
On Universal Composable Security of
Time-Stamping Protocols

Toshihiko Matsuo and Shin’ichiro Matsuo

R&D Headquarters, NTT DATA Corporation,
1-21-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan

{matsuotsh,matsuosn}@nttdata.co.jp

Abstract. Time-stamping protocols, which assure that a document was
existed at a certain time, are applied to some useful and practical ap-
plications such as electronic patent applications and so on. There are
two major time-stamping protocols, the simple protocol and the linking
protocol. In the former, a time-stamp authority issues a time-stamp to-
ken that is the digital signature of the concatenated value of a hashed
message and the present time. In the latter, the time-stamp authority
issues a time-stamp token that is the hash value of the concatenated
value of a hashed message and the previous hash value. Although se-
curity requirements and analysis for above time-stamping protocols has
been discussed, there are no strict cryptographic security notions for
them. In this paper, we reconsider the security requirements for time-
stamping protocols and define security notions for them, in a universally
composable security sense, which was proposed by Canetti. We also show
that these notions can be achieved using combinations of a secure key
exchange protocol, a secure symmetric encryption scheme, and a secure
digital signature scheme.
Keyword: time-stamping protocol, universal composable security

1 Introduction

Opportunities for creating a lot of digital documents and distributing them over
digital networks are growing rapidly. They include not only various kinds of
private documents but also important documents such as formal applications
and business contracts. It is thus important to be able to prove that a digital
document existed at a certain time. For example, contracts are dated and the
validity of the date may later have to be proven. For patents, the exact date when
it was applied must be shown, and it must be possible to prove the validity of
the date. In stock trading, the exact time when a buy/sell order was placed must
be shown since the gain/loss is directly affected by the time.

Two major time-stamping protocols, the simple protocol and the linking pro-
tocol [ISO,HS91,ACPZ01] that satisfy these requirements have been developed.
The former uses a digital signature as a time-stamp token [ISO,ACPZ01]. A
time stamp authority (TSA) signs the concatenation of the hashed message and
the present time. by using its private signing key. Since the validity of the time-
stamp token depends on that of the digital signature scheme itself, the TSA

must be a trusted third party. In the latter, a time-stamp token is the hash
value of the concatenation of the present hashed message and the previous hash
value [HS91]. A verifier can check the validity of the token by using published
values for the hash chain. In this case, the TSA is not necessarily a trusted
third party. Several variants of linking protocols have been proposed such as
[BLLV98,BLS00]. These two major protocols are already being used by actual
time-stamping services such as Surety [Sure].

1.1 Security requirements of time-stamping protocols

There are two major types of attacks on time-stamping protocols. The first type
is that an adversary may try to back-date the valid time-stamp. This is a fatal
attack for applications in which the priority is based on descendent time order. 1

This type of attack is called a “back-dating attack.” The adversary may corrupt
the TSA and may try to create a forged but valid time-stamp token. The simple
protocol is clearly not secure against TSA corruption, but the linking protocol
is since a verifier can check the validity by computing the chain of hash values
using published hash values.

In the other type of attack, an adversary may try to forward-date the time-
stamp without the approval of the valid requester. This is a fatal attack for
applications in which the priority is based on ascendent time order. 2 This type
of attack is called a “forward-dating attack.”

Although there have been several studies of the security of time-stamping
protocols [HS91,Just98,UM02], there are no strict security notions for them in
a cryptographic (computational) sense.

1.2 Universally composable security

Canetti proposed a framework for defining the security of cryptographic proto-
cols that he called universally composable security (UC security) [C01]. In this
framework, the ideal functionality that achieves a certain service, the set of par-
ties and the adversary are denoted as F , P̃ , and S, respectively. Each party
does not communicate directly with the others, and the adversary can corrupt
any party at any time. On the other hand, the actual protocol that achieves the
service, the set of parties, and the adversary are denoted as π, P , and A, respec-
tively. Then, we assume the existence of an environment Z which communicates
all parties and A. Each party can communicate with the others and A can con-
trol all communication, meaning that A can read or alter all messages among
the parties. A can also corrupt any party at any time. In Canetti’s framework,
protocol π securely realizes F if, for ∀A and ∀Z, there exists an adversary S
which makes Z difficult to distinguish whether she accesses P̃ and S or P and
A. This framework helps us to prove security of large cryptographic protocol
due to following two properties
1 For example, intellectual property rights protection is the case.
2 For example, digital will is the case.

Composition Theorem: The key advantage of UC security is that we can
create a complex protocol from already-designed sub-protocols that securely
achieves the given local tasks. This is very important since complex systems
are usually divided into several sub-systems, each one performing a specific
task securely. Canetti presented this feature as the composition theorem
[C01]. This theorem assures that we can generally construct a large size
“UC-secure” cryptographic protocols by using sub-protocols which is proven
as secure in UC-secure manner.

Hybrid model: In order to state above theorem and to formalize the notion
of an actual protocol with access to multiple copies of an ideal functional-
ity, Canetti also introduced the hybrid model which is identical to the actual
model with the following. On top of sending messages to each other, the par-
ties may send messages to and receive messages from an unbounded number
of copies of an ideal functionality F . The copies of F are differentiated using
their session identifier SIDs. All messages addressed to each copy and all
messages sent by each copy carry the corresponding SID.

There are various studies on the sense of UC security. Although several ideal
functionalities of cryptographic primitives have been proposed 3

[C01,CF01,CK02,C04], there is no definition of functionality of time-stamping
protocol.

1.3 Our contribution

In this paper, we consider the security notions of the time-stamping protocol
and define its functionality based on the UC framework. Our definition follows
that of the signature functionality, FSIG, defined by Canetti [C04] because the
required properties of the time-stamping protocol are similar to those of the
digital signature scheme. However, a time-stamping protocol requires unique
security properties, so we have to newly define its functionality.

In addition, we describe the construction of a secure time-stamping protocol
using the key exchange functionality FKE [C01] and the signature functionality.
Briefly speaking, a time-stamp token requester and a TSA exchange a session key
by using FKE , and then the requester encrypts the message by using the session
key and sends it to the TSA. Then, the TSA time-stamps the received message
by using FSIG so as to include the requester’s ID and returns the token to the
requester. Since the message the requester wants to be stamped is encrypted,
an adversary can not obtain a time-stamp token ahead of a valid requester.
The requester’s ID prevents the adversary from claiming her legitimacy with a
time-stamp token she acquires by observing the transaction.

Organization of this paper is as follows. In section 2, we give our definition
of time-stamping protocols, and describe their security requirements and ideal
functionality. Then we show the construction of a UC secure time-stamping
protocol and its security proof in section 3. In section 4, we discuss a simpler
3 Digital signature, public-key encryption, key exchange, bit commitment etc.

construction and its security. We conclude our study in section 5 with a brief
summary.

2 Time-Stamping Protocols

2.1 Definition

In this paper, we define a time-stamping protocol as follows.

– Let k be a security parameter. A TSA obtains time-stamping key δ and
verification key θ by executing key generation protocol or algorithm SetUp,
which outputs δ and θ on input 1k.

– Each time-stamp token requester executes a time-stamp token generation
protocol and acquires the time-stamp token σ for document d and time t
from the TSA.

– A verifier verifies σ by executing time-stamp token verification protocol or
verification algorithm V er. He verifies σ with θ and auxiliary information ρ.

In the following, we denote a time-stamping protocol by πTS .

2.2 Security requirements

We let an adversary for a time-stamping protocol be an interactive Turing ma-
chine (ITM) 4 [C04]. The adversary (we sometimes denote an adversary by A)
can do anything to the communication between any two parties. A can also
corrupt any party at anytime. The security requirements for a time-stamping
protocol are similar to those for a digital signature; however, we have to take
the following requirements into consideration.

1. A may initiate a man-in-the-middle attack because a time-stamp requester
can not issue a time-stamp token by herself; the requester has to communi-
cate with a TSA.

2. To protect “forward-dating attack,” the time-stamp token should contain
the requester’s ID to make the protocol secure [MO04].

3. In the linking protocol, the verification algorithm needs not only a verifica-
tion key but published hash values to enable σ to be verified.

Therefore, we define the security requirements for a time-stamping protocol as
follows.

Definition 1. Let k be a security parameter and ε(·) be a negligible function on
k. Let δ be a time-stamping key, θ be a verification key, and ID be a unique
identifier of the requester. We say that a time-stamping protocol satisfies the
security requirements if the following properties hold.
4 We sometimes denote an ITM entity by using a calligraphic font.

S

TSA

TSF

),Rev(sid

),OK(sid),Rev(sid

),RevDone(sid

RevFlagcheck
set RevFlag

(1)

(3)

(6)

(5)

(4)

(2)

Fig. 1. Key Revocation process

Completeness For any document d and valid time-stamp token σ stamped at
time t,

Pr
δ

[(δ, θ)← SetUP (1k); 0← V er(θ, ρ, t, d, ID, σ)] ≤ ε(k),

where ρ is valid auxiliary information generated during execution of the pro-
tocol.

Consistency For any document d and valid time-stamp token σ stamped at time
t, the probability that V er(θ, ρ, t, d, ID, σ) generates two different outputs in
two independent invocations is smaller than ε(k), where ρ is valid auxiliary
information generated during execution of the protocol.

Unforgeability Prδ[(δ, θ)← SetUP (1k); {(t0, d0, ID0, σ0, ρ0), (t1, d1, ID1, σ1,
ρ1)} ← AπT S (θ); b ∈ {0, 1}; 1← V er(θ, ρb, tb, db, IDb, σb)] ≤ ε(k),

where ρb is valid auxiliary information generated during execution of the
protocol. Furthermore, (1) either σ0 or σ1 is not generated by TSA or (2)
d0 = d1, ID0 = ID1, and t0 6= t1.

2.3 Ideal functionality and security condition

In the UC framework, all entities are interactive Turing machines [C04]. Each
entity has a session-identifier (SID) that represents the session to which the
entity belongs. It also has a party identifier (PID) that represents the role of
the entity in the protocol instance. The pair sid = (PID, SID) is guaranteed to

S

TSA

TSF

),SetUp(sid

),SetUp(sid),,SetUpDone(!sid

),,SetUpDone(!sid),(!TSA

(1)

(3) (2)

(5) (4)

Fig. 2. Key generation process

be unique in the system. We define the functionality FTS of the time-stamping
protocol as follows. For simplicity, we assume that a TSA manages only one
time-stamping key at one time.

Key revocation (Fig. 1):

1. T SA sends (Rev, sid) to FTS .
2. If sid = (T SA, sid′) for some sid′ and the corresponding revocation flag

RevF lag equals to 1, go to the next step．Otherwise ignore the request.
3. FTS sends (Rev, sid) to S.
4. S sends (OK, sid) to FTS .
5. FTS sets RevF lag ← 0, erases the corresponding record (T SA, θ), and sends

(RevDone, sid) to T SA.

Key generation (Fig. 2):

1. T SA sends (SetUp, sid) to FTS .
2. If sid = (T SA, sid′) for some sid′ and RevF lag = 0, go to the next step.

Otherwise ignore the request.
3. FTS sends (SetUp, sid) to S.
4. S sends (SetUpDone, sid, θ) to FTS .
5. FTS records (T SA, θ) and then sends (SetUpDone, sid, θ) to T SA. FTS

sets the corresponding flag RevF lag ← 1.

Time-stamp token generation (Fig. 3):

1. Time-stamp token requester P sends (StampReq, sid, d) to FTS .

S

P
TSA

TSF

),,qReStamp(dsid

|)|,,qReStamp(dsid

),OK(sid

),qReStamp(sid

),,qReStamp(tsid

),,qReStamp(tsid

),,,StampDone(!"sid

),,,,,,StampDone(!"PIDdtsid

)1,,,,,,(!"#PIDdt

(3)

(1)

(9)

(8)

(7)

(6)

(5)

(4)

(2)

Fig. 3. Time-stamp token generation process

2. If sid = (T SA, sid′) for some sid′, FTS sends (StampReq, sid, |d|) to S.
Otherwise ignore the request.

3. S sends (OK, sid) to FTS .
4. FTS sends (StampReq, sid) to T SA.
5. T SA chooses t and then sends (StampReq, sid, t) to FTS , where t is an

increasing value．
6. FTS sends (StampReq, sid, t) to S．
7. S sends (StampDone, sid, σ, ρ) to FTS .
8. FTS records (t, d, IDP , σ, θ, ρ, 1) and then sends (StampDone, sid, t, d,

IDP , σ, ρ) to P.

Time-stamp token verification (Fig. 4):
Let f, φ ∈ {0, 1}.

1. Verifier V sends (Ver, sid, α) to FTS , where α = (t, d, IDP , σ, θ̃, ρ̃).
2. FTS sends (Ver, sid, α) to S.
3. S sends (VerDone, sid, α, φ) to FTS .
4. FTS executes the following. (1) If (θ̃, ρ̃) = (θ, ρ) and FTS has already

recorded (α, 1), f ← 1. (2) If (θ̃, ρ̃) = (θ, ρ), S does not corrupt the T SA, and
FTS has not recorded (t, d, IDP , σ′, θ, ρ, 1) for ∀σ′, f ← 0 and FTS records
(α, 0). (3) If (θ̃, ρ̃) 6= (θ, ρ) and FTS has already recorded (α, f̃), f ← f̃ . (4)
Otherwise，f ← φ and FTS records (α, φ).

5. FTS sends (VerDone, sid, t, d, IDP , f) to V.

We use Canetti’s definition of the signature functionality FSIG [C04] to define
FTS .

S

TSF

),,Ver(!sid

),,Ver(!sid),,,VerDone(!"sid

V

),,,,,VerDone(fIDdtsid p

Validity check (5)
(4)

(3)(2)

(1)

Fig. 4. Time-stamp token verification process

In the key generation, we define that S can choose the verification key θ. This
is because the security requirements in Def. 1 do not restrict the distribution of
θ. Similarly, we define that S can choose time-stamp token σ and auxiliary
information ρ in the time-stamp token generation.

In the token generation, if S obtains document d itself during protocol ex-
ecution, it is clear that she can acquire its time-stamp token ahead of a valid
time-stamp requester. That is, as soon as S gets d, she can ask the TSA to issue
the time-stamp token for d as a valid requester, ahead of the valid time-stamp re-
quester. This is a fatal attack in applications like electronic patent applications.
Therefore, d must be kept secret until protocol execution ends.

We define the UC security condition of a time-stamping protocol as follows.

Definition 2. Let FTS be an ideal time-stamping functionality, P̃ be the set of
dummy parties, and S be an ideal adversary with access to FTS. Let πTS be the
actual time-stamping protocol, P be the set of actual parties, A be the actual
adversary with access to πTS, and Z be an environment which communicates P
and A. If for any A and Z, there exists S such that Z can not distinguish which
entities she accesses, we say that πTS securely realizes FT S .

3 Construction of UC secure time-stamping protocol

Canetti proposed key exchange functionality FKE and basic signature function-
ality FSIG [C01,C04]．In this section, we describe a construction of UC-secure
time-stamp protocol πTS that is based on FKE and FSIG. For simplicity, we
omit the key revocation procedure.

3.1 Preliminaries

We use FSIG and FKE as proposed by Canetti [C01,C04] in our construction.
Canetti defined FSIG as follows．

Key generation:

1. Signer P sends (KeyGen, sid) to FSIG.
2. FSIG verifies that sid

?= (P, sid′) for some sid′. If it does not hold , FSIG

ignores the request. Else, FSIG sends (KeyGen, sid) to S.
3. S sends (VerificationKey, sid, θ) to FSIG．
4. FSIG records (P, θ) and then sends (VerificationKey, sid, θ) to P.

Signature generation:

1. P sends (Sign, sid, d) to FSIG.
2. FSIG verifies that sid

?= (P, sid′) for some sid′. If it does not hold , FSIG

ignores the request. Else, FSIG sends (Sign, sid, d) to S.
3. S sends (Signature, sid, d, σ) to FSIG.
4. FSIG looks for the record (d, σ, θ, 0). If it is found, FSIG sends an error

message to P and halts. Else，FSIG sends (Signature, sid, d, σ) to P and
then records (d, σ, θ, 1).

Signature verification:

1. Verifier V sends (Verify, sid, d, σ, θ̃) to FSIG.
2. FSIG sends (Verify, sid, d, σ, θ̃) to S.
3. S sends (Verified, sid, d, φ) to FSIG.
4. Upon receiving (Verified, sid, d, φ), FSIG works as follows.

1. If θ̃ = θ and there exists the record (d, σ, θ, 1), f ← 1.
2. If θ̃ = θ, P has not yet been corrupted by S, and there exists no record

such that (d, σ̃, θ, 1) for ∀σ̃, f ← 0.
3. If θ̃ 6= θ and there exists the record (d, σ, θ̃, f̃), f ← f̃ .
4. Else，f ← φ，then records (d, σ, θ̃, φ).

5. FSIG sends (Verified, sid, d, f) to V.

Canetti also defined FKE as follows.
Functionality FKE:

1. Let Pi and Pj be two parties who want to share a key．Pi sends
(exchange, sid,Pi,Pj , β) to FKE .

2. Pj sends (exchange, sid,Pi,Pj , β
′) to FKE . 　　

3. Upon receiving both messages, FKE works as follows.
1. If β = β′ =⊥, κ← {0, 1}k.
2. If β 6=⊥，κ← β.
3. Else，κ← β′.

4. FKE sends (Key, sid, κ) to Pi and Pj , and sends (Key, sid,Pi,Pj) to S.

PTSA

A

SIGFKEF

TS!

V

Fig. 5. Hybrid construction of time-stamping protocol πTS

3.2 Construction of πT S

Let Enc(·, ·) be an ideal symmetric encryption algorithm and Dec(·, ·) be a
corresponding decryption algorithm. We denote the concatenation of a and b by
a · b. We construct πTS by applying hybrid-model as follows (Fig. 5).

Key generation:

1. T SA sends (Key, sid) to FSIG and then executes the key generation process
of FSIG.

2. T SA obtains (VerificationKey, sid, θ) and then outputs (SetUpDone,
sid, θ).

Time-stamp token generation:

1. Time-stamp requester P sends (Start, sid,P, T SA) to T SA.
2. P and T SA share session key κ with FKE .
3. P computes C = Enc(κ, d) and then sends it to T SA.
4. Let M = t·C ·IDP．T SA executes the signature generation process of FSIG

with input (Sign, sid, M) and then obtains (Signature, sid, M, σ). 　　
5. T SA sends (Signature, sid, M, σ) to P.
6. P parses M as M = (t′, C ′, ID′

P). If C ′ = C and ID′
P = IDP，P accepts

σ′ as the signature. Else, P rejects it.

Time-stamp token verification:

1. Verifier V sends (Verify, sid, t · C · IDP , σ, θ̃) to FSIG, and V executes the
verification process of FSIG.

2. V obtains (Verified, sid, t·C ·IDP , f) and then V outputs f if C = Enc(κ, d).
Otherwise it outputs 0.

In the following, we show that πTS securely realizes FTS in the UC secure
sense.

Theorem 1. In the (FKE ,FSIG)-hybrid model, πTS securely realizes FTS in
the UC secure sense for any adversary.

Proof. Let A be an adversary that interacts with entities running πTS . We con-
struct a simulator S such that the view of any environment Z of an interaction
with A and πTS is distributed identically to its view of an interaction with S
in the ideal process for FTS . As usual, simulator S runs an internal copy of A
and of each of the involved parties. All messages from Z to A are written to A’s
input tape. In addition, S does the followings.

Simulating key generation:
On receiving message (SetUp, sid) from FTS , S simulates the key generation
protocol of πTS . That is,

1. S sends (KeyGen, sid) to A and then obtains its return (Verificationkey,
sid, θ).

2. S records (T SA, θ) and sends (SetUpDone, sid, θ) to FTS .

Simulating time-stamp token generation:
On receiving message(StampReq, sid, |d|) from FTS where the requester is P,
S simulates the token generation protocol of πTS before step 4. That is,

1. S simulates FKE , generates a random session key κ, and sends (Key, sid,
T SA,P) to A.

2. S chooses C
R← {0, 1}∗ and records the tuple ((StampReq, sid, |d|), κ, C) in

its list. S returns (OK, sid) to FTS .
3. On receiving message (StampReq, sid, t) from FTS , S simulates the token

generation of πTS after step 3. That is, S sets M = t · C · IDP and sends
(Signature, sid, M) to A. On receiving the tuple (Signature, sid, M, σ)
from A, S sends (StampDone, sid, M, σ, κ, C) to FTS .

Simulating time-stamp token verification:
On receiving message (Ver, sid, α) from FTS , where α = (t, d, IDP , σ, θ̃, k̃, C̃),
S simulates the verification protocol. That is,

1. S sends (Verify, sid, M̃ , σ, θ̃) to A and obtains its return, (Verified, sid, M̃ ,

φ), where M̃ = t · C̃ · IDP .
2. S simulates FSIG, verifies the signature, and records (M̃, σ, θ̃, f) in its list.
S returns (VerDone, sid, α, φ) to FTS .

Simulating requester corruption:
When A corrupts a requester, S corrupts that requester in the ideal process,
and obtains the set of documents {d} that held by the requester. S sends the

documents to A.

Since we assume that Enc(·, ·) is an ideal symmetric encryption, the distri-
bution of ciphertext C of (κ, d) in the simulation is identical to the actual one.
It is obvious that S can obtain all secret information of a requester if A corrupts
it; therefore, any Z can not distinguish which adversary and requesters (A and
P / S and FTS) she accesses. This concludes the proof.

4 Discussion

In the time-stamp token verification of πTS , verifier V first verifies signature σ
and then checks the validity of ciphertext C. Since we defined that the time-
stamp token verification of FTS follows the verification of FSIG, we need this
setting to prove Theorem 1. If verifier V firstly checks the validity of C, V can
reject the signature without activating the verification of FSIG in a case of C is
invalid; however, the proof fails with this setting. This is because S can not check
the validity of C when V (i.e., Z) sends a verification query without activating
FSIG (i.e., A).

However, it is natural that V firstly checks the validity of the ciphertext and
then verifies the signature. To implement this setting, we slightly modify the
definition of the time-stamp token verification of FTS as follows.

Time-stamp token verification:
Let f ∈ {0, 1, ∗}, φ ∈ {0, 1}.

1. Verifier V sends (Ver, sid, α) to FTS , where α = (t, d, IDP , σ, θ̃, ρ̃).
2. FTS executes the following. (1) If (θ̃, ρ̃) = (θ, ρ) and FTS has already

recorded (α, 1), f ← 1. (2) If (θ̃, ρ̃) = (θ, ρ), S does not corrupt T SA, and
FTS has not recorded (t, d, IDP , σ′, θ, ρ, 1) for ∀σ′, f ← 0 and FTS records
(α, 0). (3) If (θ̃, ρ̃) 6= (θ, ρ) and FTS has already recorded (α, f̃), f ← f̃ . (4)
Otherwise，f ← ∗.

3. FTS sends (Ver, sid, α, f) to S.
4. S sends (VerDone, sid, α, φ) to FTS .
5. If f = ∗, then FTS sets f = φ and records (α, φ).
6. FTS sends (VerDone, sid, t, d, IDP , f) to V.

With this setting, S knows the validity of signature σ even if it does not
know the corresponding document d. Therefore, S can simulate the verification.

This modified setting does not provide any advantage to the adversary since
she can record all message-signature pairs related to the verification key that
she chooses; therefore, she can verify the signatures herself. In most standard
digital signature schemes, the verification does not require extraneous commu-
nication; therefore, this indeed corresponds to our intuitive notion of a signature
verification process. We can apply this to the definition of the verification of
FSIG.

In this study, we separate the management of an accurate time t (or a counter
value, a hash value, etc.) from the issuing of a time-stamp token, and we defined
functionality FTS for the token issuing. Hence, FTS does not check the validity
of t. If TSA manages both t and token issuing, FTS is defined such that it checks
the validity of t by comparing it with the latest t′ recorded in its register. In the
linking protocol, a verifier can verify t even if an adversary corrupts the TSA.
On the other hand, in the time-stamping protocol based on a digital signature
scheme, such as the simple protocol, it is an open question of how to implement
the functionality needed for verifying of t.

5 Conclusion

In this paper, we reconsidered the security notions of the time-stamping protocol
and defined its functionality based on the UC framework. Our definition follows
that of the signature functionality defined by Canetti. In addition, we described
the construction of a secure time-stamping protocol using the key exchange
functionality and the signature functionality. We also showed security proof of
our proposed protocol in UC framework.

References

[ACPZ01] C. Adams, P. Cain, D. Pinkas and R. Zuccherato, “Internet X.509 Public
Key Infrastructure Time-Stamp Protocol (TSP),” IETF RFC3161.

[BLLV98] A Buldas, P. Laud, H. Lipmaa and J. Villemson, “Time-stamping with
Binary Linking Schemes,” In Proc. of CRYPTO98, LNCS 1462, pp.486-501,
Springer-Verlag, 1998.

[BLS00] A. Buldas, H. Lipmaa and B. Schoenmakers, “Optimally Efficient Ac-
countable Time-stamping,” In Proc. of PKC 2000, LNCS 1751, pp.293-305,
Springer-Verlag, 2000.

[C01] R. Canetti, “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols,” available at http://eprint.iacr.org/2001

[C04] R. Canetti, “Universally Composable Signatures, Certification, and Authen-
tication,” In Proc. of the 17th Computer Security Foundations Workshop
(CSFW’04).

[CF01] R.Canetti and M.Fischlin, “Universally Composable Commitments,” Ex-
tended version of the paper that appeared at CRYPTO 2001.

[CK02] R.Canetti and H.Krawczyk, “Universally Composable Notions of Key Ex-
change and Secure Channels,” Extended version of the paper that appeared
at EUROCRYPT 2002, pages 337-351.

[HS91] S. Haber and W. S. Stornetta, “How to Time-stamp a Digital Document,”
Journal of Cryptology: the Journal of the International Association for
Cryptologic Research 3, 2 (1991), pages 99-111.

[ISO] ISO/IEC 18014-1, 18014-2 and 18014-3, Information technology – Security
techniques – Time-stamping services – Part 1, Part 2, and Part 3.

[Just98] M. Just, “Some Timestamping Protocol Failures”, In Proc. of the Sympo-
sium on Network and Distributed Security (NDSS98), San Diego, CA, USA,
Mar. 1998, Internet Society.

[MO04] S. Matsuo and H. Oguro, “User-side Forward-dating Attack on Time-
stamping Protocol,” In Proc. of the 3rd International Workshop for Applied
Public Key Infrastructure (IWAP’04), pages 72-83.

[Sure] http://www.surety.com
[UM02] M. Une, and T. Matsumoto, “A Framework to Evaluate Security and Cost of

Time Stamping Schemes,” IEICE Transactions on Fundamentals, EA85-A,
No.1, pp. 125-139, 2002.

