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Abstract

We present a provably secure tree based authenticated group key agreement protocol in dynamic
scenario. Bilinear pairing and multi-signature are at the heart of our protocol. We prove that our pro-
tocol is provably secure in the standard security model of Bresson et al. An appropriate modification of
Katz-Yung approach to tree based setting is adopted while proving its security against active adversaries.
The protocol has an in-built hierarchical structure that makes it desirable for certain applications.
Keywords: bilinear pairing, multi-signature, group key agreement, dynamic operations, provable secu-
rity 1

1 Introduction

A group key agreement protocol allows a group of users to exchange information over public network to
agree upon a common secret key from which a session key can be derived. This common session key can
later be used to achieve desirable security goals, such as authentication, confidentiality and data integrity.

Tree based group key agreement protocols are typically essential while the users are grouped into a
hierarchical structure. The leaves of the tree denote individual users and each internal node corresponds
to a user that represents the set of users in the subtree rooted at that node. The representative users
have more computational resources than other users in the subtree. In a tree based group key agreement
protocol, the set of all users in each subtree agree upon a common secret key. Besides, making optimal use
of precomputed values in the previous session, a group of users can save computation and communication
in subsequent sessions in which users join or leave the group. Moreover, some subclass of users agree upon
multiple common keys in a single session which facilitates a typical subclass of users of the group to securely
communicate among themselves. These features make tree based key agreement protocols desirable for
certain applications.

In this work, we present a provably secure tree based authenticated group key agreement in the dynamic
scenario where a user can join or leave the group as his desire with updating sets of keys. Although
designing constant round provably secure group key agreement schemes [13, 25, 26] get much attention
in the current research, it does not eliminate the need of tree based key agreement. We can combine
constant round protocols and tree based protocols to get hybrid group key agreement which are efficient
in terms of both computation and communication. Consider the situation where there are collection of
user sets, each having a common key agreed upon by executing an efficient constant round protocol among
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the users in that user set. Now executing the constant round protocol among these user sets may not
always be desirable and executing the protocol among all the users may be expensive from computation or
communication point of view when number of users in each subgroup is large. For instance, if the number
of groups is about 20 and each group is large, then a constant round key agreement using the protocol of
[25] will involve a large number of computations as well as communications. In contrast, the tree based
protocol (with the representatives of each group) will compute the common key in 3 rounds with lesser
number of communications and verifications. Thus, a tree based scheme can be incorporated among these
user sets to get an efficient multi-party key agreement protocol. There are quite a number of tree based key
agreement protocols [6, 24]. A ternary tree based protocol was proposed by Barua et al. [5] that extends the
basic Joux [21] protocol to multi-party setting. They have shown that the protocol is secure against passive
adversaries. Dutta et al. [17] authenticate this unauthenticated protocol using multi-signature and provide
a concrete security analysis against active adversaries in the standard model as formalized by Bresson et
al. [14]. This security was achieved by modifying the Katz and Yung [22] technique to tree based setting.
The present work further extends this static authenticated protocol [17] to dynamic authenticated protocol
and provides a proof of security in the security model of Bresson et al. [14]. Our protocol is designed to
ensure minimum modification to the computation already precomputed when a user leaves or joins the
group. Besides, if the tree structure is not maintained after a join or leave operation, then the subsequent
join or leave in the group can not be performed anymore. Thus retaining the tree structure is another
important issue of our protocol while such dynamic operations (join or leave) are concerned.

2 Preliminaries

In this section, we put forward the required notations, definitions, models that we use in the discussions of
the subsequent sections. We use the notation a€rS to denote that a is chosen randomly from the set S.

2.1 Cryptographic Bilinear Maps

Let G1,G2 be two groups of the same prime order q. We view G as an additive group and G2 as
a multiplicative group. A mapping e : G; x G1 — G- satisfying the following properties is called a
cryptographic bilinear map:

Bilinearity : e(aP,bQ) = e(P, Q)™ for all P,Q € G; and a,b € Zy.
Non-degeneracy : If P is a generator of G1, then e(P, P) is a generator of Gs.
Computablity  : There exists an efficient algorithm to compute e(P, Q).

Modified Weil Pairing [9] and Tate Pairing [4, 19] are examples of cryptographic bilinear maps.

2.2 Security Model

We assume that the reader is familier with the model of Bresson et al. [14], which is the model in which
we prove security of our dynamic key aggreement protocol. For completeness, we review their definitions
and refer the reader to [14] for more details.

Let P = {U1,...,U,} be a set of n (fixed) users or participants. A user can execute the protocol for
group key agreement several times with different partners, can join or leave the group at it’s desire by
executing the protocols for Insert or Delete. We assume that users do not deviate from the protocol and
adversary never participates as a user in the protocol. This adversarial model allows concurrent execution
of the protocol. The interaction between the adversary A and the protocol participants occur only via



oracle queries, which model the adversary’s capabilities in a real attack. These queries are as follows, where
IT}; denotes the i-th instance of user U and ski; denotes the session key after execution of the protocol by
.

— Send(U, i,m) : This query models an active attack, in which the adversary may intercept a message
and then either modify it, create a new one or simply forward it to the intended participant. The
output of the query is the reply (if any) generated by the instance HZ('] upon receipt of message m.
The adversary is allowed to prompt the unused instance Hli] to initiate the protocol with partners
Us, ..., Ul < n, by invoking Send(U, i, (Us, ..., Up)).

— Execute({(V1,41),...,(V},4;)}) : Here {V4,...,V;} is a non empty subset of P. This query models passive
attacks in which the attacker evesdrops on honest execution of group key agreement protocol among
unused instances H%v e ’H% and outputs the transcript of the execution. A transcript consists of
the messages that were exchanged during the honest execution of the protocol.

~ Join({(V1,41), ..., (Vi,i1)}, (U,4)) : This query models the insertion of a user instance II¢; in the group
(V1,...,V}) € P for which Execute have already been queried. The output of this query is the
transcript generated by the invocation of algorithm Insert. If Execute({(V1,%1),...(V},4;)}) has not
taken place, then the adversary is given no output.

— Leave({(VA4,i1), ..., (V;,i1)}, (U,4)) : This query models the removal of a user instance I1%; from the group
(V1,...V}) € P. If Execute({(V1,%1),.-.(V,%)}) has not taken place, then the adversary is given no
output. Otherwise, algorithm Delete is invoked. The adversary is given the transcript generated by
the honest execution of procedure Delete.

— Reveal(U,4) : This outputs session key sk%]. This query models the misuse of the session keys, i.e known
session key attack.

— Corrupt(U) : This outputs the long-term secret key (if any) of player U. The adversarial model that we
adopt is a weak-corruption model in the sense that only the long-term secret keys are compromised,
but the ephemeral keys or the internal data of the protocol participants are not corrupted. This
query models (perfect) forward secrecy.

— Test(U,i) : This query is allowed only once, at any time during the adversary’s execution. A bit
b € {0,1} is chosen uniformly at random. The adversary is given skzi] if b= 1, and a random session
key if b = 0. This oracle computes the adversary’s ability to distinguish a real session key from a
random one.

An adversary which has access to the Execute, Join, Leave, Reveal, Corrupt and Test oracles, is considered
to be passive while an active adversary is given access to the Send oracle in addition. We also use notations

sidl; : session identity for instance IT5;. We set sid; = S = {(U1,41),-- -, (Uk,ix)}
. such that (U,i) € S and H’i}l, - ,Hi}k wish to agree upon a common key.
pid; :  partner identity for instance IIj;, defined by pidy; = {Us, ..., U},
such that (Uj,i;) € sid}; for all 1 < j < k.
accli] : 0/1-valued variable which is set to be 1 by Hzi] upon normal termination of the session and
0 otherwise.



The adversary can ask Send, Execute, Join, Leave, Reveal and Corrupt queries several times, but Test
query is asked only once and on a fresh instance. We say that an instance II}; is fresh unless either the
adversary, at some point, queried Reveal(U,i) or Reveal(U’,j) with U’ € pid:; or the adversary queried
Corrupt(V) (with V € pid%;) before a query of the form Send(U, i, ) or Send(U’,,*) where U’ € pids;.
Finally adversary outputs a guess bit b'. Such an adversary is said to win the game if b = b’ where b is the
hidden bit used by the Test oracle. Let Succ denote the event that the adversary A wins the game for a
protocol XP. We define

Adv 4 xp := |2 Prob[Succ] — 1

to be the advantage of the adversary A in attacking the protocol XP. The protocol XP is said to be a secure
unauthenticated group key agreement (KA) protocol if there is no polynomial time passive adversary with
non-negligible advantage. We say that protocol XP is a secure authenticated group key agreement (AKA)
protocol if there is no polynomial time active adversary with non-negligible advantage. Next we define the
advantage functions.

Adv%\(t, qar) := the maximum advantage of any passive adversary attacking protocol XP,
running in time ¢ and ma king gg calls to the Execute oracle.

AvaﬁA (t,q98,97,91L,9s) := the maximum advantage of any active adversary attacking protocol XP,
running in time ¢ and m aking qg calls to the Execute oracle, ¢ calls to
Join oracle, g, calls to the Leave oracle and gg calls to the Send oracle.

2.3 Decision Hash Bilinear Diffie-Hellman (DHBDH) Problem

Let (G1, G2, e) be as in Section 2.1. We define the following problem. Given an instance (P, aP,bP, cP,r) for
some a, b, c,r€rZ; and a one way hash function H : Gy — Z, to decide whether r = H(e(P, P)®¢) mod gq.
This problem is termed DHBDH problem as defined in [5] and is a combination of the bilinear Diffie-
Hellman(BDH) problem and a variation of the hash Diffie-Hellman(HDH) problem. The DHBDH as-
sumption is that there exists no probabilistic, polynomial time, 0/1-valued algorithm which can solve the
DHBDH problem with non-negligible probability of success.

2.4 Multi-signatures

Multi-signatures allow a group of users to sign a message, such that a verifier can verify that all users
indeed signed the message. We use the multi-signatures presented by Boldyreva in [12] which is based on
the Boneh-Lynn-Shacham [10] (BLS) pairing based short signature. Formally, a multi-signature scheme
consists of three algorithms MSig = (MK, MS, MV), where MK is the key generation algorithm; MS
is the signature generation algorithm and MYV is the signature verification algorithm. We denote by
Succpsig(t) the maximum success probability of any adversary running in time ¢ to forge signatures for
a standard digital signature scheme DSig = (K,S,V). Similarly, by Succmsig(t) the maximum success
probability of any adversary running in time ¢ to break the multi-signature scheme MSig based on DSig.

3 A Provably Secure Dynamic Group Key Agreement Protocol

Our protocol extends the authenticated tree-based multi-party group key agreement protocol of [17] to
dynamic case where a user can leave or join the group. The protocol is designed to ensure minimum modi-
fication to the computations already precomputed when a user leaves or joins the group. By appropriately



modifying the proof in [17], the security of our protocol can be reduced to that of the unauthenticated
protocol of [5] which is a provably secure scheme under DHBDH assumption.

Suppose a set of n users P = {Uy,Us,...,U,} wish to agree upon a secret key. Let US be a subset of
users. Quite often, we identify a user with its instance during the execution of a protocol. In case US is
a singleton set, we will identify US with the instance it contains. Each user set US has a representative
Rep(US) and for the sake of concreteness we take Rep(US) = U; where j = min{k : Hd’c € US}. We use the
notation A[l,...,n| for an array of n elements A,,..., A, and write A[i] or A; to denote the ¢th element
of array A[]. Let G1 = (P), G2 (groups of prime order g) and e(,) be as described in Section 2.1. We
choose a hash function H : G2 — Z. The public parameters are params = (G1, G2, ¢,q, P, H). Each user
U; € P chooses s; € Z; at random which it uses as its ephemeral key. These keys are session specific and
determine the final common key for the users in a session.

3.1 Unauthenticated Key Agreement Protocol of [5]

This section presents an informal description of the unauthennticated protocol of [5]. Security of our
dynamic key agreement protocol relies on the security of this scheme.
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Figure 1: procedure CombineThree and Procedure CombineTwo

Let p = [§] and » = n mod 3. The set of users participating in a session is partitioned into three user

sets US1, USg, US3 with respective cardinalities being p,p,p if r =0; p,p,p+1ifr=1; and p,p+ 1,p+ 1
if r = 2. This top down recursive procedure KeyAgreement is invoked for further partitioning to obtain a
ternary tree structure (c¢f. Figure 2). The lowest level 0 consists of singleton users having a secret key.
We invoke CombineTwo, a key agreement protocol for two user sets and CombineThree, a key agreement
protocol for three user sets in the key tree thus obtained. We demonstrate these two procedure in Figure 1.
For more details, we refer [5].

Figure 2: procedure KeyAgreement for n = 14



All communications are done by representatives and users in each user set have a common agreed key.
In CombineThree, a, b, c respectively are the common agreed key of user sets A, B, C. Representative of
user set A sends aP to both the user sets B, (. Similarly, representative of B sends bP to both A,C
and representative of C sends cP to both A, B. After these communications, each user can compute the
common agreed key H(e(P,P)¢). In CombineTwo, users in user set A has common agreed key a, users
in user set B has common agreed key b. Representative of A sends aP to user set B and representative of
B sends bP to user set A. Besides representative of user set A generates a random key a € Z; and sends
aP to all the users in both A, B. After these communications, each user can compute the common agreed
key H(e(P, P)ab).

3.2 Authenticated Key Agreement Protocol of [17]

This protocol incorporates secure signature based authentication mechanism into the unauthenticated
protocol of Barua, Dutta, Sarkar [17]. Each user U; chooses a signing and a verification key sk; (or sky;)
and pk; (or pky,) respectively as part of the basic signature scheme DSig and multi-signature scheme MSig.

Besides, this authentication mechanism uses a variable, partial session-identity psid?}, for each in-

i
stance H?j;j which is initially set to be {(Uj;,d;)} and after completion of the session, psid'lijjij = sid?fij =
{(Ui,,dv),-..,(Ui,,dr)} where instances H‘[i}“ ""H([i]kik are involved in this session. The session-identity

sid?f%' uniquely identifies the session and is same for all instances participating in this session. The authen-

ticated protocol consists of an algorithm for two-party authenticated key agreement AuthCombTwo, a three-
party authenticated key agreement AuthCombThree-A and an authenticated key agreement AuthCombThree-
B among three user sets. These procedures are invoked instead of CombineTwo and CombineThree in the
key tree obtained by the procedure KeyAgreement in the unauthenticated protocol described above. We
discuss AuthCombTwo, AuthCombThree-A, AuthCombThree-B informally and refer the reader to [17] for
details. (See Figure 3.)

In AuthCombTwo, user instance H?}l has a secret key s; with partial session-identity psid'(i}1 = {(U1,d1)}.
Besides it generates a random key s € Zj, computes a signature oy using basic signature scheme DSig on

my = (s1P,sP) and sends Uy|1|my|o; to user instance H?};. Similarly, user instance H‘[jjz with secret key
s9 and partial session-identity psid‘[if2 = {(Us,d2)} computes a basic signature oo on mg = soP and sends
Uz|1|ma|o2 to user instance H’[j}l. On receiving the message Us|1l|ma|oe, user Uy verifies oo on Us|l|me
according to the verification algorithm V of DSig. If verification fails, it sets acc‘[i}1 =0, sk?}1 = NULL annd
aborts. Otherwise it sets psid‘[l}1 = psid?}1 U {(U2,d2)} and computes the key H(e(P, P)**1%2). In a similar
way, user Us performs verification o1 on U;|1|m; and computes the key only if verification succeeds. Note
that at the end, user instances H?}l,ﬂ;% have the same partial session-identity : psiddl1 = psid?}1 U psid‘[if2 =
psid?]é. An analogus description holds for AuthCombThree-A. The algorithm AuthCombThree-B performs
key agreement among three user sets USy, USo, US3 as follows: Suppose H‘[i}l be the representative of user
set US; and users in this set have a common agreed key si. Similarly, H‘[iﬁ?, 89 are those for user set USq
and H?}‘S, s3 for user set US3. Let my = psid’[i]l1|t1|31P, where t; is the next expected message number to be
sent by HdUll. For each user V in user set USq, psid"i/" |t1|s1 P is same as m;. Each user V € US; computes a
basic signature oy on m; using the scheme DSig and sends (V, oy ) to H?}l. After accumulating these basic
signatures, the representative H‘[i}l constructs the multi-signature msig; on message m; using the scheme
MSig and sends m;|msig; to USe U US3. Similarly, representative H?}? of user set USq sends my|msigy to
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Figure 3: procedure AuthCombTwo, AuthCombThree-A and AuthCombThree-B

US; U US3 and representative H‘[ij‘; of user set US3 sends m3|msigs to US; U USy where my = psid‘[i]i|t2|32P
and m3 = psidg‘*3 |ts|ss P, ta, t3 being the next expected message number to be sent by H‘[lfz, H‘{lf’s respectively.

We define a variable First(psid$;) for the ease of discussion. If psidy;, = {(U;,,d;,), ..., (Ui, ds,,)}, then
First(psidy;) = {Uiy,...,Ui, }. Now on receipt of messages ma|msig, and ms|msigs, each user instance
H“i)’ € US; (1) checks First(psid‘[l]i) C pid“i," and First(psid‘[%) - pid“i,"; (2) verifies t9,t3 are the next
expected message number to be sent by H‘[i]z, H‘[ifg respectively; (3) verifies msigy, msigs are multi-signatures
on mg, m3 respectively. If any of these verification fails, H"j," sets acc"i,v =0 and sk“i,v = NULL and aborts.
Otherwise computes the common key H(e(P, P)5152%3) and sets psid"i," = psid“i}’ U psid?lf2 U psid‘li]“s.

Similar verifications are done by each user in user sets USe and US3. Common key H (e(P, P)%152%3) is
computed only if verification holds. Note that at the end of an honest execution of this protocol, each user
in the group US; U USs U US3 has a common partial session-identity.

3.3 Proposed Authenticated Dynamic Key Agreement Protocol

Dynamic key agreement consists of a key agreement protocol together with two additional algorithms, Insert
and Delete. The procedure Insert enables a user to join a group. A user can leave a group by invoking the
procedure Delete. In this subsection, we describe protocols for insertion and deletion for the above static
tree-based authenticated protocol. Our protocol design makes an optimal use of the data precomputed
in the procedure KeyAgreement. When a user joins or leaves a group, the structure of the key tree is
disturbed and requires to be updated for any subsequent join or leave operation. Maintaining the tree
structure of the key agreement protocol is a crucial part of our scheme. We refer this as the preservation
of the structure of the procedure KeyAgreement.

Suppose we have a keytree T of n users {1, 2,...,n} according to the key agreement of [5] with k = R(n)
rounds. For the sake of easy description, we take the user set P = {1,...,n} instead of the set {U1,...,Up}

and introduce some more notations. For 1 <[ < k, let Ui(l) be the i-th user set at level [ and sgl) be the



common agreed key of users in the user set Ui(l) at level [. Initially, Uz-(O) = {i}, sgo) is the private key
randomly chosen by user ¢ from Z;.

3.3.1 Insertion

Let a new user {u} with private key z requests for join in the group {1,...,n}. He joins the tree in such
a way that the structure of KeyAgreement is still preserved and updation of key path is optimal in the
sense that minimum updation or recomputation is required. For instance, consider a group key agreement
with 7 = 10 members. In this case, the root node will have 3 subtrees, with the left and middle subtrees
having 3 leaves each and the right subtree having 4 leaves. Now suppose a new user wants to join this
group. He cannot join the first subgroup (of subusers) since this is contrary to the way we partition the
user sets. So the entire group of users will have to be repartitioned. Similarly, he cannot join the third
subgroup (of 4 users) without causing repartitioning. But if he joins the second subtree, then there is no
need of repartitioning and so key updation is minimal and is only along a single path. This is illustrated in
Figure 4. The following Lemma determines uniquely such a path that we call the optimal path of joining
of the new user.

Lemma 3.1 For 1 <[ <k, k= R(n), define the following:
iy := the index of the node at level | whose subtree will contain the new user {u} as a leaf,
1 := the number of leaf nodes in the subtree at iy,
N := number of leaf nodes to the left of node 4; and

77 = m; mod 3.
Clearly i, = 1;m = n;rp, =nmod 3; N, = 0. Then, for 2 <1 <k, we have 1,1 = 34, —1; Nj—1 = [%J, and
Ni_1 =N+ (2 —r)m—1. Thus user u joins the subgroup at i1 and iy,ix_1,-..,11 determine the optimal

path along which the subgroup keys needs to be updated or recomputed.

Proof : By induction. The case [ = k is straightforward. Suppose the results hold for [ < k. The node
ij—1 is the (3 —7;)-th child of the subtree 7" at i; and there are 3(¢; — 1) nodes at level (I — 1) to the left of
subtree T in the original tree. Hence i;_1 = 3(3; — 1) + (3 — 1) = 3i; — 7.

The second one is easy to check. For the third one, we argue as follows: There are 7; leaf nodes in the
subtree T at 4; and 7; has exactly three offsprings with subtrees Ty, (left), Ths (middle) and Tx (right). If
rp =0, d.e. if |Ty| = |Tap| = |Tr|, then ¢;_; is the third child; if r; = 1, then 4, ; is the second child and if
r; = 2, then 4;_; is the first child. In any case, the number of leaf nodes in the subtree at 4; 1 is ;1.

In case 1 above, there are 27;_; leaf nodes to the left of node ¢;_; in the subree T" at 4;. In case 2, there
are 7m;_1 leaf nodes to the left and in case 3, there are zero leaf nodes to the left. In each case, there are
(2 — r7)m—1 leaf nodes to the left of 4;_; in 7. Since there are N; leaf nodes to the left of 4; in the original
tree, the total number of leaf nodes to the left of 4; 1 in N; + (2 — ;) m;_1 = N;_1, by definition of N; ;.
This completes the proof. [

We now describe our protocol Insert. This algorithm invokes a procedure FindKeyPath to find the optimal
key path path of joining of a new member and updates path according to the algorithm UpdateKeyPath.
The new user who has permission to join the group for a group key agreement computes it’s optimal
key path of joining i, ...,%1; Ng,..., N1 by using algorithm FindKeyPath, communicate this to all other
members of the group and invokes algorithm UpdateKeyPath to update this path. The formal description
of the procedures FindKeyPath and UpdateKeyPath are given below.

procedure FindKeyPath(n)
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Figure 4: procedure Insert

k= R(n);ix = 1; Ny, = 0;m, = n; 7, = n mod 3;
[ = k downto 2 do
G- =34 —r; m—1 = | %] ey = m—1 mod 3; Nj—y = Ny + (2 — r)mi—1;
end do
return (ig, ..., 015 Mks -« >N Nigy - -, N1)3

end FindKeyPath

procedure UpdateKeyPath(path)
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parse path = (ik,...,91; Mk, -, M5 Ny - - -, N1);
The node #1 at level 1 has 7; children which are clearly leaf nodes. Note that n; < 3.
if n; =1 then

user N;; + 1 chooses a new private key 35831+1€RZ;;

2 0 A 0 - .

U, = z(v¢)1+1531 = sﬁvjlﬂ; U = {u}; 32 = z;

call AuthCombTwo(UT[1,2],5[1,2]);
R

i1
end if
if n; = 2 then

users N;, + 1, N;, + 2 choose new private keys 35331_'_1, 35331+2€RZ; respetively;

U, = Uz(voi)1+15§1 = S§845)1+1; U, = UJ(V(?1+25§2 = 35331_'_2; Us = {u}; 83 = ;
call AuthCombThree — A(U[1,2,3], 5[1,2,3]);
sgll) is assigned the agreed key between user sets Ul, U'g, Us and U'i(ll) = U[l, 2,3];
end if
if n; = 3 then
users NV;; + 1, N;, + 2, N;; + 3 choose new private keys 35331“’35331 +2,s§831+3 respectively;

is assigned the agreed key between user sets Ul, U, and 02'(11) = [7[1, 2];

SAR 3 ()N N () R § S ok PR R,
U= UN¢1+3’81 - SNi1+37 Us = {u}732 = Z;

call AuthCombTwo(U[1,2], 5[1, 2]);
(0)

SN, +3 is assigned the agreed key between user sets Uy, Us

A ~ . 0 A 0 . 0 ~ 0 . 0
Us =U[L,2];33 = 35v31+35 U, = U](vi)1+2;82 = SSV31+2; U, = U](Vi)1+1;81 = 3§v31+19

A

call AuthCombThree — B(U[1, 2, 3], §[1, 2, 3]);
s s assigned the agreed key between user sets Uy,Us, Us and ﬁi(ll) = [}'[1, 2,3];

21



23. end if
24.l=1tok—1do

25. Jj =1y

26. if 4 = 34;41 — 2 i.e. 1141 = 2 then

27. call AuthCombThree — B(UW[4,5 4+ 1,5 + 2], sW[j,5 + 1,5 + 2));

28. sglli_ll) is assigned the agreed key among user sets Tj( ) UJ(QI, ﬁ]@Q; Ui(ll:_ll) =u® 7,7+ 1,7 +2];
29. end if

30. if il = 3il+1 —1 i.e. Ti+1 = 1 then

31. call AuthCombThree — B(UW[j —1,4,5 4+ 1],sV[j — 1,4, 5 + 1]);

32. sz(lli_ll) is assigned the agreed key among user sets U](_)l, U](l), U’;Ql; Ui(lljll) U [1—1,7,7 +1];
33. end if

34. if ’il = 3’il+1 i.e. Tl4+1 = 0 then

35. call AuthCombThree — B(UW[j — 2,5 —1,7],sO[j — 2,5 — 1, 4]);

36. sz(llj:) is assigned the agreed key among user sets UJ(_)Q, Uj@l, ﬁ]( ), Uz(ll:'ll) =UO[ -2,5-1,4];
37. end if

38. end do

end UpdateKeyPath

The algorithm UpdateKeyPath works as follows to update keys in level 1 on joining of the new user. In
the key tree T" with n users, the number of children of the node i; (node at level 1) in the optimal key
path is either 1 or 2 or 3. If i; has 1 leaf node, then the user corresponding to this leaf node chooses a
new private key, agree upon a common key with the new user by invoking algorithm AuthCombTwo and
the corresponding user set for level 1 is modified to a set that includes these two users. In case i; has 2
leaf nodes, the users corresponding to these leaves choose new private keys, a new user set for level 1 is
constructed that contains these two users and the new user and algorithm AuthCombThree-A is invoked
to agree upon a common key among them. If ¢; has 3 leaves, then the users corresponding to these leaves
choose new private keys. The rightmost user agree upon a common key with the new user by invoking
algorithm AuthCombTwo and constructs a new user set that consists of the new user and itself. Then
AuthCombThree-B is invoked for this new user set and the the other two leaves of i; to agree upon a
common key. Finally the corresponding user set for level 1 is modified to a set that includes these users.

The subsequent user sets are accordingly changed by algorithm UpdateKeyPath and key updates in level
I+1 (1 <1<k-—1) are done by invoking algorithm AuthCombThree-B among the three user sets which
are subtrees of node %;+1. The modified user set corresponding to the node ¢; invokes AuthCombThree-B
to agree upon a common key with the user sets corresponding to the other two subtrees (siblings of i;) of
node ;41 and a new user set for level [ + 1 is constructed that is the union of these three user sets. We
proceed in this way and finally a common key is agreed among all the n + 1 users. At the end, we newly
index the members (leaves) as {1,2,...,n+ 1}.

Remark 3.2 The insertion algorithm presented above is an authenticated algorithm. If we invoke Com-
bineTwo in lines 6, 18 instead of AuthCombTwo and CombineThree in lines 12, 21, 27, 31, 35 instead of
AuthCombThree-A and AuthCombThree-B, we get an unauthenticated version of the insertion algorithm.
We require k = |logzn| + 1 key updates in the execution of Insert. After insertion of the new member,
R(n+1)=k+1ifn=3F and k otherwise.
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3.3.2 Deletion

Suppose key tree T' with n leaf nodes {1, 2, ...,n} has the tree structure used in the procedure KeyAgreement
and suppose a member j5, 1 < jo < n, wants to leave the group. For this we first introduce a procedure
Extract which outputs the identity or index of a leaf node in 7" such that the structure of KeyAgreement is
preserved in the tree after removal of this node. We take a designated user, called group controller (GC)
to initiate the operation Delete. To be specific, we take one sibling of the node leaving the group as the
GC which is trusted only for this purpose.

The procedure Extract works as follows. If all the three subtrees Ty, Ty, Tr of the tree T" have equal
number of leaf nodes, then removal of a leaf node from the leftmost subtree 17, will not disturb the tree
structure and so we can extract a leaf node from T7,. Similarly, if the number of leaves in both T, Tys are
same, say p, and that of right subtree Tx is p + 1, then we can extract a leaf from Tr without disturbing
the tree structure. If the number of leaves in Ty, Tr are same, say, p + 1 and that of 77, is p, then we can
extract a leaf from T retaining the tree structure. We recursively apply this procedure on 17, Tg or Ty
chosen in this manner and finally reach to a leaf node. The index of the user corresponding to this leaf
node is outputed to the GC.

procedure Extract (T, n)
if n =1 then return the index of the leaf node to GC;
if n = 2 then return the index of the left leaf node to GC;
Let Tr,, Tas, Tr be respectively the left, middle and right subtree of T
p=[%]; 7 =nmod3;
while (p > 1) do
ifr=20 i.e. |TL| = |TM| = |TR| =p then
call Extract (T, p);
end if
ifr=1de |Tp]| =|Tu| =p,|Tr| =p+1 then
call Extract (Tg,p + 1);
end if
ifr=21d.e |Tp| =p,|Tr| = |Tu| =p+ 1 then
call Extract (Tas,p + 1);
14. end if
15.end do
end Extract

© 0N oW
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_— O
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Now a user corresponding to leaf jy leaves the group, the tree structure is disturbed. We first find the
highest level, say i, for which the subtree rooted at the internal node at, say j;, lacks the tree structure.
Consequently, j; is the root of the highest level subtree with disturbed tree structure on removal of j3. To
retain the the tree structure, we may need to extract suitably a leaf node [y from the tree T" in such a way
that the key updates required are minimal. We do this by using an algorithm FindExtractNode that uses
the procedure Extract as a subroutine and removes the leaving member jy, still preserving the structure of
KeyAgreement in the resulting key tree. This algorithm outputs the index of the extracted leaf node [y to
GC and also the index of the internal node j;. The procedure FindExtractNode is formally described below.

procedure FindExtractNode (7', n, jo)
1. k= R(n);

11



Figure 5: Different cases of procedure Delete with n = 11 (D denotes the node to be deleted and E denote
the node to be extracted to maintain the key structure)

2. After removing node jo, let i(< k) be the highest level for which the subtree rooted at j; lacks the
structure of KeyAgreement. (In case i < k, this structure is retained in the other two siblings of j;);

3. Let the left, middle and right subtrees of offsprings of the node j; be Tr, Tys, Tr respectively;

4. Case 1 : Before removing jo, let |7| = |Ta| = |Tr| = p; remove node jo;

5. if (jo is leaf node of Ty or Tx) then

6. call Extract (T,p);

7. end if

8. Case 2 : Before removing jo, let |T1| = |Tm| = p;|Tr| = p + 1; remove node jo;

9.  if (jo is leaf node of Ty, or Ths) then

10. call Extract (Tr,p + 1);

11.  end if

12.Case 3 : Before removing jo, let |Tr| = p; |Tar| = |Tr| = p + 1; remove node jo;
13.  if (jo is leaf node of T}, or Tx) then

14. call Extract (Tps,p + 1);

15. end if

16.Let Iy be the extracted node to be inserted as the jy-th leaf in the tree T';
17.return (lo, j;);

end FindExtractNode

Next we describe the algorithm Delete below. Our algorithm Delete invokes FindExtractNode to obtain the
index Iy of the node to be extracted (if required), finds from the tree T' the path from root to the parent
of the leaving leaf node jy and also the path from root to the parent of the extracted leaf node l. Two
new user sets are constructed in level 1: one user set includes the user corresponding to [y together with
the users corresponding to brothers of jy and another user set includes only the users corresponding to
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brothers of [5. All the users in these two new user sets choose new private keys. The subsequent higher
level user sets are modified accordingly and appropriate algorithms AuthCombTwo, AuthCombThree-A or
AuthCombThree-B are invoked for successive key agreements in the key tree. We invoke AuthCombTwo for
two party authenticated key agreement, AuthCombThree-A for three party authenticated key agreement
and AuthCombThree-B for authenticated key agreement among three user sets. At the end of the procedure
Delete, we newly index the users (leaves) as {1,2,...,n — 1}. Some particular cases are shown in Figure 5
(See Appendix.)

procedure Delete (T, n, jo)

1. Let k = R(n).

2. call FindExtractNode(T', n, jo);

3. Let (lo, i) be it’s output.

4. if l() = j() then

5 let pathp = (jk,.-.,71) be the path from root to parent of j5. The siblings of user jj choose
(1)

random new keys and form a new user set U; *. The subsequent user sets U;tt) are accordingly
)

modified replacing old UJ(I1 by the new one and the keys updated as in UpdateKeyPath.

6. end if

else

8. let pathp = (jk,- - -5 JisJie1,---,J1) and pathg = (jk, ..., Ji,li—1,---,01) be the paths from root to the
parent of the leaving leaf node jo and extracted leaf node [y respectively, where j; denotes the index
of the node at level ¢ whose subtree contains the leaving node jy and [; denotes the index of the node
at level ¢ whose subtree contains the extracted node [j.

9. User Iy and its brothers choose random new keys; also brothers of user jy choose random new keys;

(1)

10.  User [y and brothers of jy construct new user set Uj1 ; brothers of user [y constructs new set Ul(ll).
11.  The subsequent user sets UJ(:)’ Ul(:)a for 2 <t <k, are modified accordingly replacing the old Ujgll)
and Ul(ll) values by their new values. Note that |Ul(11)| # 0.

12. t=1to¢—1do in parallel

~

13. e user sets of level ¢ — 1 in U](:) agree upon a common key by invoking appropriate subroutine for
authenticated key agreement depending upon the cardinality of U}f).

14. e user sets of level £ — 1 in Ul(tt) agree upon a common key by invoking appropriate subroutine for
authenticated key agreement depending upon the cardinality of Ul(f).

15. end do;

16. t=1itokdo

17. user sets of level ¢ — 1 in UJ(:) agree upon a common key by invoking appropriate subroutine for

authenticated key agreement depending upon the cardinality of U](:).
18. end do;
19.end else
end Delete

Remark 3.3 The invocation of AuthCombTwo, AuthCombThree-A and AuthCombThree-B in the above
procedure make the protocol Delete authenticated. If instead, we use unauthenticated CombineTwo and
CombineThree, an unauthenticated version of the deletion algorithm is obtained. At most 2|logs(n + 1)]
key updates are required in the execution of Delete. After deletion of a member, R(n — 1) = k+ 1 if
n=23%4+1, and k otherwise.

13



4 Security Analysis

We will show that our dynamic authenticated key agreement protocol DAP is secure in the model as
described in Subsection 2.2. In fact, we can convert any active adversary attacking the protocol DAP into
a passive adversary attacking the unauthenticated protocol UP assuming that both DSig and MSig are
secure and DHBDH problem is hard. No Corrupt query appears since long term secret keys are not used.
So our protocol trivially achieves forward secrecy. We state the security results of the unauthenticated
protocol [5] UP and authenticated protocol [17] in Theorem 4.1 and Theorem 4.2. For the proofs of these
results, see [5, 17]. We prove our main result in Theoren 4.3 that states the security of our dynamic
authenticated key agreement protocol DAP.

Theorem 4.1 [5] The group key agreement protocol UP described in Section 3.1 is secure against passive
adversaries under the assumption that DHBDH problem is hard.

Theorem 4.2 [17] The group key agreement protocol AP described in Section 3.2 satisfies the following:
AdVAEA(t, a5, 95) < AAVR(Y',a +ds/2) + [P| Succosig(t') + [ P| Sucewmsig(t')
where t' <t+ (|P|qr + qs)tap, where tap is the time required for execution of AP by any one of the users.

Theorem 4.3 The dynamic group key agreement protocol DAP described in Section 3.3 satifies the fol-
lowing:

AdVpRR (t, 9k, g7, a1, gs) < AdViR(t', g + (g7 + qr + g5)/2) + |P| Succpsig(t') + |P| Succmsig(t')

where t' < t+ (|Plgg + q7 + qr + qs)tpap, where tpap is the time required for exzecution of DAP by any
one of the users, qg,qs,qr and qs are respectively the mazimum number of execute, join, leave and send
queries that an adversary can make.

Proof (Sketch) : Let A’ be an adversary which attacks the dynamic authenticated protocol DAP. Using
this we construct an adversary A which attacks the unauthenticated protocol UP. As in [17], we have the
following claim.

Claim : Let Forge be the event that a signature (either of DSig or of MSig) is forged by A’. Then
Prob[Forge] < |P| Succusig(t') + |P| Succpsig(t')-

Adversary A maintains a list Tlist to store pairs of session IDs and transcripts. It also uses two lists Jlist
and Llist to be specified later. Adversary A generates the verification/signing keys pky, sky for each user
U € P and gives the verification keys to A’. If ever the event Forge occurs, adversary A aborts and outputs
a random bit. Otherwise, A outputs whatever bit is eventually output by A’. Note that since the signing
and verification keys are generated by A, it can detect occurrence of the event Forge. A simulates the
oracle queries of A’ using its own queries to the Execute oracle. We provide details below.

Execute and Send queries: These queries are simulated as in [17]. Apart from the usual send queries,
there are two special type of send queries, Send; and Sendy. If an unused instance HdU wants to join the
group H?}il yen ,HdU’Zk, then A’ will make Send; (U, d, (U;,,...,U;,)) query. This query initiates
Join({(U;,,d1),...,(Ui,,dk)}, (U,d)) query . A first finds a unique entry of the form (S,7T) in Tlist with
S ={(Ui,,d1),--.,(Ui,,dg)}. If no such entry, A makes an execute query to its own execute oracle on S
and gets a transcript T'. A then stores (S, U|d,T') in Jlist. Similarly, when Send, (U, d, (U;,, ..., U;,)) query
is made, A stores (S,U|d,T) in Llist.
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Join queries : Suppose A’ makes a query Join({(Ui,,d1),-..,, (Ui, dk)}, (U,d)). A finds an entry of the
form (S,U|d,T) in Jlist where S = {(U;,,d1),-.., (Ui, dk)}. If no such entry, then the adversary A’ is
given no output. Otherwise, A modifies T as follows: A can find the path of joining of U in the key
tree with leafs U;,,...,U;, and detect the positions in 7" where the new messages are to be injected or
where the old messages are to be replaced by new messages. A does these modifications in T" according to
the unauthenticated version (see Remark 3.2) of the algorithm Insert described in Section 3.3.1 and gets
a modified transcript Tjs. It then patches appropriate basic signatures and multi-signatures with each
message in Ty according to the modifications described in Section 3.2. Thus A expands the transcript Ths
into a transcript 7" for DAP. It returns 7" to A’.

Leave queries : These queries are simulated as Join queries with modified transcript 73; obtained from
unauthenticated transcript 1" according to the algorithm Delete in Section 3.3.2.

Reveal/Test queries : Suppose A’ makes the query Reveal(U,i) or Test(U,4) for an instance IIi; for
which acc% = 1. At this point the transcript 7" in which H’b participates has already been defined. If T’
corresponds to the transcript of the authenticated protocol, then A finds the unique pair (S,7) in Tlist
such that (U,i) € S. Assuming that the event Forge does not occur, T is the unique unauthenticated
transcript which corresponds to the transcript 7”. Then A makes the appropriate Reveal or Test query to
one of the instances involved in T and returns the result to A’. Otherwise, T is the transcript for Join or
Leave, as the case may be. Since 7" has been simulated by A, A is able to compute the modified session
key and hence send an appropriate reply to A’.

As long as Forge does not occur, the above simulation for A’ is perfect. Whenever Forge occurs, adversary
A aborts and outputs a random bit. So Prob_ 4 ap[Succ|Forge] = 3. Using this, one can show

Advygup > Advy pap — Prob[Forge]

The adversary A makes an Execute query for each Execute query of A’. A’ makes gy Join queries and gy,
Leave queries. These queries are initialized respectively by Send; and Send;, queries of A’. Now each of
Send; and Send;, query of A’ makes at most one Execute query of A. Thus there are at most q; + qr,
execute query made by A to respond all the Send; and Send; queries of A’. Also A makes an Execute
query for each session started by A’ using Send queries. Since a session involves at least two instances,
such an Execute query is made after at least two Send queries of A’. Thus there are (g5 — q; — q1)/2
execute queries of A to respond all other Send queries of A’, where gg is the number of Sen d queries
made by A’. Hence the total number of Execute queries made by A is at most g + g5 + q1 + (g5 —
q7 —q1)/2 = qg + (g7 + q1 + gs)/2, where gg is the number of Execute queries made by A’. Also since
Adv 4 up(t,q8,q7,qL,95) < Advip(t,qE + qs/2 + qr/2 + qs/2) by assumption, we obtain:

AdvARA < AdvSA(#',qr + (¢7 + g + gs)/2) + Prob[Forge].

This yields the statement of the theorem. [ |

5 Conclusion

We describe a dynamic group key agreement in tree-based setting and prove that the scheme is provably
secure under the assumption that DHBDH problem is hard. Our protocol is an extension of the protocols of
Barua et al. [5] and Dutta et al. [17]. The bilinear pairing based Joux [21] protocol and multi-signature by
Boldyreva [12] are used. The protocol is proven to be secure in the standard formalized security model of
Bresson et al. [14] by appropriately modifying the Katz-Yung [22] technique to tree-based setting. One can
be benifited in both communication and computation power by combining our protocol with an efficient

15



constant round protocol. Designing such hybrid group key agreement protocols may be desirable for certain
applications, in particular when large number of user groups are concerned.
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