RL OULY |7 J3VUDS) Uo/UA /IO
Computer Science/Mathematics 13 pages

Research Report

On the Entropy of Arcfour Keys

Luke O’Connor

IBM Research Division
Zurich Research Laboratory
8803 Rischlikon

Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

= Research Division
Almaden - Austin - Beijing - Haifa - T.J. Watson - Tokyo - Zurich

U1l LllcC Dllbl'Upy Ul ALCI10OUr I\eys
Luke O’Connor

IBM Research Diwviston, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland

Abstract

Arcfour is a stream cipher that produces a byte keystream B = {b,},, where a key K is used
to select the initial state Sp, and the b, are produced by the state transition §(.5;) = S;41. Let
the byte length of K be |K|, and let So(K) be the initial state produced by K. Two keys
K1, K, are considered equivalent if So(K;) = So(K>), and further K> is weak if |Ki| < |K2.
We show that there is a class of weak keys based on the notion of string periodicity which
contains 256 weak 40-bit keys and 2% weak 128-bit keys. We exhibit 128-bit keys whose
entropy is no more than a byte.

We also present an algorithm for constructing the initial contents of the Arcfour state machine
based on observing Base = {b;}7°3. The method is significantly faster than exhaustive search
for initial the state Sy, and shows that no additional security against brute-force attacks
is expected to be achieved by selecting keys K for which |K| > 57. Also it shows that if
Arcfour is scaled down to operate on 4-bit values with 64-bit keys, say suitable for smart card
environments, the state contents can be recovered in approximately 107 operations.

4livivducuivlLs

Arcfour is a stream cipher recently proposed to the Internet Engineering Task Force [3], and
has been included in several other IETF documents, including an IPSEC Internet Draft [4].
Arcfour operates on variable-length keys, to produce a byte keystream B = {b;},, and is
implemented as a finite state machine. The current state is given by a permutation S of
0,1,...,255 and by two byte pointers z,y into S, which are used in the generation of the
initial state and the next-state function. The state transition function § outputs a byte b,
during each update, and the next message byte m; is encrypted as as ¢; = m; @ b;. The initial
state Sy is generated under the action of a user supplied d-byte key K, |K| =d, 1 < d < 256,
and let this state be So(K). We will say that K; and K, are equivalent, denoted K = Ko, if
So(K1) = So(K3). Equivalent keys produce the same keystream sequence B as § is independent
of the key. A potential problem with the variable-length keys of Arcfour is that if K; = K,
and |Ki| < |K2|, then the entropy of K3 is only 8- |K;| bits rather than the expected 8 - | K|
bits. When Arcfour keys are used with a length of at least 211 bytes, key equivalences must
be present since the number of possible keys exceeds the number of possible initial states
(256! < 2562!1). A more interesting question is to determine if equivalences can be detected
for much shorter keys, for say d € {5,16}, corresponding to 40-bit and 128-bit Arcfour keys
respectively, which are recommended for use [3].

As explained below, Arcfour effectively takes the user supplied key K and creates an ez-
panded key K of 256 bytes. If |[K| < 256 then K is obtained by assigning K to consecutive
d-byte blocks of K until all bytes of the expanded key are assigned. Expressed another way, K
is concatenated with itself [256/d] times, with K being set to the first 256 bytes of this con-
catenation. This implies, for example, that the 1-byte key K; = [1] and the 2-byte K> = [1,1]
will both give the same expanded key, as will K; = [13,249] and K, = [13,249,13,249]. In
both cases the first d/2 bytes of K3 is exactly K, and obviously the byte sequence produced
by copying (concatenating) K, 256/d times is equivalent to copying K; 512/d times. We
will call such equivalent keys periodic, a term borrowed from combinatorial pattern matching.
In the sequel prove that for Arcfour there are exactly 256 periodic 40-bit keys, and exactly
204 — 256% periodic 128-bit keys. In particular, there exist 128-bit keys whose entropy is no
more than a byte. Further, if a mode of Arcfour was introduced based on 64-bit keys, then
the probability of selecting a key with only 32 bits of entropy is about one in 10 billion.

Since the byte length of Arcfour keys is between 1 and 256, it is possible to select a 2048-
bit key but it will not be the case that the effort of recovering such keys is on the order of
22048 operations. As mentioned above, there are less than 2562!! = 21988 initial states, so
no additional security against brute-force attacks can be achieved by increasing key lengths
beyond 1688 bits. However it is possible to recover the contents of the Arcfour state machine
in considerably less time. The obvious brute force strategy is to guess an initial state S5 and
then perform state transitions, producing the keystream B* = {b}}2,, until b% # b; or j = n,
where incorrect initial states will be identified with high probability before j reaches n. An
important observation is that if §(S5}) = Sy, ; then S} and S}, ; differ in at most 2 bytes . Thus,
rather than guess the entire contents of Sy, we assign a few values to 5§ so that bj = by; then
assign more values to ST so that b7 = by, and so on, where we require at most 3 assignments at
each transition (two for the state pointers and one for the key byte). If at any point b # b;,
we backtrack to the greatest j < for which b7 = b; and make new assignments. If B, = B,
then all bytes in S* have been assigned and S? = S,, with high probability.

Because of the backtrack property, this method of finding 5,, is considerably more efficient
than searching through the initial states explicitly. Our experiments have shown that Arcfour
initial states can be recovered by backtrack methods that are expected to examine less than

4 77 searcih nodes. 1nis result indicates that th€ Imaximal entropy ol any Arciour xe€y 1s
expected to be less than 455 bits, or d = 57 bytes. This 455-bit value is derived from the
standard Monte Carlo method [5, p.112] for estimating the size of a backtrack tree. Note that
the description of Arcfour is sufficiently general to be adapted to operate on values other than
bytes. For example, let Arcfour-16 be the scaling of Arcfour (or Arcfour-256) to operate on
4-bit values, with computations reduced modulo 16. Arcfour-16 could be used in smart cards
environments where the 259 bytes needed to represent Arcfour-256 (256 bytes for S and 3
bytes for pointers) is not always available. Arcfour-16 requires less than 10 bytes of storage
and can be operated using 64-bit keys, yielding a nontrivial level of security against exhaustive
search of the keyspace (approximately 10%° keys would have to be searched). However, using
the backtrack algorithm given above, the state contents of Arcfour-16 can be recovered in time
proportional to 107 operations.

The paper is outlined as follows. In section 2 we review the Arcfour algorithms for producing
the initial state, and the keystream sequence B. In section 3 we make some relevant definitions
concerning strings, and then present our weak keys based on the periodicity induced by the
expanded key. In §4 we describe the backtrack algorithm for recovering the contents of the
Arcfour state machine. In §5 we suggest some improvements to the backtrack search algorithm
based on the distribution of the elements in the initial state when random keys are used.

2 Arcfour-n and its Expanded Key

The initial state generation algorithm (IGSA) of Arcfour is shown in Figure 1, and it maps
the identity permutation to Sy under the action of a key. The IGSA is expressed using the
parameter n which indicates that S is a permutation of {0,1,...,n — 1}, and K is an array of
d values from Z,. In this case we will denote the cipher for a given value of n as Arcfour-n,
and standard Arcfour (as described in the introduction) is equivalent to Arcfour-256. We use
this notation since it will be convenient in later sections to consider versions of Arcfour that
operate on values other than bytes. For generality we will refer to S[¢] as a state word , and
refer to key K as a string of d key words KI[0], K[1],..., K[d —1].

The ISGA proceeds by performing n swaps on the state array with the i-th swap! inter-
changing state words S[z] and S[y|. In each of the n iterations of the main loop in the ISGA,
corresponding to the z-th swap, y is updated as a function of itself, a state word and a key

word. The expanded key K = K[0], K[1],..., K[n — 1] of length n is formed from the d-word
key K by concatenating K with itself [Z] times, and letting K be the first n words of this
operation. The algorithm for producing B = {b;}2, is shown in Figure 2, which is similar
to the ISGA, and again it is stated in terms of the parameter n. Note that the change in S
between the output of successive words S[X] is minimal: the state words S[z] and S[y] are
swapped, and if z = y then there is no change. We will use this observation in section §4 to
construct a backtrack algorithm for finding the state contents of Arcfour-n.
In the analysis of later section we will use the following model for the key.

Definition 2.1 The random key model for Arcfour-n is defined as the distribution of initial
states induced by running the ISGA using a key K = K[0], K[1],..., K[n — 1] of length n,
such that each word K|z] is independently and uniformly selected from Z,. a

1As z is bound as 0 < z < n, the swaps are indexed as the 0-th swap, the 1st-swap, and so on.

for z <+ 0to(n—1)do
Slz] «+z ;
K[z] + K[z mod dJ;
od
y« 0,
for z <+ 0to(n—1)do

od
Figure 1: The ISGA for Arcfour-n.

z—y<+—0;

while keystream bytes are required
z < (z+ 1) mod n;
y < (S[z] + y) mod n;

swap (S[z], Sly]);
X « (S[z] + Sly]) mod n ;
output S[X];

od

Figure 2: Keystream generation in Arcfour-n.

3 Periodic Weak Keys

Recall that two keys K, Ky are equivalent if So(K7) = So(K2), and clearly this will be the
case when K; = K,;. We may consider K as a string Xx of length d over an n-ary alphabet
A, = {ag,a2,,...,a,_1} where K[i] is represented as a; if K[:] = i. Let XX = X? denote
the concatenation of X with itself, and let X* = X X*!. The expanded key K for K is then
clearly equal to the first n letters of the string (Xx)* where ¢t = [5]. For two keys K and K,
let |K;| = d; and |K3| = ds. Our goal is then to determine for which values of K; and K, we
have equality in the first n letters of (Xk,)" and (Xk,)™, where ¢; = [—1 ty = [dJ
The following definition can be found in [2], for example.

Definition 3.1 A string X of length d has period b if X can be written as X =YY .-- YV
where |Y| = b, and V is a prefix of Y. If Y is such that |Y| < d then X is periodic and Y is
said to generate X. When no such Y exists then X is said to be aperiodic. a

Thus if Xk is periodic then K has an equivalent key of shorter length. When this is the case
we will say that K is a periodic key, otherwise K is said to be aperiodic. For example, the key
K =12,4,2,4] is periodic while the key K = [1, 3] is aperiodic.

Let X = zg, 21,22 and Y = yg, y1 be strings of lengths 3 and two respectively, and consider
determining which assignments to X and Y yield the equality X? = Y3. Aligning the indices
of X and Y in X? and Y3, respectively, we have that

X2 = 012012
Y3 = 010101

1018 alignment state€s, 1I0r €xXaInple, that the nrstv, tnird and I1ifth Ietters ol ¥ = are all equal to
Yo, and if X2 = Y3 then zq = z; = x5 = yo. Similarly we must have zo = z; = z, = y; which
implies X? can only equal Y3 if X = ¢® and Y = ¢%. A string of the form ¢! will be called a
constant string.

Definition 3.2 Let X = zg,z1,...,2z4_1 and let Y = yo,y1,...,¥_1, b < d, and consider
the alignments between the strings X° and Y9, both of length db. Then the alignment set
A(X,Y,1) of y; is defined as

AX)Y,:) = {jlk=tmodb, k=jmodd, 0<k<db}. (1)
O

We now show that the alignment sets are determined by the subgroup structure of (Z4, +).

Lemma 3.1 Let |X| = d and |Y| = b < d. Let H =< b > be the subgroup of (Z,+)
generated by b. Then A(X,Y,:) = ¢H = {ih | h € H} for i, 0 < i < b, and X* has n¥/I#
generators Y such that Y4 = X°.

Proof. 1t is easily seen that H =< b > is equal to A(X,Y,0). Further, it follows that
A(X,Y,i) = {(:+ h) mod d | h € H}, which is by definition ¢H. Then for Y to generate X*
we must have that for each y;, z; = y; for all 7 € 1H. Thus the number of distinct assignment
to the letters of Y over an n-ary alphabet to generate some X° is n%/!#! since there are d/|H|
distinct cosets 1 H. O

Corollary 3.1 There are 256 periodic 40-bit Arcfour keys.

Proof. In this case d = 5, and note that < b > = Z5 for 1 < b < 5. Thus there are 256%/°
generators Y of strings corresponding to periodic 40-bit Arcfour keys. O

Corollary 3.2 There are 2% periodic 128-bit Arcfour keys.

Proof. In this case d = 16, and note that bd < 256 for all b < d. Thus if < b > = Zyg,
which is the case for all b, gcd(b,16) = 1, then the only periodic key is the constant string ¢y,
Apart from {0}, the only other proper subgroups of Z4 are {0,2,4,6,8,10,12,14}, {0,4,8,12}
and {0,8}, which respectively correspond to periodic keys of the form (cgc1)®, (cocicacs)?,
(co, c1, €2, 3, €4, C5, Cs, c7)%. Since the periodic keys corresponding to {0,8} = < 8 > contain
the other two classes of periodic keys, there are 25616/2 periodic 128-bit Arcfour keys. O

Table 1 lists the forms of the periodic keys for 40- and 128-bit Arcfour keys, and gives the
probability of such a key being selected randomly. The largest set of periodic keys are those
128-bit keys for which the first 8 bytes equals the second 8 bytes, yielding an effective entropy
of 8 bytes. If a mode of Arcfour was introduced that used 64-bit keys then there would exist
keys with only 4 bytes of entropy that would be randomly selected with probability 2732, Thus
this key length should be avoided.

The probability of selecting a periodic key in Arcfour-n is high when full length (d = n)
keys are used, as this probability is at least Pr(K[0] = K[n—1]) = 1/n). Guibas and Odlyzko
[2] have proven that a string over an m-ary alphabet is aperiodic with probability tending
towards % + O(n_?’).

Bit Length Periodic String Probability
40 (co)® 2732
128 (co)t® 2120
128 (co,c1)® 2112
128 (co, c1,ca,c3)* 279
128 (co, c1, €2, €3, €4, C5, Cg, C7)* 264

Table 1: Periodic 40- and 128-bit keys for Arcfour-8 = Arcfour.

S*kl -1, 0<k<n ;
P0]«<0;2+0;75«0
backtrack < false ;

while more permutations do
P + NEXT-PERM-ELEMENT(P,7) ; // 7 increases by one
backtrack < CONSISTENT(S}, P,4,7) ; // ¢ and 7 may increase

while backtrack == true do
P + BACK-PERM-ELEMENT(P, j) // j decreases by at least one ;
backtrack « CONSISTENT(S?, P,4,7) ;
od
od

Figure 3: Pseudo-code for the backtrack recovery of the state contents of Arcfour-n.

4 Recovering State Contents Through Backtrack

Our goal in this section is to obtain an upper bound on the work factor T, of recovering
Arcfour-n keys, from which we conclude that the entropy of an Arcfour-n key is at most log T,
bits. Since determining the initial state So(K) = Sy for a key K is equivalent to knowing K
itself for the cryptanalyst, it follows that T,, < (256!) ~ 2'%8* since the set of initial states
can be searched exhaustively. However we show that a backtrack solution for the recovery
of Sy runs in time much faster than exhaustive search, and in fact, T}, < 2%, To perform
the backtrack solution we assume that the cryptanalyst has access to the first n bytes of the
keystream B, denoted B,.
Consider the set of state transitions

(50,330,?40) — (51,331,?41) — (52,332,?42) —

where the current state is represented by a triple consisting of the current permutation S;
of {0,1,...,n — 1} and two pointers z;,y; € Z,. At the i-th state transition z; and y; are
updated, S;[z;] and S;[y;] are swapped, and a byte b; is emitted. Note that S; and S;;; will
only differ in at most two positions, so that the change in the state permutation from one
transition to the next is small. Consequently, to ‘simulate’ the transition from 5; to S;11 we
need only have knowledge of S;[z,], Si[y;] and the state pointers.

The general approach is to construct another state machine (S¥, z},y*) whose operation

mimics that of S given By for some k < n. Each state word in S}[j] is either —1, meaning

5

1t 1s undeiined, or 1s s€t 1o a value 111 4, distinct Irom otner delned state words. 1hne seéarch
begins by assigning all the words of S to be —1, thus marking them all as undefined. Then
set z = y¢ = 0, and guess the value of S§[zg]. If SE[yo] is defined, then compute the position
of the key byte by relative to Sg[zg] and Sj[yo] which is XF = SE[(Sglzo] + S§[yo]) mod n].
If S3[yo] is not defined, then guess its value and determine X as above. If either (1) by is
assigned to a state word that S3[Xg] does not point to, or (2) SZ[X] is defined but not equal
to by, then one or both of the choices for SE[zf], S¢[ys] is incorrect and we backtrack to make
new choices. If there was no error we make the assignment S§[X§] = bo. In this case we have
constructed an initial state (5§, 25, y3) that is consistent with the output byte by even though
most word values S§[¢] values of are undefined. We may now proceed to make assignments for
(ST, z3,y7) relative to (S§, 28, vys) and by. If the assignment is consistent with b; we proceed
to make assignments for (53, 23, y3), otherwise we backtrack and choose new assignments for
(ST, 23,vy7), and possibly new assignments for (S§, 28, yg).

The pseudocode for the backtrack method to finding the state contents of Arcfour-n is given
in Figure 3. Imagine that during the search j assignments to S* have been made so that 5* is
consistent with bg, by, ..., b;,_1 and we thus consider S* to be in state (S?, z},y’). We will store

these 7 assignments in P as P[0], P[1],..., P[7—1]. When we say that S* is in state (S}, =}, y7)
we mean that one of S*[z,] or Sf[y;] is undefined. Then to facilitate a transition, P must be
extended by assigning values to P[j] and possibly P[j 4 1], corresponding to assignments to
S*lz;) and Sf[y;]. The routine NEXT-PERM-ELEMENT assigns P[j] and increments j by
one, and extending P by k elements requires k calls to this routine. After each extension to
P the routine CONSISTENT is called to determine if the assignments P[0], P[1],..., P[j —1]
are consistent with B;, for some :. If the assignment is not consistent then BACK-PERM-
ELEMENT is called which decreases j until P[0], P[1],..., P[j — 1] is consistent, and selects
a new value of P[j] according to a systematic backtracking strategy.

Both NEXT-PERM-ELEMENT and BACK-PERM-ELEMENT are based on an algorithm
for generating permutations lexicographically. Given P = PI0], P[1],...,P[y — 1], NEXT-
PERM-ELEMENT selects P[j] such that P[0], P[1],..., P[j — 1], P[y] is a prefix of the next
smallest permutation 7 not yet generated, while BACK-PERM-ELEMENT reduces j so that
PI[0], P[1],..., P[5 — 1], P[j] is the longest prefix of the smallest permutation 7 not yet gener-
ated. Thus the search for the initial state examines all permutations, and does not terminate
when it finds the first © consistent with B,,.

Note that P = P[0], P[1],..., P[j — 1] is the order in which values are assigned to state
words. Since the set of state words is a permutation of {0,1,...,n—1} then after n assignments
P is also a permutation, which we will call an assignment permutation. In theory, to test all
possible state contents, P would have to cycle through all n! assignment permutations for
n state words. However, the major gain in efficiency is that if P = P[0}, P[1],..., P[j — 1]
is consistent and P = P|0], P[1],..., P[s — 1], P[j] is not, then all (n — 5 — 1)! assignment
permutations for which P is a prefix can be eliminated from consideration.

Table 2 shows the results of running the backtrack search method on Arcfour-n for various
values of n, using the random key model. We performed experiments using shorter keys but
found no significant deviation from the results presented in Table 2. Columns 2-4 present
results for the Monte Carlo estimation [5, p.112] of the size of the backtrack tree, listed with
the number of sample problems examined and the number of branches in each tree that were
examined (the probes). Columns 5-6 are the results for the true running time of the backtrack
algorithm. Here E[MCS] and E[ES] are the expected number of nodes in the backtrack tree
as determined by the Monte Carlo method and by true exhaustive search, respectively. The
‘1 solution’ column shows the fraction sample problems where only one permutation 7= was
found to be consistent with B,,. In all cases, the maximum number of consistent permutations

Arcfour-n | #samples | #probe | E[MCS] E[ES] | 1 solution (%) | E[ES]/E[MCS]
4 1000 1000 21.1 23.3 77.6 1.12
4 2000 2000 21.3 23.6 77.6 1.11
5 1000 1000 47.1 55.4 96.8 1.17
5 2000 2000 47.0 55.1 95.8 1.17
6 1000 1000 112.1 133.9 97.2 1.19
6 2000 2000 112.3 135.1 95.9 1.2
7 1000 1000 291.1 348.2 98.7 1.19
7 2000 2000 289.4 344.7 98.4 1.19
8 1000 1000 758.1 907.4 99.4 1.19
8 2000 2000 756.6 908.9 99.3 1.2
9 1000 1000 2061.9 2471.3 99.9 1.19
9 2000 2000 2063.9 2477.8 99.6 1.2
10 1000 1000 5723.7 6829.9 99.8 1.19
10 1000 2000 5735.4 6835.3 99.8 1.18
11 1000 1000 17169.0 20228.3 100 1.17
11 1000 2000 17205.1 20304.0 99.9 1.18
12 1000 1000 51402.0 60177.5 100 1.17
12 1000 2000 51772.1 60818.2 99.9 1.17
13 1000 2000 1.6 x10° || 1.8 x10° 100 1.16
14 1000 2000 5.5 x10° | 6.5 x10° 99.9 1.18
15 1000 2000 1.5 x10° - - -
16 1000 2000 5.9 x10° - - -
16 2000 2000 5.8 x10° - - -
32 1000 1000 6.4 x10%° - - -
64 1000 1000 1.1 x10% - - -
128 1000 1000 | 7.1 x10'% - - -
256 1000 1000 | 2.2 <107 - - -
256 1000 5000 | 5.1 x10'3* - - -

Table 2: Summary of results for recovery of state contents in Arcfour-n using backtracking.

found was 2.

We draw two general conclusions from these results. First, the Monte Carlo estimation
method gives a good indication (to within a factor of 2) of the expected number nodes examined
by a full backtrack search. Second, the true initial state So(K') is uniquely identified with high
probability. We see from the table that for Arcfour-256 the search complexity is estimated
as approximately 1037 ~ 2%5 nodes. Then since 87 = 2%% we expect the entropy of all
Arcfour-256 keys to be less than 57 bytes.

5 On the distribution of initial states

The backtrack results of Table 2 are based on generating all permutations (initial states)
in lexicographic order. In this section we examine another approach where the assignment
permutation P is extended or contracted according to an ordering based on the distribution
of elements induced by the IGSA of Arcfour in the random key model. For example, if it

7

Wwas Knowi that the element U 1s very likely to occur at position z, where say ? 1s €veln, we
could attempt to encode this information into the search strategy. There exists some bias the
distribution of elements in the initial state, as we show next.

Lemma 5.1 When n > 2, uniform initial state generation is impossible in Arcfour-n.

Proof. A necessary condition for uniform initial state generation is for d to be selected so that
n!ln?. But since n! > n for n > 2, n! has at least one prime divisor p that is not a prime
divisor of n. O

Thus for all practical choices of n, and all choices of key length, the initial state of Arcfour-n
is distributed non-uniformly. This non-uniformity can be measured in the random key model,
and we make the following definition.

Definition 5.1 Recall that the state vector is pre-initialised to S[¢] = ¢, 0 < ¢ < n. Let
Pr(: — 7) be the probability that Sp[sj] = ¢, under the random key model, 0 < 1¢,7 < n. O

Intuitively the random key model should yield maximally random initial states as the ISGA
operates with the maximum amount of random (key) input. Below we give exact formulas
for Pr(i — j), separated into the three cases ¢ = j, ¢ > j and ¢ < j. The formulas are valid
for n > 2. We sketch the proof of the ¢« = j case but note that the other cases can be proved
similarly.

Theorem 5.1 For ¢, 0 <1 < n,

Pr(i — i) = %(n_1>n_i_l + <n;1>i-¢n(z‘+1) (2)

n

where ¢,(n) = n and for 1 <17 < n,

b L ()T () .

it n n

Proof. (Sketch) We compute Pr(¢ — ¢) by listing the cases where ¢ is moved to S[i] on swap
k, and then not moved (swapped) again. Some observation reveals that there are only two
ways that ¢ can end up at position ¢: (a) either ¢ is swapped to position i on the i-th swap,
and is not involved in any of the remaining n — ¢ — 1 swaps, or (b) 7 is not moved during the
first ¢ — 1 swaps, on the :-th swap it is moved to a position j > ¢, and is then swapped back
to position ¢ on the k-th swap for some k, 7 < k < n. In this case we say that + was moved
forward , and then returned to its desired position.

The probability of case (a) corresponds to the first term on the RHS of (2). For case (b),

the ("n;l)z term is the probability that ¢ is not moved during the first ¢+ swaps, and we claim

that ¢n(z+ 1) is the probability that it is moved forward and then returned to position 7. The
(n — ¢ —1) summation terms of ¢, (i + 1) represent the positions that ¢ can be moved forward

k—iZ1
to. Then with probability 71—1 . ("n;l) , ¢ was moved forward to position k& and remained

there till the k-th swap; on the k-th swap ¢ is swapped to position 2 and not moved again with
n—k
probability 71—1 ("n;l , or moved forward and eventually swapped back to position z with

probability ¢,(k) (note that this probability is not ¢,(k + 1) as the indices of k are bound as
1 < k < n while those of 1 are bound as 0 <1 < n. O

voroliary 9.1 rorz,7, U~ 7 <1 <<n,

Pr(i = j) = 1 <n—1>n—j—1+ <n—1>i‘ [%(n;1>n_i_l+¢n(i+1)]_

n

n n
O
Corollary 5.2 For,5, 0 <1< j <n,
1 -1 n—j—1 -1 i n—1 1 -1 n—k—1
Priiog) = () ()R aaR ()
n n n P n n
7+1
where
- o 1 /m—1\F17 .
Mligok) = (2) T gl — (k=) +1).
n n
O

By evaluating Pr(: — j) from the formulas given above for 3 < n < 8, it was observed
that the only element uniformly distributed under the random key model was ¢ = 0. That is,
Pr(0 — j) = 1/n for all 5, and Pr(¢ — 5) # 1/n for all ¢ # 0, for the values of n tested, but
we have not proved this algebraically. These probabilities can be conveniently represented in
matrix form.

Definition 5.2 Let P, = [P, ;| be the n X n matrix where P, ; = Pr(¢ — j) for 0 < 1,5 < n.
The row medians of P, are defined by the 1 X n matrix o, = [on,], 0 < ¢ < n, where

on(t) = mkin (Z_%Pn,i,j > %) (3)

0<k<n

a

Thus 0,(2) gives the index k in S such that ¢ has an approximately equal chance to be
moved to S[0], S[1],...,S[k] or S[k + 1], S[k + 2],...,S[n — 1] by the ISGA in the random
key model. When S is uniformly distributed then o,(z) = [%1 for all 7, and thus it appears
that ¢,(0) = [%1 in the random key model. The row medians for Arcfour-256 are plotted
in Figure 4, and we note that o956, > 135 for all elements : > 200, where 127 is the row
median for the uniform distribution on 256 elements. Also the explicit values for Ps are given
in Appendix. The P, matrix can be used to order the initial state search, based on the M,

matrix defined next.

Definition 5.3 Let M, = [M,, | be the n X n matrix where M, ,; = k if the j-th largest
value in the 2-th column of P, is P, ;. Equal j-th largest values are sorted in M, according
to their column position in P,. a

Thus the j-th row of M, represents the ordering of the probabilities Pr(: — j) from most
likely to least likely, according to the random key model. We use M,, to order the backtrack
search as follows. The basic step in NEXT-PERM-ELEMENT is to select P[j] as the least
element from {0,1,...,n — 1} that is not included in P[0], P[1],..., P[y — 1], and BACK-
PERM-ELEMENT implements the inverse of this rule. Given M,, and P[0], P[1],..., P[j—1],
NEXT-PERM-ELEMENT can be modified to select P[j] such that it is the most likely element
to position z in the intitial state under the random key model, where ¢ the is next position in
S to be assigned. We will call this ordering of examining the permutations the M-ordering.

9

200

190 - -
180 -
170 -
160 -
row median
150 Rows medians for n = 256 - -
Uniform distribution - - - —_—
140 + L]
130 _— -

120 - T - .

110 | | | | |
0 50 100 150 200 250 300

Figure 4: The row medians for Arcfour-256.

Example 5.1 For n =4, P, and M, are given as

0.250 0.250 0.250 0.250 102 3
0.292 0.222 0.234 0.250 20 3 1

Poo= | 0946 0981 0922 0250 | My =13 41 9 (4)
0.211 0.246 0.292 0.250 01 2 3

The M-ordering for examining the 24 permutations on 4 elements is, from left to right, top
to bottom

(1230) (1203) (1032) (1023) (1302) (1320) (0231) (0213) (0312) (0321) (0132) (0123)
(2031) (2013) (2301) (2310) (2130) (2103) (3201) (3210) (3012) (3021) (3102) (3120)

a

Note that the M-ordering and lexicographic ordering will generate backtrack trees with the
same number of nodes when all permutations are to be tested. On the other hand, our
preliminary results indicate that if the backtrack search terminates when the first permutation
that is consistent with B, is found, then the M-ordering examines 4 — 5% less nodes than
the lexicographic ordering. Table 3 shows results for experiments for several small n, where
E[L] is the expected number of nodes in the lexicographic ordering, and E[M] is the expected
number nodes in the M-ordering, both when the search terminates on the first permutation
found. Note that in comparison to E[ES], which tests all permutations in lexicographic
ordering, the M-ordering searches approximately 53% less nodes. We are currently extending
our computational results to larger n.

6 Conclusion

For many symmetric key ciphers, the entropy or uncertainty associated with a key K is
proportional to 2%l where |K| is its bit length. The entropy is then a measure of the time

10

Arcfour-n | #samples | E[L] E[M] | E[M]/E[L] | E[M]/E[ES]
8 10000 468.2 449.7 0.96 0.495
9 10000 1251.9 | 1190.1 0.96 0.482
10 3000 3398.9 | 3227.8 0.95 0.472
11 3000 9547.2 | 9170.7 0.96 0.452
12 3000 29073.1 | 27500.1 0.947 0.452

Table 3: Summary of results for recovery of state contents in Arcfour-n using backtracking
with M-ordering and lexicographic ordering, exiting on the first consistent permutation found.

to recover keys exhaustively. The main point of this paper has been to show that the length
of an Arcfour key does not necessarily reflect the time required to recovery it (or equivalent
information) exhaustively. Since each K gives rise to exactly one initial state So(K'), and the
state machine is independent of K, then determining So(K) is equivalent to determining K
from the viewpoint of cryptanalysis.

We have defined a class of weak keys for Arcfour based on the notion of string periodicity,
which induces collisions in the initial state for distinct keys. Arcfour keys can be selected
whose entropy is far less than their bit length, and in particular keys of length 2d bytes can
be selected whose entropy is only d bytes. For 128-bit keys this implies a weak key class of 264
keys with an entropy of at most 64 bits. We advise that key generation algorithms for Arcfour
filter out periodic keys, but we also note that such keys are unlikely to be chosen at random.

Our backtrack analysis provides an upper bound on the time to recover arbitrary length
Arcfour keys, and at the moment our analysis indicates that this bound is proportional to
keys of length at most 57 bytes. Our analysis takes advantage of the small changes from one
state S; to the next S;;1, which permits S[z] and S[y] to be guessed and the position of a
key byte by, is determined ‘for free’ (S[z] and S|y] determine the position of by uniquely). Our
comparisons between the Monte Carlo method of estimating the size of a backtrack tree, and
actual the search of the backtrack tree for values of n in the range 4 < n < 14, suggest the
approximation for the n = 256 case is accurate to within a constant. However we will continue
to increase our sample sets.

In §5 we presented an improvement to the backtrack method based on the distribution
Pr(: — j7) of elements in the initial state given the random key model. This distribution
seems to describe the fundamental working of the IGSA, and we expect future research to
exploit it beyond the application of backtrack speed-up. For example, since the distribution
of initial states is not uniform, we may enquire if the distribution of elements can be made ‘close
to uniform’, assuming this is a useful property for Arcfour to possess. An obvious approach
would be to apply the IGSA several times, without resetting it to the identity permutation
between applications. It can be shown that P, is a doubly stochastic matrix whose m-th power
describes the distribution of elements after applying the IGSA m times (without reset) using
random keys. Since P, is non-zero and doubly stochastic, this process is known to converge to
the uniform distribution and we have Pr(: — j7) = 1/n + ¢,;; where ¢;; converges geometrically
to zero with m.

Quoting from [3], Arcfour is ‘believed to be fully interoperable with the RC4 algorithm’,
where RC4 [1] is a trademark of RSA Data Security. If this is the case then our results can
also be applied to RC4, which is under-analysed relative to its widespread use.

11

¢ AppClildiAaA = 18

Using Theorem 5.1 and corollaries 5.1 and 5.2, the row medians of Pg are 0 = [3,3,3,3,3,4,4,4],
while Ps itself is

[0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.158 0.116 0.117 0.119 0.120 0.121 0.123 0.125
0.145 0.152 0.111 0.113 0.115 0.118 0.121 0.125
0.133 0.140 0.148 0.108 0.111 0.115 0.120 0.125
0.122 0.129 0.137 0.147 0.108 0.113 0.119 0.125
0.113 0.120 0.128 0.137 0.147 0.111 0.117 0.125
0.105 0.112 0.120 0.129 0.140 0.152 0.116 0.125

| 0.098 0.105 0.113 0.122 0.132 0.145 0.158 0.125

The values of Pg are graphed in Figure 5, and notice that element 0 is the only uniformly
distributed element. From og we see that 0,1,2,3 and 4 are almost equally likely to appear in
the first or second halves of S. In fact, for ¢ € {0,1,2,3,4}, 0.50 < Pr(z —» 7 |0 < j <3) <
0.5356.

0.16
0.15 n
0.14 - from (0 —
from1 - -
| from2 —
b b'l't0.13 from 3 -+ -
probability - o from 4 —
0.12 - X\ 7 fromb -+ -
N N from 6 —
0.11 - - 4 from?7 -
01— 7
009 | | | | | |
0 1 2 3 4 5 6 7

destination position

Figure 5: A graph of P3. The -th row of Py is plotted on the graph labeled ‘from 2’ for
0 <17 < n. Apart from the horizontal line representing the uniform distribution of Pr(0 — j7),
the general pattern for P,; seems to be for P, ;; to increase until 7 = ¢ — 1, then decrease at
P, ;; and steadily increase again until P, ; 7 = é. Thus each graph has a ‘sawtooth’ appearance.

12

AUCLITITLIVED

[1] Proprietary algorithms. See http://rsa.com/rsalabs/faq/faq_misc.html#misc.6.

[2] L. Guibas and A. M. Odlyzko. Periods in strings. Journal of Combinatorial Theory, Series
A, 30:19-42, 1981.

[3] K. Kaukonen and Thayer. R. A stream cipher encryption algorithm arcfour. Internet Draft,
draft-kaukonen-cipher-arcfour-01.txt, July 1997, available at ftp://ftp.ietf.org/internet-
drafts/draft-kaukonen-cipher-arcfour-01.txt.

[4] Thayer. R. The ESP ARCFOUR algorithm. Internet Draft, draft-ietf-ipsec-ciph-
arcfour-00.txt, June 1997, available at ftp://ftp.ietf.org/internet-drafts/draft-ietf-ipsec-
ciph-arcfour-00.txt.

[5] E. M. Reingold, J. Nievergeld, and N. Deo. Combinatorial Algorithms: Theory and Prac-
tice. Prentice-Hall, 1976.

13

