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Abstract

We introduce an efficient random key pre-distribution scheme (RKPS)
whose performance is 2 to 3orders of magnitudebetter than schemes
of comparable complexity in the literature. This dramatic improvement
is achieved by increasinginsecurestorage complexity (for example us-
ing external flash memory). The proposed scheme is a combination of
the Kerberos-like key distribution scheme (KDS) proposed by Leighton
and Micali, and random key pre-distribution schemes based on subset
intersections.

We also investigate a simple security policy, DOWN (decrypt only
when necessary) (which along with very reasonable assurances of tam-
per resistance / read-proofness could ensures that no more thanonese-
cret an be exposed by tampering with a node), and its effect on the secu-
rity of key pre-distribution schemes. The proposed scheme lends itself
well for efficient implementation of the DOWN policy, and therefore
in practice could be a secure and efficient alternative to more complex
conventional key distribution schemes.

1 Introduction

A key distribution scheme (KDS) is a mechanism of distributing
secrets to each node in a system, such that any two nodes1 can
authenticate each other. The process of authentication typically
involves discovery of a shared secret, while simultaneously pro-
viding verification of their claimed identities.

KDSs could be divided into two broad categories. For the first
category, which includes most commonly used KDSs like Ker-
beros (or any KDS based on the Needham-Schroeder symmetric
key protocol [1]) and PKI, the secrets provided to each node are
independent. In other words, secrets of a node do not provide
any information regarding the secrets ofothernodes.

For the second category orkey pre-distributionschemes (KPS),
secrets distributed to each node arenot independent - they are all
derivedfrom a set of secrets chosen by atrusted authority(TA)
(who deploys the network). With KPSs, a group of “colluding”
nodes could pool their secrets together to compromise the entire
system (or obtain secrets ofall nodes). There is thus a concept
of n-secure KPSs. An-secure KPS can resist collusions of up
to n nodes.

Any KPS is essentially atrade-off between security and com-
plexity. A measure of the security isn - the number of colluding
nodes that a KPS can resist. A primary measure of complexity
of a KPS isk - the number of secretsthat need to be stored in

1More generally, any group of nodes.

each node. Theefficiencyof a KPS then, is usually expressed as
a ratio ofn vsk.

Since Blom et al [2] discovered that it is possible to trade-off
security and complexity, many KPSs have been proposed in lit-
erature - the primary difference between the KPSs being the
nature of the trade-off employed. In this paper, we introduce
a novel KPS, I-HARPS (Id-HAshed Random Preloaded Sub-
sets). The trade-off employed by the proposed scheme involves
achieving significant reduction in the size ofk (or size ofsecure
storage)and computational complexity, byincreasing insecure
storage complexity.

The main motivation for the approach is the realization that
insecure storage complexity may not be a crucial issuein many
application scenarios. Flash based SD cards around the corner
are expected have up to 8 GB of storage2. Thus for wireless
devices like hand held communication equipment with add-on
flash memory capabilities, employing a few megabytes, or even
tens of megabytes of that storage for the KDS is not impractical.

By increasing insecure storage complexity, we show that a dra-
matic reduction ofsecurestorage complexity (k), and computa-
tional complexity, is possible. Alternately, for the same secure
storage complexity, a significant increase in security (orn - the
number of colluding nodes that the KPS can resist) is possible.
The proposed scheme is essentially a combination of a KDS
proposed by Leighton3 et al in Ref. [3], and the idea of key
pre-distribution schemes involving random allocation of subsets
of keys to each node, that have been investigated by many re-
searchers in the literature [4] - [12].

The rest of this paper is organized as follows. In Section 2 we
provide a brief introduction to KPSs, and the KDS by Leighton
et al [3]. In Section 3 we introduce I-HARPS, and an analysis of
its security. We also compare the performance of I-HARPS with
other KPSs. We shall see that I-HARPS could be over300 times
more efficientthan other random KPSs of comparable complex-
ity, and about 10 times more efficient than Blom’s KPS (which
however is computationally very expensive), with some “reason-
able” provisioning foradditional insecure storage.

KPSs are typically expected to be employed in “trusted” de-
vices with some hardware protection of stored secrets. In Sec-
tion 4 we review problems and solutions involving protecting

2Even though SD stands for “secure” digital we do not intend to use the
security mechanism offered by SD cards for protecting information stored in
the SD card. Other flash memory cards like CF (compact flash), SM (smart
media), MS (memory stick), MMC (multimedia card) and xD-picture cards offer
comparable storage at comparable prices.

3The authors refer to this scheme as “a software based approach.”
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secrets in trusted devices and indicate how a recently proposed
security policy - DOWN (decrypt only when necessary) [13] can
substantially improve the ability of trusted devices to protect
their secrets. In Section 5 we compare different KPSs in con-
junction with the DOWN policy - which provides an assurance
thatnot more than one secretcan be exposed by tampering with
a device. When I-HARPS (of very reasonable complexity) is
used in conjunction with DOWN, we show that an attacker may
have to compromise secrets from manytens of millionsof nodes
in order to make any kind of dent in the security of the KPS.

2 Key Pre-distribution

A KPS consists of a trusted authority (TA), andN nodes with
unique IDs (sayID1 · · · IDN ). The TA choosesP secretsR
and two operatorsf() and g(). The operatorf(), is used to
determine the secretsSi that are preloaded in nodei. Any two
nodesi and j, with preloaded secretsSi andSj can discover
a unique shared secretKij using apublic operatorg() without
further involvement of the TA. The restrictions onf() andg() in
order to satisfy these requirements can be mathematically stated
as follows:

Si = f(R, IDi);
Kij = g(Si, IDj) = g(Sj , IDi)

= f(R, IDj , IDi) = f(R, IDi, IDj). (1)

As g() is public, it possible for two nodes, just by exchanging
their IDs, to executeg() and discover a unique shared secret.
As the shared secret is a function of their IDs, their ability to
arrive at the shared secret provides mutual assurances toi and
j that the other node possesses the necessary secretsSj andSi,
respectively. The secrets preloaded in each node is referred to as
the node’skey-ring. We shall represent byk, the size of the key
ring.

2.1 Why KPS?

The main disadvantage of Kerberos-like approaches [1] is the
need for an online server for mediation of interaction between
nodes, which is not satisfactory under scenarios wheread hoc
mutual authentication is necessary. While PKI does not have this
issue, there are three major issues that render PKI unsuitable for
many application scenarios:

1. Large computational and bandwidth overheads due to the
need for asymmetric cryptography.

2. Efficient dissemination of public keys in very large-scale
deployments may not be possible as certificate chains [14]
needed for mutual authentication could become very long.

3. For many applications4, the ability to escrow keys may ac-
tually be desirable.

4For example, smart cards with autonomous computational capabilities. As
such devices would be expected toself-destructon sensing tampering attempts,
false-alarms may result in locking away valuable encrypted data from genuine
users, unless key escrow is possible.

KPSs cater for ad hoc mutual authentication by just exchang-
ing IDs. Further, the problem ofchoosingpublic IDs (for ef-
ficient dissemination of public keys) is not an issue with KPS.
Unlike asymmetric schemes where it is not possible in general
to choose public keys (the choice of the private keys determine
the choice of the public keys), with KPSs one can always choose
their public ID - say by hashing a descriptive string like [“First-
Name LastName Affiliation”]). In other words, for any KPS, the
private keys (thek secrets assigned to each node) are determined
by the “public keys” (public ID). Also, KPSs by their very na-
ture, cater for key escrow.

While the problems associated with efficient public key dis-
semination and key escrow are simultaneously overcome by us-
ing identity based cryptography (IBE) [15], they impose the
need forongoing involvementof a trusted third party (as in
Kerberos-like models).

2.2 Deterministic KPS

KPSs themselves may be divided into two broad categories -
deterministic and random KPS. Most KPSs based on finite field
arithmetic [2], [16] - [18] belong to the former category. For
example, in an-secure Blom’s scheme, the TA chooses

(
n+1

2

)
secrets inZP = {0, 1, . . . , P − 1} (whereP is a large enough
prime), and generates a polynomial

f(x, y) =
n∑

i=0

n∑
j=0

aijx
iyj modP, x, y, aij ∈ ZP . (2)

whereaij = aji are
(
n+1

2

)
independent secrets chosen by the

TA. Every node is assigned auniquepublic ID5 from ZP . A
node A (node with public IDA ∈ ZP ) receivesgA(x) =
f(x,A) securely (gA(x) hasn+1 coefficients, corresponding to
k = n+1 secrets of the nodeA) from the TA. Two nodesA and
B can calculateKAB = KBA = f(A,B) = f(B,A) = gA(B) =
gB(A) independently.

A n-secure deterministic KPS is unconditionally secure as long
asn or less nodes have been compromised. If more thann nodes
are compromised however, theentireKPS is compromised - or
failure of the KPS occurs catastrophically. The most efficient
of deterministic KPSs thus far (Blom’s scheme) requires only
k = n + 1 keys in each node to ben-secure. However, Blom’s
scheme is computationally expensive.

To overcome the two major limitations of KPSs based on finite-
field arithmetic (computational complexity and catastrophic fail-
ure) Gong et al [19] and Mitchell et al [20] investigated KPSs
based on allocation of a subset of keys to each node from a pool
of keys. The shared secret between any two nodes is then de-
rived fromall shared keys (say a one way function of all shared
keys). While very naive approaches were used by Gong et al
[19] for allocation of keys, Mitchell et al [20] were influenced
by the seminal work of Erdos et al [21] on subset intersections.
However the complexity involved in allocation of keys in such
approaches, also makes it difficult for the nodes todeterminethe
keys they share6 in order to establish a shared secret.

5The size ofP limits the possible network size.
6To overcome this nodes might have to exchangeP -bit messages to indicate
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2.3 Random KPSs

Dyer et al [4] were the first to point out thatrandom allocation
of subsets(instead of complex deterministic strategies) works
“reasonably well.” More recently, this idea has been employed
by various researchers [5] - [10] in the context of sensor net-
works, and [11] - [12] for mobile ad hoc networks. In this paper,
we refer to all KPSs based on random allocation of subsets as
RPS (randompreloadedsubsets).

Leighton et [3] (in the same paper in which they proposed
the simple and elegant KDS which will be discussed in the
next section) also proposed the first random key pre-distribution
scheme7(which we shall refer to as LM-KPS). Further unlike
RKPSs that followed, LM-KPS isnot based on subset intersec-
tions. LM-KPS is based on distributing keys with different “hash
depths” to each node.

HARPS [12], perhaps the most efficient random KPS thus far8,
is a generalization of RPS and LM-KPS.

Formally, a(P, k) RPS employs a TA who chooses an indexed
set ofP keysK1 · · ·KP . Each node has a unique ID. The TA
chooses public random functionFRPS(), which when “seeded”
by a node ID, yields the allocation of keys for the node. Thus
for a nodeA (node with unique IDA)

FRPS(A) = {A1, A2, . . . , Ak},
A = {KA1 , . . . ,KAk

}. (3)

where1 ≤ Ai ≤ P,Ai 6= Aj for i 6= j. In other words
FRPS() generates apartial random permutation of{1 · · ·P}.
The k-length sequence{A1, A2, . . . , Ak} is the index of the
keys preloaded in nodeA (or node with IDA). A is the set
of secrets preloaded inA. Note that the indexes are public (as
the node ID andFRPS() are public).

In the (k, L) LM scheme, the TA chooses an indexed set of
k secretsK1 · · ·Kk, a cryptographic hash functionh(), and a
public random functionFLM (). For a nodeA,

FLM (A) = {a1, a2, . . . , ak}, 1 ≤ ai ≤ L∀i.
A = {a1K1,

a2K2, . . . ,
akKk}. (4)

Or FLM () generates ak-sequence of uniformly distributed ran-
dom integer values between 1 andL. The nodeA is preloaded
with k keys. Theith preloaded key is nodeA is derived by re-
peatedly hashingith TAs keyai times. The parameterL is the
maximum hash depth. The notationiKj represents the result of
repeatedlyhashing ofKj , i times, using a (public) cryptographic
hash functionh().

In (P, k, L) HARPS, the TA choosesP keysK1 · · ·KP , and
each node is loaded with ahashedsubset ofk keys. The TA has
an indexed set ofP secrets, a cryptographic hash functionh()

the indexes of the keys they share. However, this approach does not implicitly
provide authentication of the node IDs.

7The authors refer to this scheme as “the second basic scheme” in [3].
8Schemes proposed in [9] and [10] - which combine Blom’s scheme with

RPS schemes could be a little more efficient than HARPS. However, the perfor-
mance of such schemes designed for a particularn, deteriorates very rapidly for
n′ > n [12].

and a public random functionFHARPS(). For a nodeA,

FHARPS(A) = {(A1, a1), (A2, a2), . . . , (Ak, ak)},
A = {a1KA1 ,

a2KA2 , . . . ,
akKAk

}. (5)

The first coordinate{A1, A2, . . . , Ak} represents the index of
the keys chosen to be preloaded in nodeA, and the second coor-
dinate{a1, a2, . . . , ak}, the number of times each chosen key is
hashed (using cryptographic hash functionh()) before they are
preloaded in the nodeA.

Note that LM-KPS and RPS are actually special cases of
HARPS. LM-KPS is HARPS withP = k, and RPS is HARPS
with L = 0 (keys are not hashed before pre-loading) orL = 1
(all keys are hashed once before preloading)9.

The concept ofn-secureness is however, not an adequate de-
scription of an RKPS. For any RKPS, an attacker, by exposing
secrets fromne nodes could discover shared secrets between ar-
bitrary nodes with a some probabilitype. Thus a more appropri-
ate description of a RKPS could be(ne, pe)-secure KPS.

In general RKPSs are less efficient than the schemes based on
finite field arithmetic - even though it is stillk = O(n) (ex-
cept for the LM-KPS scheme which needsk ≈ O(n3)). For
instance, to achieve(ne, pe)-security, HARPS [12] needsk ≈
ne
√

e log
(

1
pe

)
keys, and schemes based on random preloaded

subsets [4] - [11] requirek ≈ nee log
(

1
pe

)
(or HARPS is more

efficient by a factor
√

e). RKPSs are alsocomputationally in-
expensive- they need only pure symmetric cryptography primi-
tives like hash functions and / or block ciphers (multiplication is
not needed unlike in Blom’s scheme).

Further, with a(ne, pe)-secure RKPS, exposing keys fromne

devices enables an attackeronly to determineshared secrets be-
tweennodes10. To actually determineall secrets in some node
by exposing secrets from other nodes, the attacker may have
to expose keys from asignificantly highernumber of nodes.
We refer to this type of attack - aimed at exposingall secrets
from a node by exposing secrets fromother nodes - as asyn-
thesisattack11. Thus an even more appropriate characterization
of an RKPS would be as{(ne, pe), (ns, ps)}-secure, where an
attacker needs to compromise secrets from

1. ne nodes to discover shared secrets (between nodes other
than the compromised nodes) with a probabilitype, and

2. ns nodes to accomplish asynthesisattack with a probability
ps.

In general, forpe = ps ns >> ne. For RPS and LM-KPSns is
an order of magnitude higher thanne. For HARPS,ns is more
than two orders of magnitude higher thanne [12].

9In practice choosingL = 1 instead ofL = 0 does not have any implication
on the security of shared secrets between nodes. The only advantage of choosing
L = 1 is that compromise of keys in nodes does not result in compromise of
TA’s keys.

10With which an attacker can impersonate a node for purposes of “fooling”
other nodes. More specifically it isnot possible to fool the TA.

11A synthesis attack enables an attacker to even fool the TA.
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2.4 Leighton - Micali KDS

The LM-KDS [3] (not to be confused with LM-KPS discussed
earlier) is based on a master key, and a strong cryptographic
hash functionh(). The scheme consists of a trusted author-
ity and a set ofN nodesM. The trusted authority chooses
a master keyK. Node i ∈ M is provided with the secret
Ki = h(K, i). For sending a message to nodej ∈ M (which
has secretKj = h(K, j)), nodei performs a look up in apublic
repository (created by the TA, withN2 entries) forPij (Pij is
not a secret), wherePij = h(Kj , i) ⊕ h(Ki, j), and calculates
Kij asKij = Pij ⊕h(Ki, j) = h(Kj , i). The messageM to be
sent toj may be encrypted with a random session keyKS , and
sent toj as

Mij = [i ‖ EKij
(KS) ‖ EKS

(M)]. (6)

Nodej can easily calculateKij = h(Kj , i) as it has access to
Kj .

However, in practice, it may not be feasible to maintain a pub-
lic repository withN2 keys. So the TA may actually need to be
on-line to calculatePij and provide it to the nodes “on demand”.
However, once a nodei obtainsPij (to communicate with node
j), it does not have to getPij again. Further, any nodei may not
need to knowPijs for all possiblej ∈ M. So the nodei could
just store somePijs for some nodes (even in some insecure stor-
age location for easy access).

However,Pijs stored in insecure locations, could have been
modified - and therefore need to be authenticated. For this pur-
pose, a second authentication key is used. The TA chooses an
additional master keyaK, and provides nodei with aKi =
h(aK, i). Additionally, one more public valueAij is used
to authenticate eachPij , whereAij = h(aKi, h(Kj , i)) =
h(aKi,Kij). As the nodei hasaKi, it can check ifKij ob-
tained from aPij (provided by an untrusted source) is valid.

The main difference between the LM-KDS and schemes (like
Kerberos) based on the symmetric Needham-Schroeder protocol
[1] (which also require a trusted on-line server), is that the infor-
mationPij that the node gets from the serverneed not be secret
(nodes do not even need to authenticate themselves to the server
to receivePijs). Further, the TA is not required to be on-line for
everycommunication attempt betweeni andj - nodes need to
access the TAonly once. It is also possible for nodei to getPijs
for a large number ofjs that nodei may desire to communicate
with in the future, in a single attempt.

The security of LM-KDS rests on the assumption that the mas-
ter key cannot be compromised (while for Kerberos-like mod-
els the assumption is that the trusted server cannot be compro-
mised)12. The LM-KDS could however easily be extended to
using multiple master keys (sayt such systems used together,
with master keysK1 · · ·Kt). In this case an attacker would
have to compromise the master keys fromall t systems to break
the system. The authentication secretKij in this case would be
Kij = K1

ij ⊕K2
ij ⊕ · · · ⊕Kt

ij .

12As it may be easier to unconditionally protect a single key in a device rather
than multiple keys, it could be argued that the LM-scheme is more secure than
Kerberos-like models (ifcryptanalyticattacks are considered impractical).

The primarydisadvantageof LM-KDS is that it does not pro-
vide a good solution forrevocationof nodes - some alternate
mechanism needs to be used for this purpose. For Kerberos like
models this is not an issue as the TA would just refuse to honor
requests from revoked nodes for authenticating itself to other
nodes.

2.4.1 Basic KDS vs LM-KDS

In the basicKDS, for a system consisting ofN nodes, the TA
chooses

(
N
2

)
secrets (one for each pair) and assigns each node

with N − 1 secrets. After the keys are assigned in each node,
there is no need for the involvement of the TA for mutual au-
thentication of nodes. Thus the basic KDS is a KPS scheme. In
fact a very secure KPS scheme - no matter how many nodes are
compromised, nodes thatnot compromised are not affected.

The LM-KDS can also be used to facilitate authentication of
nodewithout the involvement of the TA(or work like a KPS
scheme). In this case, each node (say nodei) just needs to store
N − 1 Pij values. While both approaches (basic KDS vs LM-
KDS) have the same storage complexity, there is one noteworthy
difference. For the basic KDS,N − 1 secretsneed to be stored.
For LM-KDS theN − 1 Pij values need not be protected.

2.5 The Perfect KPS?

We can already see that ifinsecure storage complexity is not an
issuethe LM-KDS is indeed a very efficient KPS! Each node
just needs to store one secret13! Further, no coalition of nodes
can compromise secrets of other nodes (as long as cryptanalytic
attacks are infeasible). In fact for medium scale deployments
involving say few tens of millions of nodes, LM KDS may be
a feasible solution (even if the network size is 64 million, 1 GB
of storage would be sufficient - which is perhaps not totally im-
practical).

However, in order for a deployment to be highly scalable, and
to fully utilize the advantages KPSs offer over other key distri-
bution schemes, it may be necessary to choose a much larger
“ID space.” For instance if we desire to assign public IDs based
on a one-way function of “FirstName LastName Affiliation” the
ID space should at least be 128 bits long to be useful (to ensure
that collitions are highly improbable).

Under such a condition, it is still possible for nodes to store
thePij values for each deployed node (which may be a few tens
of millions) However, it is not possible to predict the IDs of the
nodes that “join the network”after the deployment. Thus when-
ever new nodes join the network every node should be provided
with the correspondingPijs - which may not be practical14.

In the next section we introduce a novel KPS scheme, I-
HARPS, which overcomes this problem. With “more reason-
able” requirement of insecure storage of a few megabytes or tens
of megabytes, I-HARPS allows for very high scalability (practi-
cally without bounds).

13We shall ignore the authentication keyaK for the moment.
14Though this is much more practical than providing each node with an addi-

tionalsecret- which would be required for the basic KDS.
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3 I-HARPS

I-HARPS (like HARPS15) is also determined by three parame-
ters -P - the number of secrets the TA chooses,k - the number
of secrets in each node, andL. However, unlike HARPS where
L is the maximum “hash depth,” in I-HARPS,L determines the
additional insecure storage complexity. More specifically, the
insecure storage complexity isk(L− 1).

The TA choosesP secrets{1K · · · P K} (which we shall see
are actually the master keys ofP independent LM-KDS), a cryp-
tographically strong hash functionh() and apublic function
F (). Let N represent the total number of nodes in the system.
Each node has a unique ID. Like most KPSs, the network size is
only limited by the number of bits chosen to represent the ID16.

A node with IDA gets a set ofk secretsA, andk(L−1) values
A which are determined by the two one way functionsh() and
F () as follows:

F (A) = {(A1, a1) · · · (Ak, ak)}, (7)

for 1 ≤ Ai ≤ P,Ai 6= Aj∀i 6= j, 1 ≤ ai ≤ L, and

A = {A1Ka1 · · ·AkKak
}, where

iKj = h(iK, j), (8)

and

A =


A1Pa1,1 · · ·A1Pa1,a1−1

A1Pa1,a1+1 · · ·A1Pa1,L
A2Pa2,1 · · ·A2Pa2,a2−1

A1Pa2,a2+1 · · ·A2Pa2,L

...
AkPak,1 · · ·AkPak,ak−1

AkPak,ak+1 · · ·AkPak,L

 (9)

where

AiPai,j = h(AiKai
, j)⊕ h(AiKj , ai). (10)

In other words, the TA choosesP LM-KDS master keys. Each
system however is limited toL “users” (or onlyL2 Pij values
need to be generated by the TA). NodeA is provided with keys
from k of theP systems. The specific choice ofk out ofP sys-
tems for nodeA is determined byA1 · · ·Ak (through the public
functionF (A)). In each of thek systems, the ID ofA is given
by 1 ≤ ai ≤ L (ID ai in systemAi). Thus each node needs
to storeL− 1 values for each of thek systems - introducing an
insecure storage requirement ofk(L− 1).

In order to establish a shared secret withB, nodeA needs to
evaluateF (A) andF (B) to determine the shared indexes of the
LM-KDS instances. Let us assume nodesA andB sharem sys-
tems with master keysS1K · · · SmK, and the ID (between 1 and
L) of A andB in them systems are(a1 · · · am) and(b1 · · · bm)
respectively. The shared secret betweenA andB, or KAB is
then

KAB = h(S1Kb1 , a1)⊕ h(S2Kb2 , a2)⊕ · · · ⊕ h(SmKbm
, am)

15HARPS employs a combination RPS and LM-KPS. I-HARPS employs a
combination of RPS and LM-KDS.

16In Blom’s KPS [2] it is limited toP - the number of elements in the finite
field ZP over which the polynomials are evaluated.

Note that as in LM-KDS, nodeB can easily calculate
h(SiKbi , ai) as it has the necessary secretsSiKbi , 1 ≤ i ≤ m.
NodeA can obtain eachh(SiKbi

, ai) as

h(SiKbi
, ai) = SiPai,bi

⊕ h(SiKai
, bi), (11)

by looking up thePij values fromA in insecure storage.

3.1 Analysis of I-HARPS

Let

ξ =
k

P
. (12)

Now consider theithLM-KDS system where1 ≤ i ≤ P . In
order for two nodes (sayA andB) to utilize theithKDS, both
shouldhavea secret for theithKDS - which occurs with a prob-
ability ξ2 (or on an average two nodes sharePξ2 = kξ systems).

Let us assume that an attacker has compromisedall secrets
from n nodes. In order to compromise the secret shared between
A andB provided by systemi (whereA has an ID1 ≤ a ≤ L
andB has ID1 ≤ b ≤ L in theithsystem), the attacker needs to
find, in his ill-gotten collection of exposed secrets,eitheriKa or
iKb. The probability that the attacker finds exactlyu instances
of systemi keys inn nodes is

Bξ(n, u) =
(

n

u

)
ξu(1− ξ)n−u, (13)

and the probability thatu instances of the keys (of systemi)
correspond to eithera or b is 2

L . Thus the probability that two
nodes can use theithKDS safely is

ε = ξ2
n∑

u=0

Bξ(n, u)
(

1− 2
L

)u

. (14)

In order to compromise the shared secret the attackers have to
determine all elementary secrets which make up the final shared
secretKAB . Thus the probabilitype that an attacker who has
compromisedn nodes can compromiseshared secretsof arbi-
trary nodes is

pe = (1− ε)P . (15)

By similar reasoning the probability that an attacker can com-
promiseall secrets of a node by exposing secrets from other
nodes is

ps = (1− εs)P , (16)

where

εs = ξ
n∑

u=0

Bξ(n, u)
(

1− 1
L

)u

. (17)

Note that there are two differences between Eqs (14) and (17).
The first is the difference in the first term (ξ instead ofξ2) as each
node hask = Pξ keys - while onlyPξ2 keys aresharedbetween
nodes. The second difference is in the last term which has1

L
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instead of2L . In the former case it is enough for the attacker to
determineeither the key ofA or B for a system - which is not
the case in the latter.

We have however, in Eq(14), ignored the fact that it is possible
that the IDs of the two nodes (whose shared secret the attacker is
trying to compromise) may have thesame IDin the ithsystem.
Under this condition (the probability of which is1L2 ), the at-
tacker’s job is a little more difficult (he has to have thatpar-
ticular key instead ofone of twokeys). Thus Eq (14), is more
accurately written as

ε = ξ2
n∑

u=0

Bξ(n, u)
(

(L2 − 1)(1− 2
L ) + (1− 1

L )
L2

)u

. (18)

3.2 Comparison With Other KPSs

Figure 1 (left) provides a comparison of 5 KPSs in terms of
the probability with which an attacker who has compromised
n nodes, can discover shared secrets of other nodes (for the
Y -axis we use− log10 pe - so higher the better). For the
sake of comparison, all KPSs have the samek = 1000. For
HARPS we have chosenP = 15000, L = 1024. For I-HARPS
P = 15000, L = 1024, for RPSP = 20000, for LM-KPS
P = k = 1000, L = 1024, andk = 1000 for Blom’s scheme
(or 999-secure Blom’s scheme). While the other KPSs do not re-
quire any additional insecure storage for I-HARPS, ifk = 1000,
L = 1024 and each key is of length 128-bits (16 bytes), the
Pijs (which are also the same length as the keys) would require
16k(L− 1) bytes or less than 16 MB of storage.

Note that even for deterministic KPSs like Blom’s scheme,
there is always a probability that the attacker can “guess” the
shared secret between two nodes. For instance, if the final shared
secret is a 128-bit secret, the probability that the attacker can de-
termine the secret17 is pe = 1

2128 ≈ 3 × 10−39. For Blom’s
scheme the “probability of compromise” is therefore fixed at
roughly10−39 for n ≤ 999. However forn ≥ 1000 the proba-
bility of compromise is unity (orlog10pe = 0).

Note that I-HARPS is very much usable even when 8000 nodes
have been compromised! Beyondn = 8000 (not shown in the
plots), the probability of compromise is about

1. 1 in a billion (pe ≈ 10−9) when 9,000 nodes have been
compromised,

2. 1 in a million when 12,000 nodes have been compromised,
3. 1 in a thousand when 17,500 nodes are compromised.
4. andpe = 0.5 for n = 27, 500.

The trade-off is of course the need for additional insecure stor-
age -1024 × 1000 Pij values have to be stored in each node.
For example, if all keys (and hence thePijs) are 128-bits, an
additional 16 Megabytes of storage is required for I-HARPS.

The three lines in the lower left corner of Fig 1 (left) corre-
spond to HARPS, RPS and LM-KPS respectively18. A zoomed
view of the three lines are shown in Fig 1 (right).

17Which also goes to show that as long as the probability of compromise is
low, an RKPS is in no way inferior to a deterministic KPS.

18Which are literally “out of the chart”!
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Figure 2: Resistance of KPSs (Blom’s scheme, HARPS and I-
HARPS) to node synthesis.

Figure 2 depicts the probability ofnode synthesisps - or the
probability with which an attacker can compromiseall secrets
from a node by exposing keys from other nodes. The figure has
plots (log10 ps vsn) for I-HARPS, HARPS and Blom’s scheme.
For Blom’s scheme,pe = ps = 1 for n = ne = ns ≥ k = 1000.
However RKPSs in general deteriorate more gracefully. With
n = 9000 compromised nodes, the attacker can expose all keys
from roughlyone in a millionnodes for HARPS. For I-HARPS,
the probabilityps associated with different number of nodes the
attacker compromises is

1. one in a trillion (ps = 10−12) - 54, 000 nodes
2. one in a billion -59000 nodes,
3. one in a million -66, 000 nodes (9000 for HARPS).

3.2.1 Effect ofL (Insecure Storage Complexity)

Figure 3 depicts the effect ofL on the performance of of I-
HARPS. Obviously, asL increases we expect the I-HARPS to
improve substantially. After all, we already know that if there is
no limit to L we could just use the LM-KDS withN (network
size) storedPij values which is secure against collusion of an
unlimited number of nodes!

With more practical restrictions onL, it can be seen that ifL
is increased (andP, k are unchanged),n can be increased by
the same factor to keeppe constant, by considering a first order
approximation of Eq (14),

ε = ξ2
n∑

u=0

Bξ(n, u)
(

1− 2
L

)u

≈ ξ2

(
1− 2

L

)ξn

, (19)

and the fact that

(1− x)y ≈ (1− x/2)2y ≈ 1− xy for x << 1. (20)
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Figure 1: Left: Comparison of 5 KPSs with the same value ofk = 1000, in terms of probability of compromise of shared secrets
vs number of compromised nodes. Right: Zoomed in version of the lower left corner of the figure in the left to show performance
of HARPS, RPS and LM-KPS.
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Figure 3: Performance of I-HARPS withP = 15000, k = 1000
for different values ofL. LargerL implies larger insecure stor-
age complexity.

3.2.2 Authentication Key

So far we have ignored the additional authentication key used
by the LM-KDS. The main need for the additional authentica-
tion key is to ensure that modifications toPijs stored in insecure
locations could be detected. Thus in practice the authentication
key is not needed if

1. the Pij values are from a trusted source, and provided in
read-only storage device, or

2. some key based hash function (say using the user secret
iKA for the ithLM-KDS) is used for authenticating all
iPAj values for1 ≤ j ≤ L.

3.2.3 Hashing vs Storage Trade-offs

RKPSs exploit two fundamental “dimensions” - one provided by
uniqueness of intersections of large subsetsconsisting ofinde-
pendentkeys, and the other provided bygenerating many keys
from each independent key. RPS schemes [4] - [11] make use
of the former. LM-KPS [3] makes use of the latter. HARPS and
I-HARPS use both. Specifically, HARPS achieves this without
requiring extra storage, while I-HARPS calls for extra storage.
It is very easy to see that a(P, k, L) I-HARPS (as does(P, k, L)
HARPS) reduces to(P, k) RPS whenL = 1 (no storage needed
for I-HARPS, and no hashing for HARPS)

It is interesting therefore, to see how much storage, can be “em-
ulated” by hashing. Figure 4 depicts plots comparing HARPS
with L = 1024 with I-HARPS (with the sameP and k as
HARPS) forL = 3 andL = 4. As HARPS withL = 1024
falls “between” the cases of I-HARPS withL = 3 andL = 4,
hashing in HARPS could be said to “emulate” a storage com-
plexity between2k and3k (only L− 1 public values need to be
stored for each secret).
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Figure 4: Comparison of HARPS (L = 1024) with I-HARPS
(3 ≤ L ≤ 4). Hashing in HARPS “emulates” a storage com-
plexity between3 − 1 = 2 and 4 − 1 = 3. For both KPSs
P = 15000, k = 1000.
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Figure 5: Comparison of LM-KPS (L = 1024) with I-HARPS
(small3 ≤ L ≤ 6). For both KPSsP = k = 1000.

Figure 5 is a comparison of LM-KPS with a special case of
I-HARPS with P = k. For LM-KPS L = 1024, and for I-
HARPS we have plots forP = k = 1000 with L = 3 · · · 6.
In both cases (HARPS vs I-HARPS in Figure 4 and LM-KPS
vs I-HARPS in Figure 5) note that the storage emulation offered
by hashing increases asn increases. In other words, employing
hashing instead of storage, while less efficient, deteriorates at
a lower rate. It is not surprising that the LM scheme exploits
the “second dimension” (the only dimension it exploits) better
than HARPS - as HARPS can “exploit this dimension” only for
sharedkeys. With LM allk keys are shared (asP = k), while
with HARPS onlyξk keys are shared on an average.

That HARPS deteriorates more gracefully than I-HARPS is
also readily apparent by considering that a 300-fold difference
between HARPS and I-HARPS in terms of complexity of at-
tacks for discoveringshared secrets, reduces to a mere 7-fold
difference between the two in terms of complexity of synthesis
attack!

4 DOWN with Trusted Computers

Key pre-distribution schemes are more likely to be used in de-
vices with some assurance of tamper resistance - for example,
“trusted computers” with some ability to “protect” their secrets.
In this section we investigate a simple security policy - DOWN
(decrypt only when necessary) [13] and its ability to enhance
the ability of trusted devices to protect its secrets. In particular
we show that some KPSs - especially RKPSs are more “DOWN
friendly.” We then proceed to analyze the effect of the DOWN
policy on HARPS, I-HARPS and Blom’s KPS.

4.1 Protecting Secrets in Trusted Computers

Trusted computers [25] are expected to possess unflinching
morals(themorality of the computers would be dictated by the
software that runs on the computer). They will not, in general,
trust the owners or controllers of devices (the human operators).
They cannot be directed to do something that violates the rules
they are trusted to obey. Just as human beings are trusted not to
disclose their secrets in client-server applications, trusted com-
puters are trusted not to disclosetheir secrets.

Therefore, practical realization of trusted devices calls for two
fundamental assurances from technology - tamper-resistance
and read-proofing. However both properties arenot independent
[26]. For instance, with the ability to tamper with the software,
an attacker could direct the trusted computer to “spit-out” its se-
crets. At the same time, the protected secrets could be used for
authenticating the software (say using key based message au-
thentication codes) - and thus prevent attackers from tampering
with the software.

Trusted devices (for example a single chip computer in a smart
card) can be at two fundamental states -in-useor at-rest. Obvi-
ously, the secrets have to be protected during both states.

4.1.1 In-Use State

While the computer is in-use, it is possible to use many sen-
sors that actively monitor for intrusions, and delete secrets under
suspicion of tampering attempts. Attackers could monitor elec-
tromagnetic radiations from chips for gaining clues about the
secrets stored inside. But this could be prevented by employing
proper shielding. Some attacks are also based on inducing faults
in memory [28], [29] and employing differential power analysis
[30]. Protection mechanisms against such attacks have also been
investigated [31].

Another approach for attackers is to the use of sophisticated
focused ion beam (FIB) techniques [32] to drill fine holes and
establish a connection with the computer buses and constantly
monitor the bits that traverse through the buses. In Ref. [33] the
manufacturers claim protection against FIB attacks by employ-
ing an “active shield” consisting of a thin parallel grid of signal
lines, covering the entire surface of the chip. Even if one line
is damaged by the FIB, this would trigger appropriate counter
measures (for example deleting all secrets). Perhaps even multi-
ple layers of active shield could be used. As long as evensome
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parts of the silicon (or some lines on the substrate) are protected
by not providing a clear line of sight access (after all, it may not
be possible tobendbeams), it may be possible to buildprivate
circuits [34] to ensure that the attacker gains no knowledge (by
tapping a few lines).

4.1.2 Protecting Secrets At-Rest

While rest encryption [35], is commonly used to protect
databases at rest, the problem of rest encryption for trusted de-
vices is very different. For the former, the secret used for en-
crypting the contents of the database is typically storedoutside
the database. For the latter, this is not possible as trusted com-
puterswill not trust anyone elsewith their secrets. So, in trusted
computers, even if the secrets are encrypted for rest, the secret
used for encrypting the secrets should be stored in some non-
volatile memory (NVM)insidethe trusted computer, and should
be protected. This calls for a continuous source of power sup-
ply to the deviceseven when they are at rest, to monitor for
potential intrusions and erase the secrets when an intrusion is
sensed. However, it is not necessary thatall bits be erased when
tampering attempts are sensed. For instance, all-or-nothing [36]
transforms could be used to ensure that even if very few of the
encrypted bits are erased, there will be no way for the attacker
to expose the secrets.

The evolving paradigm of physical unclonable functions (PUF)
[22] however provides a very satisfactory solution to protect se-
crets of a device while the device is at-rest. PUFseliminate
the need for any kind of monitoring of a device at rest. Silicon
PUFs [37] exploit uncontrollable statistical delay variations of
connections and transistors etched on substrates, in each manu-
factured chip. Even though a manufacturer may fabricate many
chips with identical masks, each chip would have a unique set
of delays in its components, which even the manufacturer will
not be able to measure with a high enough precision. In other
words, each chip (or some components taken together in a chip)
implements an “un-characterizable” (and thereforeunclonable),
unique, physical one-way function.

The unique PUF in each chip could be used along with
challenge-response protocols for identification of devices. For
instance, a chip with PUFH() generatesresponsesRi = H(Ci)
for differentchallengesCi. Or each device has auniqueset of
challenge-response pairs (CRP)〈Ci, Ri〉. Thus, the key used for
encrypting the secrets at rest could beRX = H(X), whereX is
a randomly chosen “challenge” which is stored in theclear in the
NVM in the device. When the device is at rest, there is no way
for the attacker to determineRX from X (as the only way to get
RX is by challenging the PUF which can be done only when the
device is on). Further, by definition, PUFs are unclonable (even
the manufacturer cannot synthesize two identical PUFs and use
one to determine responses of the other). When the device is
powered on, the device could challenge the PUF withX and
obtain the responseRX , and then proceed to decrypt the stored
secrets.

In practice PUFs may not be able to providereliable CRPs
asH may drift with temperature and aging. Gassend et al [22]
argue that it is possible to employ error correction codes [38] to

compensate for the drift of PUFs. The associated reduction in
entropy of the hash function (due to error correction) could be
addressed by increasing the complexity of PUFs.

4.1.3 Protecting Secrets During State-Transition

During thein-usestate, the secrets may be decrypted and stored
in RAM for use, but could be well protected by active monitors.
During therest state the secrets could be protected using rest-
encryption (with PUFs). Perhaps the most vulnerable period of
a trusted computer is during the transition from “in use” to “rest”
state. The transition might typically involve 1) encryption of all
keys for storage with a key and 2)cleanerasure of all secrets
stored in volatile memory.

While the second step maysoundredundant at first sight (as the
secrets in volatile storage will be lost when power supply is re-
moved in any case), it is in fact required to ensure that the secrets
temporarily stored in non-volatile memory do not leave a “foot-
print.” Such footprints left behind in magnetic and solid state
memories [39] could be used to decipher the previous contents
of the memory, especially if they had been stored in a mem-
ory location for long periods. Safe erasure [40] of contents in
magnetic and solid state memory (or removing all traces of their
footprints) may require manyrepeatedoverwriting operations.
The ability of the attacker to scavenge bits is also significantly
enhanced by cooling the device (say by immersing it in liquid
nitrogen).

To render his attack more worthwhile, the strategy of the at-
tacker may be to induce a glitch attack that causes the computer
to hang. Even if some sensors (which work independent of the
CPU) detect intrusion attempts, they may not be able to per-
form the repeated overwriting operation needed for safe erasure.
Thus immediate cooling following a glitch attack may be very
productive for the attacker. The attacker may be able to extract
all secrets from RAM. Another alternative to the glitch attack
might be to use FIBs to suddenly cut off power supply to the
CPU.

4.2 DOWN Policy

A simple security policy - decrypt only when necessary
(DOWN) [13] could substantially reduce the susceptibility of
trusted computers during the transition period. If contents of the
RAM cannot be well protected following abnormal state transi-
tions that may be induced by the attacker, a solution is to make
sure that the RAM has very minimal information atany point in
time. The DOWN policy recognizes the fact that most crypto-
graphic operations have some inherentatomicity. At any point
in time only one, or may be even a small part of a secret may be
necessary for cryptographic computations.

For instance, if the secret to be protected is a RSA private expo-
nentr (say of size 1024 bits), andn represent the RSA modulus,
decryption of a some cipher textC involves modular exponenti-
ation ofC with r. Or P = Cr modn. However, to perform the
exponentiation,only one bit ofr is needed at any point in time
(say exponentiation using the square and multiply algorithm).
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We could thus keepr encrypted at all times, and decrypt each
bit as and when necessary.

4.2.1 Trusted Computers With DOWN

For trusted computer using DOWN, a single secretM could
be used for encrypting all secrets stored in NVM. The secret
M may be stored in some special volatile register in the CPU
(which could be hidden even from the OS kernel) [23]. This
register could be protected from scavenging attacks by repeated
ones complementing of the register (say every few milliseconds
are so) to ensure that it does not leave a discernible footprint.
In addition toM the CPU may also have access to a hardware
block cipherE (which is in fact commonly used in smart cards)
which could generate many secretsSi = EM (i) which could be
used for encrypting the secretKi stored in NVM.

At any point in time, the RAM can have utmost oneSi (andKi)
which the attacker may be able to scavenge from RAM (as RAM
cannot possibly employ techniques like one-complementing to
avoid footprints). With the DOWN policy, there is no explicit
transition required for going from in-use to rest-state. Only
the secretM needs to be protected at rest. With PUFs, even
that need eliminated the secret could be encrypted withRX and
stored in the clear, in NVM - orRX itself could be used instead
of M .

5 KPSs With DOWN

The use of DOWN policy is more natural for KPSs where only
one secret is needed at any point in time. Further, astrict imple-
mentation of the DOWN policy should ensure that atall times
in the entire life-cycleof a device, only a part of the secret (or
one of thek secrets for KPSs) is decrypted and stored in volatile
RAM. This may not be feasible for even RSA19 for instance,
when the private and public key pairs aregenerated. However
a strict implementation of the DOWN policy for KPSs does not
pose any problems.

With the DOWN policy, the explicit transition iseliminated.
The secrets stored in non-volatile memory arealwaysencrypted.
Thus the two main implications of the DOWN policy are

1. Non-volatile memory (NVM) used for storingk encrypted
secrets does not needanyprotection.

2. By tampering with a device an attacker can expose no more
thanoneKPS secret (in which process the device is ren-
dered unusable).Thus an-secure KPS withk keys is ren-
derednk-secure!

5.1 DOWN Complexity of KPSs

Earlier, in Section 1, we argued thatinsecurestorage complexity
(needed for storingPijs for I-HARPS is not an issue. With the
DOWN policy, as even thek secrets are always stored encrypted
in NVM, the secrets can also be stored in flash memory. So

19It is not clear now as to how the DOWN policy could be used for other
asymmetric ciphers that require operations other than modular exponentiation.

the size ofk too isnot an issue! Thus the DOWN policy hepls
improve the security of any KPS in two ways

1. by allowing for largek, and
2. by rendering KPSnk or O(k2)-secure

However, the main disadvantage of increasingk is that, in
general, thecomputational complexityincreases withk. With
the DOWN policy, whenever a secret is needed, it needs to be
fetched from NVM, decrypted, used, and flushed out of mem-
ory. Further, every time a secret is decrypted, the processor may
need to switch to a secure kernel mode [23].

Thus with DOWN, the primary complexity is thenumber of
DOWN operationsneeded to evaluate shared secrets (or estab-
lish security associations likeKAB betweenA andB). Each
DOWN operation consists of 1) fetching from NVM, 2) switch-
ing to secure kernel mode, decryption of secret, 3) using the se-
cret in some cryptographic algorithm, and 4) flushing the RAM
(where the secret was stored) clear.

While increasingk is typically accompanied by increase in
computational complexity formostKPSs, this is not true for
RKPSs. As a numerical illustration of the effect of DOWN pol-
icy on KPSs, we shall compare three KPSs - Blom’s scheme [2]
and HARPS [12] and I-HARPS.

For Blom’s scheme,all k secrets are needed for cryptographic
computation involving discovery of shared secrets. However,
for HARPS withP = 15000 andk = 1000 and I-HARPS with
P = 15000, k = 1000, only aboutξk ≈ 67 secrets are needed
on an average! In other words, the following 6 systems have the
same “DOWN complexity.”

1. Blom’s scheme withk = 67
2. HARPS withP = 15, 000, k = 1000
3. I-HARPS withP = 15, 000, k = 1000
4. HARPS withP = 60, 000, k = 2000
5. I-HARPS withP = 60, 000, k = 2000, L = 1024
6. I-HARPS withP = 60, 000, k = 2000, L = 2048

All of them need 67 DOWN operations. In fact the crypto-
graphic operation ineachDOWN operation is actually signif-
icantly less complex with I-HARPS - it just involves evaluation
of two hash functions. For Blom’s scheme, each DOWN oper-
ation involves an evaluation ofxy modP , wherex ∈ ZP and
1 ≤ y ≤ n.

Table 1 provides a comparison of the 6 schemes. Also shown
is the effect of increasing insecure storage on the security of I-
HARPS (last row). For calculating the storage we have assumed
that eachPij value is 128-bits or 16 bytes (all keys are 128-bits
long).

With DOWN, Blom’s scheme is renderednk = 66 × 67 =
4422-secure. For HARPS and I-HARPS, the table shows the
number of nodes the attacker needs to tamper with (assuming
the attacker can expose one secret from each node - thereby de-
stroying the node in the process), fork = 1000 andk = 2000, to
discovershared secretsbetween nodes with some probabilitype.
For HARPS withk = 2000, the attacker needs to destroy over
160,000 chips to ensure that he has aone in a millionchance
of compromising shared secrets between any two participants.
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Table 1: Comparison of 6 KPSs with the same “DOWN complexity.” All size - Blom’s scheme withk = 67, (P = 15, 000, k =
1000) HARPS,(P = 60, 000, k = 2000) HARPS,(P = 15, 000, k = 1000) I-HARPS, and(P = 60, 000, k = 2000) I-HARPS
(with L = 1204 andL = 2048) have DOWN complexity of 67.

Approach nk - Number of nodes to be tampered with WoD∗ Storage
pe = 1× 10−12 pe = 1× 10−6 pe = 0.5

Blom’s Scheme 4422 4422 4422 66 0
HARPS(P = 15, 000, k = 1000) 21,000 40,000 205,000 21 0
HARPS(P = 60, 000, k = 2000) 84,000 160,000 815,000 84 0
I-HARPS(P = 15, 000, k = 1000) 6,750,000 12,000,000 17,500,000 6750 16 MB
I-HARPS(P = 60, 000, k = 2000) 27,000,00 48,000,000 70,000,000 13500 32 MB

I-HARPS(P = 60, 000, k = 2000) 54,000,00 96,000,000 140,000,000 27000 64 MB
WoD∗ - Without DOWN Assurance,pe < 10−12

Storage - Calculated ask × L× 16 bytes (128-bit keys andPijs.)

With I-HARPS withk = 2000 andL = 1024 (or 32 MB inse-
cure storage), the attacker has to destroy about48 million chips
to achieve the same goal!

Thus with RKPSs it is possible to take advantage20 of the prac-
tical, large NVM storagewithout increasing the computational
complexity(as comparison between the two cases withk = 1000
andk = 2000 for HARPS and I-HARPS readily demonstrates).

With KPSs, secrets would berenewedperiodically. In order
to take part in renewal, a node with authenticate itself to the TA
with all its k keys. So in order for the attacker to take part in key
updates, theminimumrequirement for an attacker is to discover
all k secrets in a node21.

Taking the effect of DOWN policy into consideration,

1. For HARPS withk = 2000, an attacker needs to destroy
over 20 million nodes to haveone in a trillion chance of
discoveringall 2000 secrets of some node

2. For I-HARPS withk = 2000, L = 2048, to achieve the
same goal, an attacker has to destroy over520 millionnodes
(260,000 nodeswithoutDOWN assurance).

While most recent works in the literature on random key pre-
distribution schemes [5] - [10] (apart from [12] and [11]) are
targeted towards their use in severely resource constrained sen-
sor networks, with the DOWN policy, random KPSs, especially
I-HARPS, become serious contenderseven for scenarios where
resource constraint is not an issue.

5.2 Practical Limits on k

While for random KPSs like I-HARPS, HARPS and RPS we can
afford to increasek without increasing the DOWN complexity,
increasingk also increases the complexity of the public func-
tion F () used to determine the indexes of the shared keys. The
complexity of the public function could beO(k log k) or O(P )
depending on the implementation ofF ().

However, the public functionF () is just a random sequence
generator. It does not need to satisfy strong cryptographic prop-

20Only random KPSs employing the “dimension” of uniqueness of intersec-
tion of large subsets. The LM-KPS cannot take advantage of the DOWN policy.

21However, this may not be sufficient [24] for the attacker

erties. The only requirement is that the output ofF () is rea-
sonably close to a uniform distribution22. Even very low com-
plexity block ciphers, with reduced Fiestel rounds (for example
TEA [27] with 4-5 rounds instead of 32) could be used for this
purpose.

Implementations ofO(k log k) complexity would involve gen-
eration ofk-length uniformly distributed random variables to
generate the partial permutation{A1 · · ·Ak}. However, com-
parison of two sequences{A1 · · ·Ak} and{B1 · · ·Bk} to deter-
mine intersections would have a complexity ofO(k log k).

Implementations ofO(P ) complexity could actually be more
straight-forward. For instance ifL = 1024 andξ = 1/16, we
could simply generateP uniformly distributed random integers
F (A) = R1 · · ·RP seeded by the node ID. The last four bits of
Ri indicate if keyi is assigned to nodeA (for instance only if the
last 4 bits are all zeros - which will occur with a probability 1/16
- the desired probability for allocation of keys to each node).
Similarly, 10 bits to the left of the 4 LSBs could indicate the
ID of the node in systemi (between 1 and 1024 - which will
of course be ignored if the keyi is not assigned to nodeA).
Thus for HARPS or I-HARPS withk = 1024, P = 16k =
16384, we just need to generate 7168 32-bit random integers
(16× 14 = 224 bits from seven such integers can be used for 16
14-bit valuesRi).

Note that the later approach does not guarantee that each node
has exactlyk keys - some nodes may have more and some less.
The averagenumber of keys in each node would bek. How-
ever, for our analysis we have actually assumed this model (we
assume that each key is allocated to a node with probabilityξ).

5.3 HARPS vs I-HARPS

The significant improvement offered by I-HARPS over HARPS
comes at a price. First is the need for extra storage, which may
not be a crucial issue. In fact I-HARPS is rendered less compu-
tationally expensive than HARPS as for each shared key HARPS
needs an average ofL/4 additional hashes to be performed.

However I-HARPS loses much of theversatility of HARPS.

22If the distribution of the output ofF () is not uniform, it may result in
marginal reduction of the efficiency of random KPSs.
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With HARPS, the same set of secrets which are used for pair-
wise authentication, can also be used for broadcast authentica-
tion [41], instantaneous discovery of shared group secrets (or
conference secrets) and non-instantaneous discovery of group
secrets (or broadcast encryption [42]). All these are not possible
with I-HARPS. Further, HARPS caters for trivial extensions to
a tree-hierarchical deployment [43], while protecting higher lev-
els of hierarchy from compromise of secrets in the lower levels
of hierarchy.

6 Conclusions

We have presented a novel random key pre-distribution scheme
which takes advantage of cheap and practically unrestricted in-
secure storage like flash memory cards that wireless hand held
devices are expected to have to yield dramatic gains in secu-
rity and over other key pre-distribution without increasingsecure
storage complexity and computational complexity. Specifically,
the proposed schemes was shown to be an order of magnitude
more efficient than Blom’s scheme (which however cannot be
implemented using pure symmetric cryptographic primitives),
and over 300 times more efficient than other random key pre-
distribution schemes of comparable complexity (which however
do not need the additional insecure storage requirement).

We have also investigated the effect of a simple security policy,
DOWN, on the security of the proposed scheme, and KPSs in
general. In addition to being very efficient, the proposed scheme
also lends itself well to efficient DOWN implementations.

Note that even withno assurance of read proofing or tamper
resistance, I-HARPS with k = 2000 and a storage complex-
ity of 64 MB can reasonably resist coalitions of up to 30,000
nodes (for resistance to attacks aimed at discovering shared se-
crets) and more than 260,000 nodes for synthesis attacks. Thus
with very little support from technology for tamper resistance
/ read-proofing I-HARPS could provide a a secure alternative
to PKI for ad hoc mutual authentication. One of our current
research effort involves extension of I-HARPS to hierarchical
deployments.
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