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Abstract
In1985, Shmuley proposed a theorem about intractability of 
Composite Diffie-Hellman [Sh85]. The Theorem of Shmuley may 
be paraphrased as saying that if there  exist a probabilistic poly-
time oracle machine which solves the Diffie-Hellman modulo an 
RSA-number with odd-order base then there exist a probabilistic 
algorithm which factors the modulo. In the other hand factorization 
of the module obtained only if we can solve the Diffie-Hellman 
with odd-order base. In this paper we show that even if there exist 
a probabilistic poly-time oracle machine which solves the problem 
only for even-order base and abstain answering the problem for 
odd-order bases still a probabilistic algorithm can be constructed 
which factors the modulo in poly-time for more than 98% of RSA-
numbers.
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1  Introduction

The first public key cryptosystem was proposed by Diffie and Hellman in 1976 
[DH76]. After that, plenty of public-key cryptosystems have been proposed. The 
mostly used public-key encryption scheme throughout the world is RSA that invented 
by Ronald Rivest, Adi Shamir and Leonard Adleman in 1977. After that, many 
cryptographers tried to combine these two cryptosystems to obtain more security.

The main idea of Composite Diffie-Hellman was first proposed by Shmuley and 
McCurley [Sh85, Mc88]. Shmuley proved that breaking Composite Diffie-Hellman 
with odd-order base is at least as hard as factoring. In 1988, K.S. McCurley proposed 



a new cryptosystem based on the idea of Shmuley and proved it is provably secure 
based on intractability of factoring [Mc88]. After that in 1999 Eli Biham, Dan Boneh 
and Omer Reingold proved that breaking Generalize Diffie-Hellman is also at least as 
hard as factoring [BBM99]. As will be discussed in more detail in Section 3, both 
Shmuley and also Biham, Boneh and Reingold only proved that breaking Composite 
Diffie-Hellman with odd-order base is implied by factoring not breaking Composite 
Diffie-Hellman in general case. In this paper, we show that if we have a probabilistic 
poly-time oracle machine, which solves the Composite Diffie-Hellman even only for 
even-order bases, i.e. it abstains answering Composite Diffie-Hellman with odd-order 
base we still can factor large integers in poly-time. 

Paper plan: In Section 2 we list definitions representing the various types of problems 
we deal with in this paper. In Section 3 we consider the theorem of Shmuley and that 
of Biham, Boneh and Reingold. After that, we prove our two main theorems in 
Section 4 and at the end, some ideas for future works will be proposed.

2  Preliminary Definitions

We state some definitions and notations that we use in another section. We use the 
notations of [BBM99] in this section.
Definition 2.1 (FIG) The Factoring-instance-generator, FIG is a probabilistic 
polynomial time algorithm such that on input n1 its output, pqN =  is distributed over 

bitn −2  integers, where p and q are two n-bit primes (Such N is known as a RSA-
number).

Definition 2.2 (DH) Let N be any possible output of )1( nFIG , let g be any odd-order 
element in *

NZ . Define the function ),(,
yx

gN ggDH with domain ggD ×=  such 
that,

)(mod),(, NgggDH xyyx
gN =

Definition 2.4 (ε-solving the DH-Problem) Let A be a probabilistic Turing-machine 
and ε=ε(n) a real-valued function. A ε-solves the DH-Problem if for infinitely N's 

( ) )()(),(Pr , nDDHgNA gNDH ε≥=

Definition 2.4 (ε-solving the Weak DH-Problem) Let A be a probabilistic Turing-
machine and ε=ε(n) a real-valued function. A ε-solves the DH-Problem if it ε-solves 
the DH-Problem for even-order bases and it abstains solving DH-problem for odd-
order base. 

Definition 2.5 (ε-solving the Factoring-Problem) Let A be a probabilistic Turing-
machine and ε=ε(N) a real-valued function. A ε-solves the Factoring-Problem if for 
infinitely N's 

)(),(Pr( ncNA ε≥

3 Previous Work

In 1985, Shmuley proved that the DH-assumption is implied by Factoring-
assumption. In 1988, K.S.McCurley proposed a new key distribution system based on 



the idea of Shmuley and proved that breaking that scheme is at least as hard as 
factoring [Mc88]. In 1999 Eli Biham, Dan Bone and Omer Reingold proposed a 
theorem like that of Shmuley for Generalize Diffie-Hellman in the case that N is a 
Blum-integer [BBM99]. 

The Shmuley's theorem is restricted in the case where base g is an odd-order 
element in *

NZ . The theorem of Biham, Boneh and Reingold is also restricted in the 
case that N is a Blum-integer and g is a quadratic-residue. It is clear that g will be 
odd-order element in that case. That is theorem of Biham, Boneh and Reingold for 
two parties is a special case of that of Shmuley. Consequently, so far, there is not any 
theorem concerning intractability of breaking Composite Diffie-Hellman in the case 
which g is an even-order element. In the other hand, there is no fact about 
intractability of Weak DH-Problem. 

4  Reduction

In this section, we state the two main theorems. In the remainder of this paper, we use 
the following notations:

• xp |'  denotes x is not divisible by p.
• xp ||  denotes x is divisible by p but not by p2.
• ),gcd( yx  denotes the greatest common divisor of x and y.
• ],[ yxlcm  denotes the least common multiple of x and y.
• )(xordN  denotes the smallest positive integer d such that )(mod1 Nxd = .
• Cyclic-Order(N) denotes the order of maximum-size cyclic subgroup of *

NZ . 
Note that according to [MOV96, Section 4] for any RSA-number N=pq, 

]1,1[)( −−=− qplcmNOrderCyclic .
• )log(x denotes the logarithm function with base 2. 

Lemma 4.1 If N is a composite number, p is a prime such that )(|| NOrderCyclicp −
and )(mod Nyx p=  for some integer y then )(xord  is not divisible by p.

Lemma 4.2 Let N be an RSA number, s be any prime factor of )(NOrderCyclic −
and x and y be two integers chosen randomly from *

NZ , such that )(mod Nyx ss =
then ),gcd( Nyx −  yields a non-trivial factor of N with probability 1-1/s.

The generalized form of this lemma was proposed in [AM94].

Theorem 4.1  If there exist a probabilistic polynomial-time oracle machine which 
ε -solves the Weak DH-Problem module N and there exist a prime p less than )log(N , 
such that )(|| Nordercyclicp −  then there exist a poly-time algorithm which ε -
factors the module N. 

Proof. Assume that A is a probabilistic poly-time oracle machine, which ε -solves the 
Diffie-Hellman module N only for even-order bases. Let )log(Np <  be an odd-prime 
such that )(|| NOrderCyclicp −  according to the assumptions of the theorem such a 
prime exist (Note that p is not a prime factor of N). Knowing p one can do the 
following for factoring the module N : 



1.   Sample v uniformly at random in *
NZ  and compute 

2pvg =
2. Select two random integers a and b.
3. Invoke A and set ),,( /1/1 pbpa

N gggDHx ++= . Let )(gordd N= . Note that by 
lemma 4.1 d is not divisible by p so ds mod)/1(  exist and is unique. 
Therefore pg /1 will exist and will be unique. In addition we know that 

gv pp =)(  and gv p ∈  so pp vg =/1 . 

4. Set )(mod N
v

xu bapab ++= . We have 
2/1 pgu = .

5. Compute ),gcd( NvuX −=

It is easy to see that )(mod pvu pp =  so by lemma 4.2 ),gcd( pvu −  will yield a 
non-trivial factor of N with probability p/11− . In the other hand we can say that 
since gu ∈  but the probability that gv ∈  is 1/p so the probability of success is 
equal to  p/11−  .
Note that in general case we do not know such p so we must somehow find it. For 
achieving that goal, we do the following:

1. Sample v uniformly at random in *
NZ

2. Let },...,,{ 21 kpppP =  be the set of odd-primes less than )log(N .

3. Compute ∏
≤≤

=
kt

tpw
1

2   and   )(mod Nvg w=

4. For each ki ≤≤1  do the following:
4.1 Compute ∏

≠≤≤

=
itkt
ti pw

&1

2

4.2 Let )(mod Nv iw
i =δ and )(mod Nip

i δσ = . Note that )(mod
2/1 Ng ip

i =δ . 
Note that if )(gordd N=  is divisible by ip then ipg /1  will exist and as 
discussed later i

pig σ=/1 . If d is not divisible by ip the remainder of sub-
procedure ( 4.3-4.7)  is not important for us.
4.3 Select two random integers a and b.
4.4 Invoke A and let ),(, σσ ba

gN ggDHx = . It is clear that 

),( /1/1
,

ii pbpa
gN ggDHx ++=

4.5 Set )( baabp
i

i

xu ++=
δ

.

4.6 Compute ),gcd( NuX δ−= .
4.7 If NXX ≠≠ &1  return X .

As discussed in the first part of proof if )log(Npi <  is an odd-prime such that 
)(|| NOrderCyclicpi −  the algorithm yields a non-trivial factor of N in the i'th 

iteration of step 4 with probability at least ε)./11( p− . And in the theorem we 
suppose that such p exist so the algorithm 'ε -solves the factoring and 2/' εε > . Since 
the number of iterations is less than )log(N  and each operation can be done in poly-
time so the algorithm can be accomplished in poly-time.



Lemma 4.3  Let s and sp >  be two primes. We have ( ) sps /11||Pr =− .

Proof. Note that since p is prime and p>s so *
NZs ∈ .

)1||Pr( −ps ( ) ( )1|Pr1|Pr 2 −−−= psps

)1(
1

1
1

−
−

−
=

sss s
1

=

Lemma 4.4  Let s be a prime and pqN =  be an RSA number )( 2sN > . We have 

( )
)1(
)2(21)(||Pr 2 −

−
+=−

ss
s

s
NOrderCyclics

Proof.  From [MOV96, Sec 4] we know that ]1,1[)( −−=− qplcmNOrderCyclic . In 
the following proof yx |'  denotes y is not divisible by x.

( ))(||Pr NOrderCyclics −

( ))(|'&)(|Pr 2 NOrderCyclicsNOrderCyclics −−=

( ))1||(&)1||(Pr −−= qsps ( )1|'&1||Pr −−+ qsps ( ))1||&1|'Pr −−+ qsps

1
21

1
211

2 −
−

×+
−
−

×+=
s
s

ss
s

ss

After this we show ( ))(||Pr NOrderCyclics −  by ),( Nsψ , and define the function 
),( Ncξ  to be the probability of )(|| NOrderCyclics −  for some prime s<c where 

2cN > . Following table show some date collected by computing function ψ  for 
some values s (suppose that N is large sufficient).

s 3 5 7 11 13
),( Nsψ 0.444 0.339 0.258 0.171 0.146

Lemma 4.5  Let pi be the i'th and pi+1 be the i+1'th odd-prime and N be a sufficient 
large RSA-number(N>pi+1

2). We have 
( ) )(.),(1),(),( 111 +++ −+= iiii pNpNpNp ψξξξ

Following table show some date collected by computing the recursive functions ξ  for 
some values c (suppose that N is large sufficient):

c 3 5 10 100 1000 10000
),( Ncξ 0.444 0.633 0.728 0.924 0.965 0.980

Theorem  4.2  If there exist a probabilistic polynomial-time oracle machine which 
ε -solves the Weak DH-Problem modulo a 2n-bit (n>1000) RSA-number N,  then 



there exist a poly-time algorithm which ε -factors the module N for at least 98% of 
such N.

Since 1000>n so 1000)log( >N , Therefore ),1000(),( NNc ξξ > . It is easy to see 
that as n become larger, this probability will become more than 98%.

5  Conclusion and Future Works

In this paper, we showed that not only Composite Diffie-Hellman with odd-order base 
yields factoring but also solving that problem for even-order base will yield factoring. 
As a future work, the following conjecture can be shown:

Conjecture 5.1 If there exist a probabilistic polynomial-time oracle machine which 
ε -solves the Weak DH-Problem module N and there exist a prime p less than )log(N , 
such that )(| Np ϕ not necessarily )(Np ϕ   then still there exist a poly-time 
algorithm which ε -factors the module N.

A possible line for further research is the study of the theorem in the case where 
)()( NOrderCyclicgordN −= . It is clear that both the new theorem and that of 

Shmuley does not say anything about this. That is if g is a maximum-order element 
we cannot say anything about intractability of Composite Diffie-Hellman with base g.
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