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Abstract

The Ideal-Cipher Model of a blockcipher is a well-known and widely-used model
dating back to Shannon [24] and has seen frequent use in proving the security of various
cryptographic objects and protocols. But very little discussion has transpired regard-
ing the meaning of proofs conducted in this model or regarding the model’s validity.
In this paper, we briefly discuss the implications of proofs done in the ideal-cipher
model, then show some limitations of the model analogous to recent work regarding
the Random-Oracle Model [2]. In particular, we extend work by Canetti, Goldreich
and Halevi [5], and a recent simplification by Maurer, Renner, and Holenstein [14], to
exhibit a blockcipher-based hash function that is provably-secure in the ideal-cipher
model but trivially insecure when instantiated by any blockcipher.

Keywords: Ideal-Cipher Model, Information-Theoretic Cryptography, Random-Oracle
Model

∗Department of Computer Science, 430 UCB, Boulder, Colorado 80309-0430 USA.
E-mail: jrblack@cs.colorado.edu WWW: www.cs.colorado.edu/∼jrblack



1 Introduction

The Standard Model. Before we can prove the security of a cryptographic system or
object, we must specify what model we are using. The most common model used in mod-
ern cryptography is the so-called “standard model.” Here we use no special mathematical
objects such as infinite random strings or random oracles [2], and we abstract our com-
munications system typically as a reliable but insecure channel. We have not been able to
achieve most common cryptographic goals in the standard model without making additional
complexity-theoretic hardness assumptions, because we still have no proof that any of our
standard cryptographic building blocks have computational lower bounds. The common as-
sumptions are typically that factoring the product of large primes is hard, or that discrete
log is intractible in certain sufficiently large groups, or that AES is a good pseudo-random
permutation (PRP) [15]. The standard model is usually well-accepted in our community
despite the fact that proofs done in this model rest upon unproven assumptions and that
already much relevant real-world context has been abstracted away (timing, power con-
sumption, error messages, and other real-world effects are typically not included as part of
the model in spite of the demonstrated fact they are often relevant to security).

The Random-Oracle Model. When proofs in the standard model are unappealing or
are provably impossible (eg, see [18]), we often resort to proofs using an alternative model.
By far the best-known is the “Random-Oracle Model.” The random-oracle model was used
for some time before being formalized by Bellare and Rogaway [2], and continues to see
widespread use today (there are more than a hundred instances; for a few examples see [2,
10, 17, 20, 23]). In the random-oracle model we have a public random function, accessible
to all parties, which typically accepts any string from {0, 1}∗ and outputs n bits. For each
element in its domain, the corresponding n-bit output is uniform and independent from all
other outputs. Proofs conducted in the random-oracle model often admit schemes which
are provably-secure and more efficient than schemes which have been proven secure in the
standard model, and for this reason the random-oracle model has been widely-adopted.

Of course random oracles do not exist in practice, and if the schemes proven secure in the
random-oracle model are going to be put into use, we must choose some object to implement
the random oracle. This step is called “instantiation.” Most often, random oracles are
instantiated with cryptographic hash functions such as SHA-1 [19]. The following question
then arises: now that we have instantiated our random oracle with a concrete function,
what security guarantees do we have? Does our proof in the random-oracle model have any
bearing on the security of the instantiated system?

For quite some time there has been concern in our community that the random-oracle
model should be treated with suspicion, and proofs in the standard model should be pre-
ferred. As a recent example, the main selling point of the Cramer-Shoup cryptosystem [7]
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is that it is provably-secure in the standard model and still practical (and, as with most
proofs in the standard model, comes with an assumption: the Decisional Diffie-Hellman
assumption [4]). Further doubt has been recently cast on the random-oracle model due to a
string of results exhibiting schemes which are provably-secure in the random-oracle model
but are completely insecure when instantiated by any hash function [1, 5, 6, 14]. Schemes
of this type are called “uninstantiable.”

It has been noted [2] that proofs done in the random-oracle model do guarantee one
thing: if the adversary treats the instantiated random oracle as a black box, promising not
to think about its inner workings, promising not to exploit any unnatural behavior related
to the fact that we have instantiated with some algorithm that has a compact description,
then the proof remains valid in the standard model. Of course there is no guarantee that
real adversaries would abide by such restrictions, and indeed they would be remiss if they
did. Nonetheless, no scheme has thus far been proven secure in the random-oracle model
and then broken once instantiated, unless this was the goal from the start.

The Ideal-Cipher Model. Blockciphers are a common building block for cryptographic
protocols. In the standard model the associated assumption for blockciphers is that they
are “pseudo-random permutations” (PRPs). By this we mean (informally) that an n-bit
blockcipher under a secret randomly-chosen key is computationally indistinguishable from a
randomly-chosen n-bit permutation. Proofs conducted using this assumption typically give
reductions showing that if an adversary breaks some scheme, then there exists an associated
adversary that can efficiently distinguish the underlying blockcipher from random.

There are countless examples where the PRP assumption in the standard model is
sufficient, but there are also plenty of cases where we cannot get a proof to go through. In
certain cases it can be shown that blockcipher-based schemes we believe to be secure cannot
have a proof of security using only the PRP assumption in the standard model [25]. In this
case we are faced with either abandoning attempts at a proof, or using an alternate model.

The blockcipher analog for the random-oracle model is variously called the “Shannon
Model,” the “Black-Box Model,” or the “Ideal-Cipher Model.” We will prefer the latter
name in this paper.

Though not as widely-used as the random-oracle model, the ideal-cipher model dates
back to Shannon [24] and has been used in a variety of settings (see, for example [3, 8, 9, 11,
12, 16, 26]). In the ideal-cipher model we think of a blockcipher E with k-bit key and n-bit
blocksize as being chosen uniformly from the set of all possible blockciphers of this form.
For each key, there are 2n! permutations, and since any permutation may be assigned to
a given key, there are (2n!)2

k

possible blockciphers. When we instantiate our black box, it
becomes some particular blockcipher. AES with a 128-bit key is one choice from the nearly
22263

blockciphers we could have chosen (though in the spirit of Kolmogorov complexity and
in line with the main result of this paper, we should note that the vast majority of these
blockciphers will not have an efficient and compact C implementation).
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The ideal-cipher model is analogous to the random-oracle model with three notable
exceptions:

• The ideal cipher has a permutivity requirement that random oracles obviously do not.

• Adversaries interacting with an ideal-cipher oracle are typically given access to both
the cipher and its inverse.

• The blocksize n of the ideal cipher is typically fixed a priori. This means that an ideal
cipher is a finite object while the random oracle is an infinite one.

The ideal-cipher model has been used in a variety of settings, and like the random-
oracle model, some researchers question the wisdom of its use. The argument is completely
analogous: if a scheme is proved secure in the ideal-cipher model, what exactly are we
guaranteed once the ideal cipher is instantiated by a real blockcipher? And if the answer is
essentially “not much,” then what is the value of such proofs? A common argument against
the ideal-cipher model is that most real-world blockciphers have distinguishing patterns
which would exist with exceedingly small probability in a collection of random permutations.
The key complementation property of DES is a typical example of this [15]. Although no
such properties are currently known for AES, some blockcipher experts who are comfortable
with the assumption that AES is a good PRP are reluctant to model AES as ideal because
of practical concerns: the AES key schedule, for instance, is quite simple and it perhaps
contains related-key properties we have not yet discovered.

As compensation to the adversary for his respecting the blockcipher as a black box,
we often endow him with limitless computational resources. In this respect, many proofs
done in the ideal-cipher model are information theoretic. This too is unrealistic, but here
we are giving the adversary more power rather than enhancing the objects themselves.
Nonetheless, it is saying something about the strength of our model that it allows us to
achieve information-theoretic security.

The main result of this paper is to exhibit a blockcipher-based hash function that is
secure in the ideal-cipher model against information-theoretic adversaries but which is triv-
ially insecure once instantiated with any blockcipher. In order to state this result more
clearly, we take a short detour to review blockcipher-based hash functions.

Blockcipher-Based Hash Functions. One area of recently-renewed interest involves
constructing hash functions from blockciphers. This approach, dating back at least to
Rabin [22], uses some blockcipher E with an n-bit key and an n-bit blocksize, and builds
a compression function from it. Iterating this function then hopefully produces a collision-
resistant hash function. Preneel, Govaerts, and Vandewalle [21] conducted a systematic
study of a class of 64 blockcipher-based hash functions. They focused on compression
functions of the form f(hi−1,mi) = Ea(b)⊕ c where a, b, c ∈ {hi−1, mi, hi−1⊕mi, v} for
some fixed constant v. We can now hash any M ∈ ({0, 1}n)+ by writing M = M1 · · ·M`
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Figure 1: The Matyas-Meyer-Oseas (MMO) compression function [13], called H1 in [3]. E : {0, 1}
n

×
{0, 1}n → {0, 1}n is a block cipher; the hatch mark denotes the location of the key. Iterating this
compression function results in a provably-secure blockcipher-based hash function in the ideal-cipher
model.

and then setting h0 to some constant (typically 0n) and setting hi = f(hi−1,m). We return
h` as the digest. The PGV analysis consisted of testing a series of attacks on each of
these iterated hash functions. Black, Rogaway and Shrimpton [3] considered these same 64
constructions exhibiting either an attack or a proof of security (in the ideal-cipher model)
for each. They determined that 20 of the 64 schemes were provably collision-resistant up
to the birthday bound. For one example, see Figure 1.

Although a proof of security for a blockcipher-based hash function in the standard model
would be prefered, it has been shown that the PRP assumption is insufficient for building
a collision-resistant hash function [25]. Indeed, one can easily imagine a blockcipher Ẽ :
{0, 1}n × {0, 1}n → {0, 1}n that is a good PRP, but which fails when used in the MMO
construction of Figure 1. For example, let blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n be a
good PRP and consider blockcipher Ẽ defined as follows:

Ẽ(K,X) =





K if X = K
E(K,K) if X = E−1(K,K)
E(K,X) otherwise

So Ẽ is the same blockcipher as E with one change: we now have the invariant that
E(K,K) = K for all K ∈ {0, 1}n. Clearly Ẽ is a good PRP since E was: for a randomly-
chosen key K, Ẽ(K, ·) is computationally indistinguishable from a random permutation.
However, using Ẽ in MMO would be inadvisable: it is trivial to find collisions. Specifically,
let H be MMO built on Ẽ with h0 = 0n. Then H(a ‖ Ẽ(0, a)⊕ a) = 0n for all a ∈ {0, 1}n.

Main Result. Given the recent string of results calling into question the validity of the
random-oracle model, it is natural to ask if there are similar results which can be shown
for the ideal-cipher model. Specifically, is it possible to exhibit some cryptographic scheme
which is provably secure in the ideal-cipher model and yet breaks when instantiated with
any blockcipher? Given that ideal ciphers are finite objects whereas random oracles are
infinite objects, this fact might lead one to ask whether results for the random-oracle model
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(in particular uninstantiability results) might break down in the ideal-cipher setting given
that ideal ciphers can be described with a finite string. We will show that the answer to
the above question is “yes”: we exhibit a blockcipher-based hash function which is provably
collision-resistant in the ideal-cipher model and for which it is trivial to find collisions once
the ideal cipher has been instantiated.

We follow the approaches of [5, 14], adapting them to blockciphers and hash functions,
and moving into the concrete (rather than asymptotic) setting. The main idea is to create
a blockcipher-based hash function H̃ that acts normally on most inputs, but acts insecurely
when given a description of its oracle as an input. In the latter case, H̃ tests the oracle
description embedded in its input against the oracle it already has by submitting some
number of test values. If the oracles agree on all values, H̃ outputs a user-specified value
which was also given in the input. The difficulty here is showing that H̃ remains secure
even when behaving this way, and the crucial point is that there a far more possible ideal
ciphers with specified input-output pairs than there are encodings to represent them. All
of this is formalized and rigorously proven in Section 3.

Related Work. Virtually no discussion of the ideal-cipher model has transpired prior
to this work. As already mentioned, much relevant work has appeared in the analogous
random-oracle setting. Random oracles were used implicitly at least 18 years ago by Fiat and
Shamir in their seminal work on identification schemes [10]. Bellare and Rogaway formalized
the notion and argued that the model afforded a path to efficient protocols; as examples,
they gave efficient non-malleable and chosen-ciphertext-secure encryption schemes, a signa-
ture scheme secure against adaptive chosen-message attack, and an efficient zero-knowledge
proof protocol [2]. Canetti, Goldreich, and Halevi gave the first uninstantiable protocol for
the random-oracle model: they exhibited a signature scheme which was provably-secure in
the random-oracle model but which acted insecurely (gave up its key) when instantiated [5].
Their proof is quite complex, involving techniques similar to Micali’s CS-proofs [17]. The
same authors later extended their result to show that there exists a signature scheme, lim-
ited to short messages, which is also uninstantiable [6]. Maurer, Renner, and Holenstein
generalized the results of [5]; they introduced a generalization of indistinguishability called
“indifferentiability” which captures the notion of shared random objects (like random or-
acles) [14]. They state general theorems which imply the result of [5] as a special case,
and give an explicit simplified proof of that result. Their proof is very much in the spirit
of classical Kolmogorov complexity theory as is ours in the present paper. Nielsen [18]
exhibited a protocol that had a simple solution in the random-oracle model, but which had
no provable instantiation in the standard model. Bellare, Boldyreva, and Palacio exhibited
the first “natural” scheme, a hybrid encryption scheme, secure in the random-oracle model
but uninstantiable [1].
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2 Definitions

Basic notions. Let κ, n ≥ 1 be numbers. A blockcipher is a map E : {0, 1}κ × {0, 1}n →
{0, 1}n where, for each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is a permutation on {0, 1}n.
Parameter n is called the blocksize of E, and n will be understood to be this quantity
throughout the paper. If E is a blockcipher then E−1 is its inverse, where E−1

k (y) is the
string x such that Ek(x) = y. Let Bloc(κ, n) be the set of all block ciphers E : {0, 1}κ ×
{0, 1}n → {0, 1}n. Choosing a random element of Bloc(κ, n) means that for each k ∈ {0, 1}κ

one chooses a random permutation Ek(·).
A (blockcipher-based) hash function is a map H : Bloc(κ, n)×D → R where κ, n, c ≥ 1,

D ⊆ {0, 1}∗, and R = {0, 1}c. The function H must be given by a program that, given M ,
computes HE(M) = H(E,M) using an E-oracle. Hash function f : Bloc(κ, n) × D → R
is a compression function if D = {0, 1}a × {0, 1}b for some a, b ≥ 1 where a + b ≥ c. Fix
h0 ∈ {0, 1}

a. The iterated hash of compression function f : Bloc(κ, n)×({0, 1}a×{0, 1}b)→
{0, 1}a is the hash function H : Bloc(κ, n)×({0, 1}b)∗ → {0, 1}a defined by HE(m1 · · ·m`) =
h` where hi = fE(hi−1,mi). Set HE(ε) = h0. We often omit the superscript E to f and H.

We write x
$

← S for the experiment of choosing a random element from the finite set S
and calling it x. An adversary is an algorithm with access to one or more oracles. We
write these as superscripts. The notation |x| denotes the size of the string x, in bits, and
the notation x[i . . . j] denotes the substring of string x starting at the i-th bit of x and
terminating at the j-th bit, inclusive. All bits are numbered starting from 1, and ascending
left-to-right. Finally, x ‖ y denotes the concatenation of strings x and y.

Collision resistance. To quantify the collision resistance of a blockcipher-based hash
function H we instantiate the blockcipher by a randomly chosen E ∈ Bloc(κ, n). An
adversary A is given oracles for E(·, ·) and E−1(·, ·) and wants to find a collision for HE—
that is, M,M ′ where M 6= M ′ but HE(M) = HE(M ′). We look at the number of queries
that the adversary makes and compare this with the probability of finding a collision.

Definition 1 (Collision resistance of a hash function) Let H be a blockcipher-based
hash function, H : Bloc(κ, n) × D → R, and let A be an adversary. Then the advantage
of A in finding collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$

← Bloc(κ, n); (M,M ′)
$

←AE,E−1

: M 6= M ′ & HE(M) = HE(M ′)
]

For q ≥ 1 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is taken over all
adversaries that ask at most q oracle queries (ie, E-queries + E−1 queries).
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3 An Uninstantiable Blockcipher-Based Hash Function

In [3] we find 20 blockcipher-based hash function constructions that are provably secure
in the ideal-cipher model. Specifically, it is shown that Advcoll

H (q) = Θ(q2/2n) for 20
blockcipher-based hash functions H. This bound is about the best we can hope for: a truly
random function would have the same bound due to the birthday phenomenon.

The proofs in [3] are carried out in the ideal-cipher model and the adversaries are
information theoretic. In this section we will show that any scheme H from this set can be
transformed into a related scheme H̃ such that H̃ is uninstantiable. We first outline the
method and then give the details.

Main Idea. Our goal is to produce an uninstantiable blockcipher-based hash function.
We will do this by transforming some scheme which is provably secure in the ideal-cipher
model. For concreteness, select any of the 20 secure schemes from [3] and call it H.

We will describe a related blockcipher-based hash function H̃ which is uninstantiable.
The idea has its roots in Kolmogorov complexity. We adapt the approach of Maurer, Renner,
and Holenstein [14]; when H̃ processes input M , it first decomposes M into three parts:
M = (π, c, v) where the details of this decomposition are left for later. The first parameter,
π is considered to be the encoding of a Universal Turing Machine (UTM), encoded in some
well-defined manner. The second parameter c ∈ {0, 1}σ is a counter that is ignored by H̃,
and the final parameter v ∈ {0, 1}n is the value that the adversary would like to have output
by H̃.

Now H̃ uses its blockcipher oracle O to compute O(i, 0n) for all 1 ≤ i ≤ |π|. (Why we
choose this range will become apparent in the proof below.) It also computes π(i, 0n) for
the same set of i-values. If O(i, 0n) = π(i, 0n) for all 1 ≤ i ≤ |π|, H̃ outputs v. If not, H̃
outputs H(M).

Now consider two cases: in the first case, the oracle to H̃ was an ideal cipher I. This
means that it is highly unlikely there is a sufficiently-short Turing-machine encoding, π,
such that π(·, 0n) would correctly match I on all |π| points, and therefore it is extremely
unlikely that we would have I(i, 0n) = π(i, 0n) for all 1 ≤ i ≤ |π|. This means that in
all likelihood H̃ would output H(M), and we know this construction is provably collision
resistant. And so in this case Advcoll

eH
(q) is Θ(q2/2n) by [3].

Now consider the case where the oracle to H̃ is some blockcipher E; in other words
we have instantiated oracle O with blockcipher E. There therefore exists some Turing
machine π that implements E. Therefore an adversary may simply output two queries
M1 = (π ‖ 0σ ‖ v) and M2 = (π ‖ 1σ ‖ v) for any fixed string v ∈ {0, 1}n he desires. Since
H̃ will discover that E(i, 0n) = π(i, 0n) for all 1 ≤ i ≤ |π|, it will output v for both queries,
and this adversary will have trivially found a collision.
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Note that things could not be worse for H̃, in fact: not only can we find collisions, but
we can find preimages for any output value, second preimages for any output value, and 2σ

inputs which collide on any chosen value.

A Detailed Description. We now proceed to formalize and prove correct the informal
discussion just given. Throughout the remainder of this section, n will denote the blocksize
of our blockciphers.

Definition 2 Blockcipher E is said to be k-efficient if it can be implemented as a Turing
machine never requiring more than k steps to produce its output.

For example, all modern blockciphers are 220-efficient. For the remainder of this sec-
tion, k is assumed to be some fixed value. We next exhibit an uninstantiable blockcipher-
based hash function. Here, by “uninstantiable” we mean that a given hash function H has
Advcoll

H (q) = O(q2/2n), and is therefore secure in the ideal-cipher model, but any instan-
tiation of its blockcipher oracle with a blockcipher E results in a trivially insecure hash
function.

For the remainder of this section we will let H denote some blockcipher-based hash
function which is known to be secure in the ideal-cipher model (such as MMO, in Figure 1).
We now give the algorithm H̃ which is an uninstantiable variant of H, then we prove its
various properties.

Algorithm H̃ accepts messages M from the domain ({0, 1}n)+ and outputs n bits. As
usual, the domain could be extended to M ∈ {0, 1}∗ with an unambiguous padding rule.
We fix two parameters to the algorithm: H, the provably-secure blockcipher-based hash
function just mentioned, and a counter-size σ > 0. We assume the domain of H has been
extended to {0, 1}∗ so we can dispense with concerns about message sizes in our construction
of H̃. We further fix some binary encoding scheme for Universal Turing Machines (UTMs)
such that any UTM can be encoded into a binary string. Furthermore, we assume there
is an efficient function TuringValid that returns true when given a string π that is a valid
UTM encoding under our fixed convention. Finally, we let O denote the blockcipher-oracle
which is used by H̃. The algorithm to compute H̃O(M) is given in Figure 2.

We are now faced with arguing that H̃ is uninstantiable. First notice that H̃ is efficient:
we assume that oracle calls are constant-time, so therefore HO runs in time linear in the
length of the input M . Since we run π for at most k steps, the whole algorithm runs in
time O(k|π|) = O(|M |).

Theorem 3 [H̃ is uninstantiable] Fix some provably-secure blockcipher-based hash func-
tion H and some σ > 0. Let O be a blockcipher oracle. Then function H̃ as described above
is uninstantiable.
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Algorithm H̃(M)
10 if |M | ≤ n + σ then return HO(M)
20 v ←M [|M | − n + 1 . . . |M |]
21 π ←M [1 . . . |M | − n− σ]
30 if ¬TuringValid(π) then return HO(M)
40 for i← 1 to |π|
41 Run π on input (i, 0n) for at most k steps
42 if π does not output n bits then return HO(M)
43 if π(i, 0n) 6= O(i, 0n) then return HO(M)
50 return v

Figure 2: An uninstantiable variant of the provably-secure blockcipher-based hash function H . If the
input encodes a valid UTM, we evaluate |π| values on this UTM and check against our oracle O. If they
match, we simply output v, the last n bits of M . There are σ bits of M which are ignored in order to
help the attacker produce 2σ colliding inputs with digest v. The UTM π is run for at most k steps, where
k is a fixed parameter of the scheme.

Proof: There are two things we must prove: first, that H̃ is secure in the ideal-cipher
model. That is, Advcoll

eHO
(q) = O(q2/2n). Second, that H̃E is insecure for any efficient

blockcipher E.

We begin by showing H̃O is secure when O is modeled by an ideal cipher. Fix q and suppose
adversary A makes q oracle queries to O. (Throughout the proof, we will assume q ≤ 2n/2

since q-values in excess of this render the bound vacuous.) At the end of this process, A
must output a pair of distinct messages M and M ′ in the hope that H̃O(M) = H̃O(M ′).
The probability that he succeeds is the advantage we wish to bound.

There are two types of collisions A may construct given the outputs from his q queries
to O. The first collision is event C1: there exist two distinct messages M1,M2 such that
they collide under the original hash function (ie, H(M1) = H(M2)). We have selected H
such that Pr[C1] = O(q2/2n). The other type of collision A might construct given his q
oracle-query outputs results in event C2 which we describe next.

Extract π as in line 21, and observe the for loop at lines 40 through 43. If at any time, π
does not output n bits, or if the n bits it does output do not agree with O, we relegate the
computation to H. Therefore we are concerned with the condition that π correctly computes
the |π| values required by the test on line 43. If π(i, 0n) = O(i, 0n) for all 1 ≤ i ≤ |π|, we say
π is a “qualifying” program. We define event C2 as true if there exists a qualifying program
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with length at most q bits. If C2 occurs, A will certainly have set v (computed at line 20)
to a colliding value, and so we therefore wish to bound Pr[C2].

Adversary A has made q queries to O and would like to now encode some qualifying pro-
gram π into M , with |π| ≤ q. To this end, there are two possibilities: (1) A outputs a
program π where C2 is guaranteed because he has queried O at all points from 1 to |π|
and there was a qualifying program, or (2) A outputs a program π where there exists some
point j with 1 ≤ j ≤ |π| that A did not query, yet C2 occurs by chance. In the second
case, H̃ will ask π(j) and the probability over choices of O that π(j, 0n) = O(j, 0n) is 1/2n.
Therefore in this case Pr[C2] ≤ 1/2n.

We therefore concern ourselves with the first case, where C2 occurs because A has queried
O(·, 0n) at all points from 1 to |π|. The encoding scheme is of course fixed a priori. Therefore
Pr[C2] is computed over choices of O. Let Q` be the event that there exists a qualifying
program of size `. So C2 = Q1 ∨ · · · ∨ Qq. For fixed ` there are at most 2` possible Turing-
Valid encodings π with |π| = `. We evaluate, at line 43, O(i, 0n) for 1 ≤ i ≤ |π|. Since we
are iterating on the key value for O, there is no permutivity, and therefore outputs will be
uniform on {0, 1}n. This means that, for a fixed i, the probability that π(i, 0n) = O(i, 0n)
is 2−n. The probability this will happen ` times is therefore 2−n`, and given there are 2`

possible encodings, we see
Pr
O

[Q`] ≤ 2`/2n` = 1/2n.

So the chance of finding a qualifying program within q queries is

Pr
O

[C2] = Pr
O

[Q1 ∨ · · · ∨Qq] ≤

q∑

`=1

1/2n =
q

2n
.

Finally, the chance that A can find any collision in q queries is bounded by Pr[C1 ∨ C2] ≤
Pr[C1] + Pr[C2] = O(q2/2n) + q/2n = O(q2/2n), as required.

The second case is quite straightforward. We wish to show that H̃E is insecure for any
efficient blockcipher E. Since E does have a concise Turing-Valid encoding π, we may
simply write two messages

M = π ‖ 0σ ‖ 0n and M ′ = π ‖ 1σ ‖ 0n.

Since the oracle to H̃ is E, and since π agrees with E on every point, the if condition
in line 43 will never hold and we will return v = 0n for each message. Thus we have
H̃E(M) = H̃E(M ′) = 0n, yielding a collision with zero oracle queries required.
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Preimage, Second Preimage, and Multicollisions. Since the instantiated form of H̃
allows us full control over the output, we can clearly find 2σ preimages for any digest of our
choice, and we can similarly find 2σ − 1 second preimages for any given value. Similarly, we
can find multicollisions for any value, and 2σ collisions for each of the 2n possible outputs.
In this sense, H̃E is much worse than just failing to be collision resistant: it fails to have
any security properties at all.

On a technical note, the alert reader will notice that we at no time defined what “in-
secure” means for a blockcipher-based hash function that has been instantiated. This is
because all concrete hash functions are “insecure” if security requires the nonexistence of
any efficient program that outputs a colliding pair of inputs! (Since collisions must exist
for any non-injective map f , there exists a program that simply outputs a colliding pair for
any given f .) Nonetheless, there exists an intuitive notion of security for fixed functions
like SHA-1, and clearly the instantiated version of hash function H̃ is insecure in this sense.

Artificiality. Like all other uninstantiable schemes, H̃ is quite artificial. It is uninstan-
tiable only because it was designed to be, and upon inspection no one would use such a
scheme. It remains to be seen whether there is a more natural construction (where “natu-
ral” is necessarily subjective). Thus far, as in the random-oracle model analog, no scheme
proven secure in the ideal-cipher model has been broken after instantiation, unless that was
the goal from the start.

4 Conclusion and Open Questions

Although the scheme just presented is quite unnatural, it does arouse suspicion as to the
wisdom of blindly using the ideal-cipher model in proofs of security. More evidence to
support this suspicion could be provided by showing that Haes is insecure for a hash
scheme H from [3] that is provably-secure in the ideal-cipher model. Such an attack would
necessarily exploit specific features of AES, but since AES is generally thought to be well-
designed, it would add fuel to the fire.

Probably the short-signature results of [6] could be extended to this setting, but a more
interesting question is whether there exists a “natural” scheme that is provably-secure in
the ideal-cipher model but uninstantiable. Hash functions probably are not the right place
to look for these, but there are many other objects whose proofs rely on the ideal-cipher
model that might provide settings where natural examples of uninstantiable schemes could
be constructed.
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