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Abstract
We prove that for d > 1 the information rate of the perfect secret sharing
scheme based on the edge set of the d-dimensional cube is exactly 2/d.
Using the technique developed, we also prove that the information rate of
the infinite d-dimensional lattice is 1/d.
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1 Introduction

Secret sharing scheme is a method of distributing a secret data among a set of
participants so that only qualified subsets are able to recover the secret. If, in
addition, unqualified subsets have no extra information, i.e. their joint shares
is statistically independent of the secret, then the scheme is called perfect. The
description of the qualified subsets among all possible subsets of participants is
called access structure. The main question is the efficiency of the system: how
many bits of information the participants must remember for each bit of the
secret, either in the average, or in the worst case. The particular case when the
access structure is defined by a graph with vertices as participants, and edges as
minimal qualified subsets attracted considerable interest, see, e.g., [1, 2]. When
the graph is the edge set of the d dimensional cube was considered in [2], giving
upper and lower bounds for the number of bits to be remembered. Determining
the exact value remained an open problem. Using a new technique we solve it.
We extend the definition of information rate for infinite graphs, and investigate
the case when the graph is the infinite d dimensional lattice.

The paper is organized as follows. In the next session we give the definitions
necessary to state and prove our theorems. Section 3 deals with the case of
the d-dimensional cube, section 4 with the lattice. Finally section 5 concludes
the paper, and list some related problems. For undefined notions and for more
introduction to secret sharing schemes see [1, 2|, and for those in information
theory consult [3].



2 Definitions

In this section we recall the notions we shall use later. First we give a formal
definition of a perfect secret sharing scheme, then connect it to submodular
functions.

Let G = (V, E) be a graph with vertex set V and edge set E. A subset A
of V' is independent if there is no edge between vertices in A. A covering of the
graph G is a collection of subgraphs of G such that every edge is contained on
one of the (not necessarily spanned) subgraphs in the collection. The collection
is k-covering if every edge of G is covered exactly k times. For subsets of vertices
we usually omit the U sign, and write AB for AU B. Also, it v € V' is a vertex
then Av denotes AU {v}.

A perfect secret sharing scheme S for a graph G is a collection of random
variables &, for each v € V and a £ (the secret) with a joint distribution so that

e if vw is an edge in G, then &, and &, together determine the value of &;

e if A is an independent set, then & and the collection {§, : v € A} are

statistically independent.
The size of the random variable £ is measured by its entropy, or information
content, and is denoted by H(£), see [3]. The information ratio for a vertex
v (sometimes called participant) of the graph G is H(&,)/ H(&). This value
tells how many bits of information v must remember for each bit in the secret.
The worst case and average information ratio of S are the highest and average
information ratio among all participants, respectively.

Given a graph G its (worst case or average) information ratio is the infimum
of the corresponding values for all perfect secret sharing schemes S defined on G.
The widely used information rate and average information rate is the inverse of
this value. While “information rate” is the customary measure in the literature,
we found “information ratio” more intuitive and use it throughout this paper.

Let S be a perfect secret sharing scheme based on the graph G with the
random variable £ as secret, and &, for v € V as shares. For each subset A of
the vertices let us define

det H{&y : v € 4})
- H(S) '

Clearly, the average information ratio of S is the average of {f(v) : v € V},
and the worst case information ratio is the maximal value in this set. Using
standard properties of the entropy function, cf. [3], we have

(a) f(0) =0, and in general f(A) > 0 (positivity);

(b) if AC B CV then f(A) < f(B) (monotonicity);

(c¢) f(A)+ f(B) > f(ANnB) + f(AU B) (submodularity).
It is well known that for two random variables n and £, the value of 1 determines
the value of ¢ iff H(n¢) = H(n), and n and & are (statistically) independent iff
H(n¢) = H(n) + H(&). Using these facts and the definition of the perfect secret
sharing scheme, we also have
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(d) if A C B, A is an independent set and B is not, then f(4) +1 < f(B)
(strong monotonicity);
(e) if neither A nor B is independent but A N B is so, then f(A) + f(B) >
1+ f(ANB)+ f(AU B) (strong submodularity).
The celebrated entropy method, see, e.g., [1], can be rephrased as follows. Prove
that for any real-valued function f satisfying properties (a)—(e) the average (or
largest) value of f on the vertices is at least p. Then, as functions coming
from secret sharing schemes also satisfies these properties, conclude, that the
average (or worst case) information ratio of G is also at least p. We note that
this method is not necessarily universal, as properties (a)—(c) are too weak to
capture exactly the functions coming from entropy. However, all existing lower
bound proofs use the entropy method, and no example is known where the
entropy method would not work.

We frequently use the submodular (c¢) and the strong submodular (e) proper-
ties in the following rearranged form whenever A, X, and Y are disjoint subsets
of the vertex set V:

(c') fIAX) = f(A) > f(AXY) - f(AY);
moreover, if A is independent (i.e. empty), AX and AY are not, then
(¢') fIAX) = f(A) = f(AXY) — f(AY) + 1.
In particular, if both X and Y contain an edge (and are disjoint), then f(X) >
FXY)— f(Y)+1.
The proof of the following easy fact is omitted:

Fact 2.1 Suppose G2 is a spanned subgraph of G1. The worst case (average) in-
formation ratio of G is at least as large as the worst case (average) information
ratio of Gs.

3 The case of the cube

The d-dimensional cube, denoted here by C?, is the following graph. Its vertices
are 0-1 sequences of length d. Two vertices are connected by an edge if the
sequences differ in exactly one place. This cube can be embedded into the d-
dimensional Euclidean space. Points with all coordinates in the set {0,1} are
the vertices, and two vertices are connected if their distance is 1.

The d-dimensional cube has 2% vertices, d - 2¢7! edges (they correspond to
one-dimensional affine subspaces in the embedding), and each vertex has degree
d. The two-dimensional subspaces are squares, i.e. cycles of length four, we call
them 2-faces. Each vertex v is adjacent to (g) such 2-face, as any pair of edges

starting from v spans a 2-face. Consequently the number of 2-faces is 2472 (g)
For any edge there are exactly (d — 1) many 2-faces adjacent to that edge. It

means that 2-faces, as subgraphs, constitute a (d — 1)-cover of C.

Theorem 3.1 The information ratio of the d > 2 dimensional cube is d/2.



We note that this statement is not true for d = 1. The 1-dimensional “cube”
is the graph with two vertices and an edge between them. In this graph both
worst case and average information ratio is equal to 1, and not to 1/2. The 2-di-
mensional “cube” is the square, i.e. a cycle on four vertices, which is a complete
bipartite graph. Thus both worst case and average information ratio of C? is 1,
in full agreement with the statement of the theorem.

Proof First we prove that this ratio is at most d/2. To this end we construct
a perfect secret sharing scheme witnessing this value. The construction uses
Stinson’s idea from [4].

Let F be a sufficiently large finite field, and X be the (d — 1)-dimensional
vector space over F'. For every 2-face of the cube choose a vector x; € X in such
a way that any d — 1 of these vectors span the whole vector space X. (This is
the point where we use the fact that F' is sufficiently large.) The vectors x; are
public information, and the secret is a random element s € X. For each vector
x; take the inner product a; = s - x;. Clearly, given any (d — 1) of these inner
products, one can recover the secret s. Now suppose the i-th 2-face has vertices
v1, V2, U3, Uy in this order. Distribute a; among these vertices as follows. Choose
a random element r € F' and give it to v; and vs, and give r 4+ a; (computed
in the field F') to v and vy. Any edge of this 2-face can recover a;, thus any
edge of the d-dimensional cube can recover d — 1 of the a;’s, and therefore can
recover the secret s as well. Now consider the values an independent set of the
vertices possess. All different values in this set can be chosen independently and
randomly from F', thus they are (statistically) independent of the secret s.

We have verified that this is a perfect secret sharing system. The secret is
a (d — 1)-tuple from the field F'. Each vertex is given as many elements from

F as many 2-faces it is in, namely (g) elements. Therefore both worst case and

d)/(d— 1) = d/2, which proves the

average information ratio for this scheme is (2

upper bound.

Before handling the lower bound, observe that the worst case and the aver-
age case information ratio for cubes coincide. The reason is that C? is highly
symmetrical. Let H be the automorphism group of the graph C?, this group
has 2¢ - d! elements. If v; and vy are two (not necessarily different) vertices
of C4, then the number of automorphisms 7 € H with 7(v;) = vy is exactly
|H|/|C% = d!. Now let S be any perfect secret sharing scheme on C?, and
apply S for 7C? independently for each 7 € H. The size of the secret in
this compound scheme increases |H|-fold, and each participant will get a share
which has size |H|/|C?-times the sum of all share sizes in S. Therefore in this
“symmetrized” scheme all participants have the same amount of information
to remember, consequently all have the same ratio which equals to the average
ratio of the scheme S.

Thus to prove that d/2 is also a lower bound for both the worst case and
average information ratio of C? it is enough to show that for any real valued
function f satisfying properties (a)—(e) enlisted in section 2 we have

S {fw) :vevy> g.
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This is exactly what we will do.

Split the vertex set of the d-dimensional cube C¢ into two equal parts in
a “chessboard-like” fashion: C? = Ay U By, where Ay and By are disjoint,
independent, and |A,4| = |By| = 297 . Vertices in A4 have neighbors in By only,
and vertices in By have neighbors in A4 only. The (d 4 1)-dimensional cube
consist of two disjoint copy of the d dimensional cube at two levels, and there
is a perfect matching between the corresponding vertices. Each edge of C4+!
is either a vertex of one of the lower dimensional cubes, or is a member of the
perfect matching. Suppose the vertices on these two smaller cubes are split as
Ag U By and A/, U B}, respectively, such that the perfect matching is between
Ag and B/, and between By and A!;. Then the splitting of the vertices of the
(d + 1)-dimensional cube can be done as

Ad+1 = AqU AZ{ and Bgy1 = BgU Bél

Using this decomposition, we can use induction on the dimension d. In the
inductive statement we shall use the following notation:

[4,BI = S r04) - 3" f(A-{a}).

beB acA

When using this notation we implicitly assume that A and B have the same
cardinality.

Lemma 3.2 For the d-dimensional cube with the split C* = Ay U By we have
> f() > [Ag, Ba] + (d— 1)2*71 (1)
veCd

Proof First check this inequality for d = 1. The 1-cube has two connected
vertices a and b. Then, say, A1 = {a}, By = {b}, and equation (1) becomes

f(a) + f(b) > f(ab) — f(0) + 0,

which holds by the submodular property (c) of the function f.

Now suppose (1) holds for both d-dimensional subcubes of the (d + 1)-di-
mensional cube with split Ag41 = Ag U A, and Bqy1 = Bq U B/, as discussed
above. Then by the inductive hypothesis,

S o) = S+ Y W)

vEVi41 veEVyY v eV

[Ag, Ba] + [AL, B4] + (d —1)2%. (2)

Y

Each b € By is connected to a unique o’ € A/}, let (a’,b) be such a pair. Then
f(bAq) — f(Aa) = f(bAaAG —{a}) — f(AdAy—{a'}) (3)

by submodularity. Now let a € Ay any vertex which is connected to b € By.
As b is connected to both a and a', both bA/; and abAl, — {a'} are qualified



(i.e. not independent) subsets, while their intersection, bA!,—{a'}, is independent.
Therefore the strong submodularity yields

f0AY) — f(0AG—{a'}) = 1+ f(bady) — f(baAy—{a'}).
Using this inequality and the submodularity twice we get
A = f(Ag—{a'}) = f(bAY) — f(bAG—{d'})
> 1+ f(badl) — f(baAl,—{a'})
> 14 f(bAaAg) — f(bAAG—{a'}).

Adding (3) to this inequality, for each connected pair (a’,b) from o’ € A/, and
b € B,y we have

FbAG) — f(Ad) + f(AQ) — f(AG—{a'}) = 1+ f(bAaAY) — f(A4Ay—{d'}).
By analogy we can swap (Aq4, Bg) and (A}, B)) yielding
' A — f(AQ) + f(Aa) — f(Aa—{a}) = 1+ f(V'AaAl) — f(AaAy—{a})

for each connected pair (a,b’) from a € A4 and b’ € B/,. There are 2¢7! edges
between A/, and By, and also 297! edges between A, and B/;. Thus adding up
all of these 2¢ inequalities, on the left hand side all f(A4) and f(AY) cancel out,
and the remaining terms give

[Aa, Ba] + [A}, Bj] > [AqAy, BaBj] + 2°.

Combining this with (2) we arrive at

> f) > [AaAy, BaBy] + (d — 1)2¢ + 2%,
vEVa41
which is exactly inequality (1) for d + 1, which was to be proved. |

We continue with the proof of theorem 3.1. Let C¢ = A4U By be the disjoint
“chessboard” splitting of the vertices. As there are exactly 24~ ! vertices in both
Aq and By, we can match them. If (a,b) is such a matched pair, then by strong
monotonicity

f0Aq) — f(Ag—{a}) 2 1,
as Ay —{a} is independent, while bA, is not. Adding up these inequalities we
get
[Ag, Ba] = > f(bAg) = > f(Ag—{a}) > 247"
beBy a€Aq
This, together with the claim of Lemma 3.2 gives

Z f )Qd 1 2d71 _ d2d71.

veEVy

There are 2¢ vertices in Vj, thus the average value of f on the vertices of Vj is
at least d/2. This shows that the average information ratio of the d-dimensional
cube is at least d/2. From this it follows, as has been explained before, that the
worst case information ratio is also at least d/2. |



4 The case of the lattice

The vertices of the d-dimensional lattice L% are the integer points of the d-di-
mensional Euclidean space, i.e. points having integer coordinates only. Two
vertices are connected if their distance is exactly 1, i.e. if they differ in a single
coordinate, and the difference in that coordinate is exactly 1. Of course, L% is
an infinite graph.

Each vertex in L% has degree 2d, and the whole graph is edge transitive.
Namely, given any two edges v,v2 and wyws from L%, there is an automorphism
of L% which maps v; to w; and vy to ws.

Defining information ratio for an infinite graph is not a straightforward task.
As each non-isolated vertex must remember at least as much information as the
secret contains (cf. [4]), the total amount of information to be distributed is
infinite. We need to circumvent this infinity some way.

Definition 4.1 The information ratio of an infinite graph G is the supremum
of the information ratio of all finite spanned subgraphs of G.

By Fact 2.1 the information ratio of a finite graph G is at least as large
as that of its spanned subgraphs. Thus for finite graphs the above definition
gives back the original value. This would not be the case if not only spanned
subgraphs were considered.

Several well-known theorems generalize easily to the infinite case. Here we
mention only two:

Claim 4.2 The information ratio of a complete multipartite graph is 1. |

Claim 4.3 If all vertices of the graph have degree < d, then the worst case
information ratio is at most (d+1)/2. |

As each vertex of the d dimensional lattice has degree 2d, by Claim 4.3 the
information ratio of L? is at most (2d + 1)/2. When d = 1 then actually this is
the truth, namely the information rate of L' is 3/2. The 1-dimensional lattice
is the infinite path. The upper bound 3/2 comes from Claim 4.3, and the lower
bound comes from the following

Fact 4.4 ([1, 2, 4]) If the path abed is a spanned subgraph, then f(b)+ f(c) > 3.

Any two consecutive vertices along the (infinite) path have average (and worst
case) information ratio > 3/2, and then the same bound applies to the whole
L.

For d > 2 the information ratio for L? is smaller than the bound (2d + 1)/2
given by Claim 4.3. In fact,

Theorem 4.5 For d > 2 the information ratio of the d dimensional lattice L?
is d.

Proof First we show that d is an upper bound. This requires a construction of
a perfect secret sharing scheme in which every vertex should remember at most
d times as much information as there is in the secret. Let v be a vertex of L¢
whose all coordinates have the same parity — i.e. either all are odd or all are



even integers. Increase each coordinate of v either by 0 or 1. The resulting 2¢
points form a d-dimensional cube. Consider all of these cubes. They fill out the
whole space in a chessboard-like fashion. Each vertex of L? belongs to exactly
two such cubes: one starting form a point with even coordinates only, and one
starting from a point with odd coordinates only. Furthemore each edge of L¢
belongs to exactly one of these cubes.

Distribute the secret in each of these (infinitely many) cubes independently.
By Theorem 3.1 this can be done so that each vertex of the cube gets exactly
d/2 bits for each bit in the secret. As each vertex in L? is in exactly two cubes,
each vertex gets two times d/2 bits. And as each vertex of L? is a vertex in
some cube, endpoints of a vertex can recover the secret.

The distribution of the shares in each cube was made by a perfect system, and
random values were chosen independently for each cube. Therefore independent
subsets of L? have no information on the secret. This proves that d is an upper
bound for both the average and worst case information ratio.

Proving that d is also a lower bound first we prove a generalizetion of Lemma
3.2. To describe the setting, suppose we have a graph with vertices split into
six disjoint sets (AU A*) U (BU B*) U (A’ U B’). Subsets AU A* U A" and
B U B* U B’ are independent, cardinalities of the subsets A, A’, B, and B’ are
equal, furthermore |A*| = |B*|. Edges of the graph go between A U A* and
B U B*, between A’ and B’, moreover there is a perfect matching between A’
and B, and there is a perfect matching between A and B’. This means, for
example, that each a’ € A’ is connected to exactly one member of B, and there
is no edge, for example, between B’ and A*.

Lemma 4.6 With the notations above, let |A| = |B| = |A’| = |B'| = k. Sup-
pose moreover that each b € B is connected to some a € AUA*, and each b’ € B’
is connected to some a’ € A’. Then

[AA*, BB*] + [A, B'] > 2k + [A’AA*, B'BB].

Proof As in the proof of Lemma 3.2, for b € B let @’ € A’ be the only vertex it
is connected to in A’, and let a € AU A* which b is connected to as well. Then
using submodularity and strong submodularity,

F(AA") = F(AAT) > FOAA*A'{d'}) — FAA"A'~ {d'}),
and

fA) = f(A —{a'}) fOAT) = f(bA"—{d'})

>
> 14 f(bad') — f(bad —{d'})
> 14 f(bAA"A)) — f(bAA™ A~ {d'})

On the other hand, if ¥’ € B’ is connected to a € A, and o’ € A’, then

fOA) = f(A) = fAA"A—{a}) — f(A'A"A—{a}),



and

f(AA") — f(AA" —{a}) fVAA™) — (Y AA™ —{a})
1+ f(a' AA*) — f(Hd' AA* — {a})

1+ f(W AT AA") — F(W A'AA* — {a})

(AVARAVARIVS

Summing up all of these inequalities, 2k in total, f(AA*) and f(A’) are canceled
out, and we get

(3 saa) =3~ jaa—{ah)) + (X f@a) = > f(4~{a})

beB acA beB’ a’'€A’

>2%k+ Y. fOAATA) — )" f(AAA' - {a}).

beBUB’ a€AUA’

The missing part, namely that

D FBAAT) = D F(AAT{ah) = D f(0AATAY) = ) | f(AAA' - {a})

beB* acA* beB* acA*

follows immediately from submodularity and from |A*| = |B*|. |

As we will use Lemma 4.6 inductively, we need to consider the base case
first, namely the case when the dimension is 1. The 1-dimensional lattice is
an infinite path; we handle its finite counterparts. Thus let & > 2 be an even
number, and let ay, by, ..., ag/2, by/2 be the vertices, in this order, of a path of
length k. Let A be the set of odd vertices, and B be the set of even vertices.

Lemma 4.7 For each path P of even length k > 2,
k
> fw) = [A Bl + 5~ L (4)
veEP

Proof By induction on the length of the path. When k& = 2, i.e. the graph
consists of two connected vertices a and b only, then by submodularity

fla) + f(b) = f(ab) = [{a},{b}],

which is just the statement of the lemma.

Now let the first two vertices on the path be a’ and b’ (in this order), and let
A* be the set of odd vertices except for a’, and B* be the set of even vertices
except for &’'. Add two extra vertices, a”, and b” to beginning of the path. The
lemma follows by induction on the length of the path if we show that

f(al/) + f(b//) + [[A*a/7B*b/]] Z 1 + IIA*a/ " B b/b//]]

Now f(a”) + f(b") > f(a”V"), and by submodularity

D fOdAY) = Y f@ AT —{a}) = Y f(bd/d"AT) = > f(a'ad" A"~ {a}),

beB* a€A* beB* acA*



thus it is enough to show that
f(a/lb/l)+f(b/a/A*)_f(A*) 2 1+f(b/a/auA*)+f(b”CL,aNA*)—f(a/A*)—f(a/,A*).
But this is just the sum of the following three submodular inequalities:
f(a//b//) _ f(b/l) Z 1 + f(b/la/al/A*) _ f(bl/a/A*)
fQ@") = f(b"a’A") = f(a’A7)
f(b/a/A*) _ f(A*) Z f(b/a/a//A*) _ f(CLHA*);

the first inequality holds as both a”b" and b”a’ are edges in the graph. |

Now let k£ be an even number, and let Lg be the spanned subgraph of the
the d-dimensional lattice L? where only vertices with all coordinates between 0
and k inclusive are considered. Thus, for example Lg is just the d-dimensional
cube with two vertices along each dimension. As L¢ is a spanned subgraph
of L? whenever k < /¢, the average information ratio of Lz (not necessarily
strictly) increases with k. Observe also that every finite spanned subgraph of
L% is isomorphic to a spanned subgraph of Lﬁ for every large enough k. Thus
the average information ratio of L is the limit of the average information ratio
of L¢ as k tends to infinity. In the sequel we estimate this latter value.

As in the proof of Theorem 3.1, split the vertices of L¢ into two disjoint sets
Ag and B,‘f in a “chessboard-like” fashion so that both sets are independent,
and contain just half of the vertices: |A¢| = |Bf| = k4/2.

Lemma 4.8 With the notation as above,
kd
> f) = [AL B +d(k* — k1) - =

7
veLd

Proof For d =1 this is the claim of lemma 4.7. For larger dimensions we use
induction on d. The (d 4 1)-dimensional lattice Li“ consist of just k levels of
Lg with a perfect matching between the levels. Thus we can apply lemma 4.6
(k —1) times, each application increases the constant by the number of vertices
on the new level, i.e. by k%. Thus the constant for (d4-1) is k times the constant
for d, plus (k — 1) times k. From here an easy calculation finishes the proof.

Theorem 4.9 The average information ratio of the d dimensional lattice of
edge length k is at least d(1 — 1/k).

Proof Using the notations of lemma 4.8, observe that [A¢, BY] can be written
as the sum of k%/2 differences. Each of these differences have value > 1 by the
strong monotonicity, since the first subset contains an edge, while the second
one is independent. Thus [A¢, B{] > k¢/2. Using this, lemma 4.8 gives

> f) = dkt — k).

UELz

As there are k¢ vertices in L¢, the claim of the theorem follows. |
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Setting k = 2 here, we get, as a special case, that the average information
ratio of the d-dimensional cube is at least d/2. This was the hard part of
Theorem 3.1.

Now we can finish the proof of Theorem 4.5. We have seen that d is an
upper bound for the worst case information ratio of the d-dimensional lattice
L% In Theorem 4.9 we gave the lower bound (d — d/k) for the graph L¢, which
can be embedded as a spanned subgraph into L?. Thus the average information
ratio of L¢ is larger than, or equal to, the supremum of (d — d/k) as k runs
over the even integers. Thus d < average information ratio of L¢ < worst case
information ratio < d, which proves the theorem. |

5 Conclusion

Determining the exact amount of information a participant must remember in
a perfect secret sharing scheme is an important problem both from theoretical
and practical point of view. Access structures based on graphs pose special
challenges. They are easier to define, have a transparent, and sometimes trivial,
structure. Thus showing that certain graph-based structures require large shares
might have serious consequences. Research along this line was initiated in [2],
where several questions were asked about the information rate of the access
structure based on the d-dimensional cube. Developing a new technique, we
determined the ezact information rate for all dimensions d > 2, which is 2/d.
Previously this value was known to be between 2/(d 4+ 1) and 4/d.

We extended the definition of information rate to cover infinite graphs. We
consider this extension to be an important contribution, and hope to see further
applications. As a non-trivial example, we determined the information rate of
the (infinite) d-dimensional lattice, which is 1/d.

During the proof we estimated the information rate of the “finite” lattice
L¢ which has exactly k vertices along each dimensions. While the estimate
was enough to get the information rate of the infinite lattice L?, the exact
information rate for the finite graph Lz (both worst case and average) remains
an open problem. To get a better upper bound, consider the following secret
sharing sceme. Use the construction of Theorem 4.5 only inside Lz, and for the
missing edges on the surface use similar construction but with one dimension
less. In this scheme inner vertices will receive a total of d bits, while vertices on
the surface will receive 1/2 bit less. Thus the sum the size of all shares is

1
dk* — 5(1& — (k- 2)%) ~ dk? — dk??,

as there are (k—2)¢ inside vertices in L¢. Comparing this to the bound in Theo-
rem 4.9, the two values are approximately equal, but remains some discrepancy.

Determining the worst case information rate of Lg seems to be a harder
problem. We conjecture that for d > 2, k > 4 this value equals to 1/d, i.e. the
average information rate for the whole infinite lattice. This conjecture was
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verified for d = 2: we showed that there is a graph G which can be embedded
into L2, k > 4 as a spanned subgraph such that for a subset A of the vertices

of G,
> f() = 2/4|

vEA

for each feasible function f. Consequently in any perfect secret sharing scheme
at least one element of A will receive a share which is at least twice as large as
the secret is, i.e. the worst case information ratio of G, and thus of L?, is at
least 2.

Figure 1: the graph G

The graph G is depicted on figure 1. Clearly G is a spanned subgraph of
L% when k£ > 4. The subset in question is formed by the four vertices b, ¢, B,
and C. We need to check that the sum of f(b), f(c), f(B) and f(C) is at least
8. As f(b) + f(c) > f(be) and f(B) + f(C) > f(BC) by submodularity, it is
enough to prove to following

Claim 5.1 In the graph G, f(bc) + f(BC) > 8.

Proof Each of the inequalities below are instances of one of the properties
(a)—(e) of the function f, and the one below the line is their sum:

f(a) + f(b) = f(ab)
f(ab) + f(be) = 1+ f(b) + f(abc)
f(acAC) — f(acA) > f(acACD) — f(acAD) > 1
flacABC) — f(acAC) > 1
flac) = f(a) = f(acB) — f(aB)
f(lacB) — f(aB) > 1+ f(acABC) — f(aABC)
f(abe) — f(ac) > f(abcA) — f(acA)

f(bc) > 4+ f(abcA) — f(aABC)

Swapping lower case and upper case letters leaves the graph unchanged, thus
we also have the “swapped” instance:

f(BC) >4+ f(aABC) — f(abcA).

Adding these latter two inequalities up, we get the required result. |
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