bit exponents. If for instancek ≈
√

n, then the price is
approximately5

√
n exponentiations. Using the straightforward non-randomized approach, we would end up

making2n + 4l exponentiations.
Randomization can also bring down the cost of ciphertext exponentiation in the verification process.

Suppose we are using the shuffle in a mix-net for instance, then the output ciphertexts from one shuffle will
be the input ciphertexts of another shuffle. Calling the output ciphertexts of shufflej for E1,j , . . . , En,j , we
have to check for allj that

n∏
i=1

E
−ti,j
i,j−1

n∏
i=1

E
fi,j

i,j Ed,j = E(1;Zj).

Assume the order of the ciphertext space has no prime divisors smaller than2`. Suppose we perform a total
of N shuffles. Pickingα0 = 0, αN+1 = 0 andα1, . . . , αN ← {0, 1}` at random we can check

N∏
j=1

(
n∏

i=1

E
−αjti,j
i,j−1

n∏
i=1

E
αjfi,j

i,j E
αj

d,j) =
N∏

j=0

(
n∏

i=1

E
−αj+1ti,j+1+αjfi,j

i,j E
αj

d,j) = E(1;
N∑

j=1

αjZj).

This test has at most probability2−` of passing if either of theN equations is false. The straightforward
approach calls forN multi-exponentiations of2n ciphertexts. With the randomized method, we only make
one multi-exponentiation ofN(n + 1) ciphertexts. Even though the exponents are` bits longer, this is a
significant gain.

Online/offline. Many of the prover’s computations can be pre-computed. To carry out the shuffle itself it
is straightforward to selectR1, . . . , Rn in advance and correspondingly compute the rerandomization factors
E(1;R1), . . . , E(1;Rn). This way the shuffle itself can be done very quickly.

In the argument of shuffle of known contents we can computecd, c∆ in advance and in the argument of
shuffle of homomorphic ciphertexts we can computec andcd in advance. This leaves us with the task of com-
putingca in the argument of correctness of known contents, and in the shuffle of homomorphic ciphertexts
we need to computeEd.
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Multi-exponentiation techniques. While pre-computation and randomization lessens the burden for re-
spectively the prover and the verifier, there is still something that remains. The prover has to compute
Ed =

∏n
i=1 E−di

i E(1;Rd), containing a multi-exponentiation ofn ciphertexts. Likewise, the verifier will
also have to compute a multi-exponentiation of many ciphertexts. These are the most expensive operations
the prover, respectively the verifier, will run into.

While most multi-exponentiation techniques focus on relatively few elements, our situation is different.
First, all the ciphertexts are different and cannot be guessed beforehand so pre-computation is not that useful.
Second, we have a huge number of ciphertexts. Lim [Lim00] has suggested a method for precisely this
situation that uses relatively few multiplications. Using his methods, the cost of the multi-exponentiation
corresponds toO(n/ log n) single exponentiations of ciphertexts.

Multi-exponentiation techniques may of course also be applied when computing the commitments and in
any pre-computation phase.

Reducing the length of the exponents. The easiest case is when both the commitment scheme and the
cryptosystem have a message space of the same order. Suppose for instance that we are shuffling ElGamal
ciphertexts where the message space has prime orderq. As a commitment scheme, we can then pick the
Pedersen commitment scheme with message spaceZq. This allows us to reduce all exponents moduloq.

In some cases, voting for instance, it may be important that the messages be protected for a long time
into the future. For this reason, we may for instance select ElGamal encryption with a large modulus as
the cryptosystem. However, the verification of the argument may be something that takes place right away,
soundness only has to hold a short time into the future. Since the Pedersen commitment scheme is statistically
hiding, we get a statistically hiding argument for the correctness of a shuffle and do not need to worry about
the argument itself revealing the messages or the permutation. We can therefore use a Pedersen commitment
scheme with a relatively short modulus. The only important thing here is that the orders of the message
spaces match.

Of course, there may be situations where we have a huge message space for the cryptosystem. In this
case, the cost of a correspondingly large message space for the commitment scheme may be prohibitive. If
we are using the Fiat-Shamir heuristic to compute the challenges, another trick may be worth considering to
bring down the length of the exponents. Recall, we choose`s to be large enough sod anda+d are statistically
indistinguishable whend is chosen as a random|a|+ `s-bit number. A reasonable choice would be`s = 80.
However, in the Fiat-Shamir heuristic we may get by with a much smaller`s, for instancè s = 20. The
idea is to check that we do not create an underflow or overflow that reveals the number we are trying to hide.
Therefore, if we are trying to hide messagea ∈ {0, 1}`a , then we choosed as a random̀a + `s-bit number
and computea + d. However, ifa + d /∈ [2`a ; 2`a+`s) then we reject the argument and start over again. This
distribution hidesa perfectly, but does of course increase the risk of having to start over again if at some
point we do not end up within the interval. However, with a suitable choice of`s the gain we get from having
shorter exponents outweigh the small risk of having to start over again.

Picking the challenges. The important part when we pickt1, . . . , tn is thatn + 1 random vectors on the
form (t(j)1 , . . . , t

(j)
n , 1) should have overwhelming chance of being linearly independent. This is the property

that makes the proof of witness-extended emulation go through.
Instead of the verifier picking all oft1, . . . , tn at random, he may instead pick a seedt for a pseudo-

random number generator at random. Thent1, . . . , tn are generated from this number generator. There is
overwhelming probability thatn+1 vectors(t(j)1 , . . . , t

(j)
n , 1) generated from seedst(j) are linearly indepen-

dent. Furthermore, now we only have to pick a random seed and transmit this instead of pickingn elements
t1, . . . , tn as the challenge. In cases where the verifier is implemented as a multi-party computation, this may
be a significant simplification of the protocol.
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In case the cryptosystem has message space of orderq and the commitment scheme uses message space
Zq we just need linear independence overZq. One way to obtain this is by pickingt at random and setting
t1 = t1, . . . , tn = tn. Vectors on the form(1, (t(j))1, . . . , (t(j))n) correspond to rows in a Vandermonde
matrix. The vectors are independent, since the determinant is non-zero, as long as the seedst(0), . . . , t(n)

are distinct. If we are using multiparty computation, then we can let each server pick a random input to a
collision-free hash function. As long as one of them is honest, the collision-freeness of the hash function
ensures that many such runs would give different seedst(0), . . . , t(n), and thus we would obtain the needed
linear independence.

We can also use a hash-function to pickx, λ ande, all we need is collision-freeness. This way we get
witness-extended, as long as at least one of the parties is honest. However, we may not have a uniform
distribution on the outputs of the hash-function, so we may need to apply standard techniques, for instance
from [GMY03], to retain the zero-knowledge property.

Parallel shuffling. If we have many sets of ciphertext that we want to shuffle using the same permutation,
we can recycle many parts of the protocol. We only need one set of challengest1, . . . , tn, λ, x, e, the argument
for shuffle of known contents can be reused and so canc, cd, f1, . . . , fn. The only extra work the prover needs
to do is to compute a separateEd for each of the sets and correspondingly send aZ to the verifier for each of
the sets. The verifier will then for each of the sets verify

∏n
i=1 e−ti

i

∏n
i=1 Efi

i Ed = E(1;Z). The extra cost
for the prover, for each additional set, is a multi-exponentiation ofn ciphertexts when computingEd. For the
verifier, each additional set costs a multi-exponentiation of2n ciphertexts.

Selecting the cryptosystem for a mix-net. Throughout the paper we have assumed that the input and
output ciphertexts were valid ciphertexts. When designing a mix-net, for instance using the shuffle arguments
presented here, it is of course relevant to verify that indeed the input and output ciphertexts are valid. Attacks
exist [Wik03] that will compromise the privacy of the mix-net if this check is not performed. We will
comment on how an ElGamal cryptosystem can be set up such that this check of the ciphertexts can be done
efficiently and be integrated with the argument of correctness of a shuffle.

Let p = 2qp1 . . . pk + 1, whereq, p1, . . . , pk are distinct primes larger than some bound2`. We letg be
a randomly chosen generator of the unique subgroupGq of orderq. We choose the secret keyx ← Zq and
let y = gx. To encrypt a messagem ∈ Gq we choose(b1, b2, r) ← {−1, 1} × {−1, 1} × Zq and return the
ciphertext(b1g

r, b2y
rm).

This cryptosystem allows for an efficient batch-verification of membership inC = ±Gq × ±Gq. As-
sume we have ElGamal ciphertexts(u1, v1), . . . , (un, vn). We chooseαi ← [0; 2`) and check whether
(
∏n

i=1 uαi
i )q = ±1 and(

∏n
i=1 vαi

i )q = ±1. The tests have probability2−` of passing if any of the cipher-
texts does not belong toC.

If we use` = `e we may uset1, . . . , tn as ourα1, . . . , αn. We check in the shuffle argument that

n∏
i=1

u−ti
i

n∏
i=1

Ufi
i Ud = ±gZ and

n∏
i=1

v−ti
i

n∏
i=1

V fi
i Vd = ±yZ .

As a side effect of these computations we may get out
∏n

i=1 uti
i and

∏n
i=1 vti

i . It only costs a couple of
exponentiations more to test(

∏n
i=1 uti

i )q = ±1 and(
∏n

i=1 vti
i )q = ±1. The test of validity of the ciphertexts

therefore comes at a very low cost. Of course the output ciphertexts can be incorporated into the verification
in a similar manner.
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7 Comparison of Shuffle Arguments

The literature contains several arguments and proofs for correctness of a shuffle. The most efficient argu-
ments and proofs generally follow one of two paradigms. In the paradigm of Furukawa and Sako [FS01]
we commit to a permutation matrix and subsequently argue that indeed we committed to a permutation ma-
trix and furthermore that we have shuffled the ciphertext using the same permutation. This idea has been
improved in [Fur04a]. The second paradigm, used in this paper, was suggested by Neff [Nef01]. In this
paradigm one uses the fact that polynomials are stable under permutation of the roots. Both paradigms have
their merits, here we will compare them and give a rough guide to which one to use.

7.1 HVZK Proof

The first question we must ask ourselves is whether we need computational or unconditional soundness. The
schemes based on permutation matrices are arguments, and we see no way to turn them into HVZK proofs. If
the situation calls for an HVZK proof we therefore recommend following the Neff paradigm. An unfortunate
consequence is that this paradigm leads to 7-move HVZK proofs, so if both unconditional soundness and
low round complexity is desirable then we are in trouble. It is an interesting open problem to come up with
a highly efficient 3-move HVZK proof for correctness of a shuffle.

We remark that for HVZK proofs it is reasonable to use groups of the same size both for the cryptosys-
tem and for the commitments. Therefore, we do not need to distinguish between exponentiations for the
cryptosystem and exponentiations for the commitments, their cost is comparable. Neff [Nef03] suggests an
HVZK proof where the prover uses 8 exponentiations and the verifier uses 12 exponentiations. In compar-
ison, in our scheme using the statistically binding commitment scheme from Section 2.3 the prover uses 7
exponentiations and the verifier 9 exponentiations. However, our scheme does require a longer public key
than Neff’s scheme to get this kind of efficiency.

7.2 HVZK Argument

For ease of comparison with the other schemes we use the standard setting of using ElGamal encryption
and Pedersen commitments with primesq, p whereq|p − 1, |q| = 160, |p| = 1024. Whether this choice is
reasonable is of course something that depends on the application of the shuffle. As argued earlier when we
use statistically hiding commitments and the verification takes place shortly after the shuffle, we only need
from the argument that the soundness holds a short time into the future. In this case the binding property of
the commitment scheme only needs to be temporarily so it is reasonable to choose a small security parameter.
For the commitment scheme|p| = 1024 may therefore be reasonable enough. For higher efficiency we might
also decide to use elliptic curve groups for the commitment scheme. On the other hand, in some cases we
need strong guarantees that the cryptosystem does not reveal anything about the messages many years into
the future. In such a case it would be reasonable to choose a longer security parameter for the cryptosystem.

The permutation matrix based approach was suggested by Furukawa and Sako [FS01]. Their scheme is
not HVZK [FMM+02], but it does hide the permutation, a property called indistinguishability under chosen
permutation attack IND-CPA in [NSNK04]. In their argument the prover uses8n exponentiations and the
verifier10n exponentiations. Furukawa [Fur04a] suggests a 3-move HVZK argument where both the prover
and the verifier uses9n exponentiations. He observes that lettingq = 2 mod 3 allows a simplification of the
protocol so the prover and verifier only need to make8n exponentiations. Making some further changes to
the protocol (unpublished) we have been able to push that further down to6n exponentiations for the prover
and7n exponentiations for the verifier. In comparison, our scheme uses6n exponentiations for both the
prover and verifier. In the earlier version [Gro03] the communication complexity was higher and the scheme
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was less fit for multi-exponentiations so we list both results separately. Table 11 summarizes the complexities
of the various homomorphic shuffles without using randomization or batching in the verification.

Furukawa-Sako Groth Furukawa (improved) proposed
[FS01] [Gro03] [Fur04a] (unpublished)

Prover (expo.) 8n 6n 9n (6n) 6n
Verifier (expo.) 10n 6n 9n (7n) 6n
Communication (bits) 5120n 1184n 1344n 480n
Rounds 3 7 3 7
Key length (bits) 1024n adjustable 1024n adjustable
Privacy IND-CPA SHVZK SHVZK SHVZK

Table 1: Comparison of shuffle arguments

Table 1 should of course be read with care. More important than the number of exponentiations is what
happens when we throw in randomization, batching and multi-exponentiation techniques. As described in
Section 6 the scheme we propose allow using such techniques. We therefore obtain better efficiency than the
other schemes and larger flexibility in terms of trading off key length and computational efficiency.

For situations where round complexity matters the permutation matrix based approach gives us 3-move
schemes and seems like the best choice. In cases where round complexity is of less importance the scheme
we have suggested here is the best choice. It offers a relatively short public key so the cost of key generation
is not too large. It offers the better computational and communicational complexities. In particular, if we are
using the Fiat-Shamir heuristic to make the shuffle argument non-interactive, then round complexity does not
matter much and the present scheme is the superior choice.

7.3 HVZK Argument for Shuffle of Known Contents

We have suggested a 4-move SHVZK argument for shuffle of known contents. When implemented with
Pedersen commitments this argument requires the prover to make 3n exponentiations and the verifier to
make 2n exponentiations. The communication complexity is 320n bits sent from the prover.

If we implement the argument with the statistically binding commitment from Section 2.3 the prover
makes 3n exponentiations and the verifier makes 4n exponentiations.

We do not know of other HVZK arguments for shuffle of known contents in the literature. In some cases
we only need an HVZK argument for shuffle of known contents [Gro05b], and in such cases our scheme
offers a significant saving in comparison with a full shuffle argument.

7.4 Combined HVZK Argument for Shuffle and Decryption

The 7-move SHVZK argument for a shuffle-and-decrypt operation costs 6n exponentiations for the prover
and 7n exponentiations for the verifier. The prover sends 480n bits to the verifier when making the argument.

In comparison [Fur04b] suggests where a 5-move argument, which is not SHVZK but instead has a wit-
ness hiding property. In that argument the prover uses 6n exponentiations and 1344n bits of communication,
while the verifier uses 8n exponentiations.

If we implement our scheme as a SHVZK proof, then the prover uses 8n exponentiations and the verifier
uses 10n exponentiations.

1It is possible to reduce the communication complexity further to 320n bits [Gro04] by combining parts of the argument of shuffle
of known contents and the full shuffle argument.
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