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Abstract. Bent functions are important cryptographic Boolean func-
tions. In order to enumerate eight-variable bent functions, we solve the
following three key problems. Firstly, under the action of AGL(7, 2),
we almost completely classify R(4, 7)/R(2, 7). Secondly, we construct
all seven-variable plateaued functions from the orbits of R(4, 7)/R(2, 7).
Thirdly, we present a fast algorithm to expand plateaued function into
bent functions. Based on the results above, it is feasible to enumerate
eight-variable bent functions in practice.
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1 Introduction

Bent functions were discussed in [16, 6, 24] in the early 1970s. They are a spe-
cial kind of Boolean functions whose Hamming distance to all affine Boolean
functions are equal. Because of their nice cryptographic properties, such as the
highest nonlinearity and the lowest autocorrelation, bent functions can be used
in symmetric cipher in order to resist the differential cryptanalysis[1] and lin-
ear cryptanlysis[15]. Bent functions can also be used in spread communication
[22, 21] and in error-correcting code[13]. For interest as a math problem and for
their wide applications in many areas, bent functions have attracted a lot of
research(for example, see[3, 4, 9] and references therein).

Despite their simple definition and extensive studies in the past 30 years,
many questions about bent functions remain open. The space of Boolean func-
tions is too huge and too complex. To enumerate, construct and classify bent
functions are still open problems[13]. Only in up to 6 variables, all bent func-
tions[24] are known. In 8 variables case, it is not clear. Even we don’t consider
functions with degree above 4 or functions containing affine functions, the num-
ber of Boolean functions we need to check is 2154. Some known results are cu-
bic bent functions[10], heuristic construction method[5] and some mathematical
construction methods around the idea of partial spread of F2n or using fewer
variables bent functions to produce more variables bent functions. Recently,
Dobbertin and Leander [7] gave a toolkit to construct 8-variable bent functions.

In this paper, with the aim to enumerate 8-variable bent functions, we solve
the following three key problems.
? email: mqseagle@yahoo.com



1. classification of R(4, 7)/R(2, 7). The number of orbits of R(4, 7)/R(2, 7) un-
der the action of AGL(7, 2) is 68433. Using invariant theory, we get 68095
orbits, i.e., we almost classify R(4, 7)/R(2, 7). There are still 338 orbits not
found by us.

2. construction of plateaued functions. We construct all 7-variable plateaued
functions using the 34049 orbits selected from the 68095 orbits.

3. algorithm expanding plateaued functions into bent functions. We give a fast
algorithm to construct all bent functions that are expanded from one given
plateaued function.

Based on the results above, it is feasible to enumerate 8-variable bent functions
in practice. Because we don’t classify R(4, 7)/R(2, 7) completely, and in the
missing 68433 − 68095 = 338 orbits, there may exist some orbits that can be
used to construct 8-variable bent functions too, our enumeration is an almost
enumeration. However, our results are still very useful on several occasions. For
example, it can be used to discover new properties of bent functions or disprove
some conjectures about them. As many symmetric ciphers use 8 bits as basic
computation unit, the designed 8-variable bent functions can used in symmetric
cipher.

The rest of this paper is organized as follows. In Section 2, we discuss some
related background. In Section 3, we discuss the classification of R(4, 7)/R(2, 7).
In Section 4, we discuss the construction of 7-variable plateaued functions. In
Section 5, we discuss the algorithm expanding plateaued functions into bent
functions. Finally a short conclusion is given in Section 6.

2 Preliminaries

The field of two elements is denoted by F2, and the vector space over F2 of
dimension n is denote by Fn

2

A vector s = (s1, s2, · · · , sn) ∈ Fn
2 can be denoted by an integer t whose

2-adic expansion is the vector s. That is, the vector s and the integer t are
isomorphic. In the rest of the paper, we would use an integer to represent a
vector in brief if there is no confusion.

The set of all Boolean functions Fn
2 → F2 is denote by pn. A Boolean function

can be written as

f(x) =
2n−1∑
s=0

asx
s,

where as ∈ F2 and xs = xs1
1 xs2

2 · · ·xsn
n ∈ pn. The degree of f(x) is defined by

deg(f) = max
s∈{0,1,···,2n−1},as 6=0

H(s),

where H(s) is the Hamming weight of the vector s.
Let

R(r, n) = {f(x)|f(x) ∈ pn, deg(f) ≤ r}



be the rth-order Reed-Muller code and for s < r, let R(r, n)/R(s, n) be the set
of all cosets of R(s, n) in R(r,m).

The set of all nonsingular matrices of order n is denote by GL(n, 2), i.e. the
general linear group. Denote by AGL(n, 2) the general affine group {(A, b)|A ∈
GL(n, 2), b ∈ Fn

2 }. The action of group AGL(n, 2) on Boolean functions is de-
fined by:

c : pn → pn

by : f(x)→f ◦ c = f(xA + b) ,

where c = (A, b) ∈ AGL(n, 2).
Two functions f(x), g(x) ∈ R(r, n)/R(s, n) are called affinely equivalent if

there exists (A, b) ∈ AGL(n, 2) such that f(x) = g(xA + b) mod R(s, n). An
invariant of R(r, n)/R(s, n) is a mapping M from R(r, n)/R(s, n) to a set such
that M(f) = M(g) holds for any two affinely equivalent functions f(x), g(x) ∈
R(r, n)/R(s, n). If all functions with same invariant value are taken as one orbit,
then invariant can be used to classify R(r, n)/R(s, n). Suppose N is the number
of distinct orbits of R(r, n)/R(s, n) under the action of AGL(7, 2). If an invariant
exactly takes N distinct values, then the set is already classified completely. In
this case, the invariant is called a discriminant of R(r, n)/R(s, n).

Definition 1. [24] Let f(x) ∈ pn, x = (x1, x2, · · · , xn), w = (w1, w2, · · · , wn),
and

w · x = w1x1 + x2w2 + · · ·+ xnwn ∈ F2.

Define
s(f)(w) =

∑

x∈F n
2

(−1)f(x)(−1)w·x

as the Walsh spectrum of f(x) at point w.

The transform is called the Walsh transform.

Definition 2. Define

cf (s) =
2n−1∑
x=0

(−1)f(x)(−1)f(x+s)

as the autocorrelation function of f(x), where f(x) ∈ pn, s ∈ Fn
2 .

Definition 3. [24] Let f(x) ∈ pn, x ∈ Fn
2 be Boolean function. If for any w ∈

Fn
2 , |s(f)| = 2n/2, then f(x) is called a bent function.

Definition 4. [26] For function f(x) ∈ pn, if there exists an even integer r such
that each s2

(f)(w) takes value of 22n−r or 0 only, then f(x) is called a rth-order
plateaued function.

In this paper, we only care about the (n − 1)th-order plateaued functions, and
call it plateaued functions for brief.



3 Almost Classification of R(4, 7)/R(2, 7)

In this section, our main goal is to solve the first key problem: classification of
R(4, 7)/R(2, 7) under the action of AGL(7, 2). To this end, we introduce some ba-
sic transforms to Boolean functions, and corresponding invariants. With these in-
variants, we classify R(4, 6)/R(1, 6) and R(3, 7)/R(1, 7) first, then R(4, 7)/R(2, 7).

3.1 Basic Transforms and Invariants

The basic transforms we will introduce include Walsh transform, autocorrelation
function, decomposition, derivation and modification to truth table.

3.1.1 Walsh Transform and Autocorrelation Function

Proposition 1. [23] Let f(x), g(x) ∈ pn be two functions such that g(x) =
f(xA + b) + lx, where A ∈ GL(n, 2), b, l ∈ Fn

2 , then for any w ∈ Fn
2 ,

s(g)(w) = (−1)(l+w)·bA−1
s(f)((l + w)(A−1)T ).

Corollary 1. [23] The distribution of absolute Walsh spectra of f(x) is equal to
that of g(x).

Proposition 2. [23] Let f(x), g(x) ∈ pn be two functions such that g(x) =
f(xA + b) + lx, where A ∈ GL(n, 2), b, l ∈ Fn

2 , then for any s ∈ Fn
2 ,

cg(s) = (−1)l·scf (sA).

Corollary 2. [23] The distribution of absolute autocorrelation function of f(x)
is equal to that of g(x).

3.1.2 Derivation

For any Boolean function f(x) ∈ R(r, n), define its derivation function on direc-
tion a ∈ Fn

2 as Da(f) = f(x) + f(x + a).

Proposition 3. [2]: Let f(x) ∈ R(r, n)/R(r − 1, n), then

Da(f ◦B) = (DaAf) ◦B mod R(r − 2, n),

where B = (A, c) ∈ AGL(n, 2).

Proposition 4. Let f(x) ∈ R(r, n)/R(s, n), B = (A, b) ∈ AGL(n, 2), then

Da(f ◦B) = DaA(f) ◦B mod R(s− 1, n).

If M is an invariant of R(r − 1, n)/R(s− 1, n), then

M(Da(f ◦B)) = M(DaA(f) ◦B).

Therefore,
{M(Da(f))|a ∈ Fn

2 }
is an invariant of R(r, n)/R(s, n).



Remark 1. Note that we use the invariant value {M(Da(f))|a ∈ Fn
2 }, instead

of the invariant {M ◦Da|a ∈ Fn
2 } itself, to denote an invariant. In the following

parts, we use the value of an invariant, instead of the invariant itself, for conve-
nience several times. The derivation function was used by Dillon[6] to prove the
existence of bent functions not in family M[16], by Hou[12] in classification of
R(3, 7)/R(2, 7) and by Brier and Langevin[2] in classification of R(3, 9)/R(2, 9).
Proposition 4 is an extension of their results.

3.1.3 Decomposition

Let f(x), g(x) ∈ R(r, n) be two functions such that g(x) = f(xA+b) mod R(s, n),
where A ∈ GL(n, 2), x = (x1, · · · , xn), b = (b1, b2, · · · , bn) ∈ Fn

2 . If f(x) = (x1 +
1)f0(x′)+x1f1(x′), where x′ = (x2, · · · , xn), then g(x) = (x ·c1 +b1 +1)f0(x′′)+
(x · c1 + b1)f1(x′′), where c1, c2, · · · , cn are the columns of the matrix A, and
x′′ = (x · c2 + b2, · · · , x · cn + bn). Obviously, f0(x′), f1(x′) are affinely equivalent
to f0(x′′), f1(x′′) mod R(s, n− 1) respectively.

In general, we have:

Proposition 5. Let f(x), g(x) ∈ R(r, n)/R(s, n) be such that g(x) = f(xA +
b) mod R(s, n), (A, b) ∈ AGL(n, 2). Let f(x) be decomposed into two subfunc-
tions: fax=0, fax=1 on direction a, then g(x) can be decomposed into two subfunc-
tions gcx=0, gcx=1 on direction c such that {fax=0, fax=1} are affinely equivalent
to {gcx=0, gcx=1} modulo R(s, n− 1), where c = aAT .

Proof. If f(x) is decomposed according to a vector a, i.e. according to a · x =
0 or 1, then g(x) can be decomposed according to a · (xA + b) = 0 or 1.

Let a = (a1, · · · , an), x = (x1, · · · , xn), A = (C1, · · · , Cn), where Ci, i =
1, · · · , n is the columns of the matrix A, then we have

a · (xA + b)=a · (x · C1, · · · , x · Cn) + a · b
=a1(x · C1) + · · ·+ an(x · Cn) + a · b
=a1(x1C1,1 + · · ·+ xnCn,1) + · · ·+ an(x1C1,n + · · ·+ xnCn,n) + a · b
=x1(a1C1,1 + · · ·+ anC1,n) + · · ·+ xn(a1Cn,1 + · · ·+ anCn,n) + a · b
=x1(a ·R1) + · · ·+ xn(a ·Rn) + a · b
=x · (a ·R1, · · · , a ·Rn) + a · b
=x · (aAT ) + a · b

.

Because a · b ∈ F2 is a constant, we can decomposed g(x) on direction c =
aAT .

Proposition 6. If M is an invariant of R(r, n− 1)/R(s, n− 1), then the set

{{M(fax=0),M(fax=1)}|a ∈ Fn
2 }

is an invariant of R(r, n)/R(s, n).

Remark 2. The basic idea of the decomposition of a function can be found early
in Maiorana’s paper[14], which made the classification of R(6, 6)/R(1, 6) possible
early in the 1990s. Recently, it was used by Brier and Langevin[2] to classify
R(3, 9)/R(2, 9).



3.1.4 The Modification of Truth Table

Definition 5. [20] For Boolean function f(x) ∈ pn, its 1-local connection func-
tions fi(x) are defined by

fi(x) =
{

f(x) , x 6= i
f(x) + 1, x = i

, i = 0, 1, · · · , 2n − 1.

Proposition 7. [8] Let f(x), g(x) ∈ R(r, n) be such that g(x) = f(xA+ b)+ lx,
then gj(x) = fi(xA + b) + lx, where jA = (i + b), i = 0, 1, · · · , 2n − 1.

Proposition 8. Let f(x) ∈ R(r, n). If M is an invariant of R(n, n)/R(1, n),
then {M(fi(x))|i ∈ Fn

2 } is an invariant of R(r, n)/R(1, n).

Remark 3. The purpose of the modification to truth table is to create many more
couples of equivalent Boolean functions of the same equivalent relationship.

3.2 Classification of R(4, 6)/R(1, 6)

Based on the invariants above, we are able to classify R(4, 6)/R(1, 6) under the
action of AGL(6, 2). The number of orbits of R(4, 6)/R(1, 6) under the action
of AGL(6, 2) is 2499 due to Hou’s work[11]. The classification can be done as
follows:

1. get the four orbits. It is easy to get the four orbits of R(2, 6)/R(1, 6). Due to
Hou’s work[12], the orbits of R(2, 6)/R(1, 6) and R(4, 6)/R(3, 6) are com-
plementary. Therefore, the representative functions of the four orbits of
R(4, 6)/R(3, 6) can be written as
(a) f0(x) = 0,

(b) f1(x) = x3x4x5x6,

(c) f2(x) = x1x2x5x6 + x3x4x5x6,

(d) f3(x) = x1x2x3x4 + x1x2x5x6 + x3x4x5x6.

2. classify the four cosets fi + R(3, 6). Using derivation function, we classify
the four cosets fi + R(3, 6), i = 0, · · · , 3 into 6,10,12,6 cosets of form gj +
R(2, 6), deg(gj(x)) ≤ 4 respectively. The invariant of R(3, 6)/R(1, 6) used in
Proposition4 is the distribution of absolute Walsh spectra. What we do in
this step is to check 4× 220 Boolean functions.

3. classify the 34 cosets gi + R(2, 6). Using the decomposition transform and
modification transform, we classify the 34 cosets gi + R(2, 6), i = 0, 1, · · · , 33
into 2499 cosets of form hi(x) + R(1, 6), deg(hi(x)) ≤ 4, i = 0, 1, · · · , 2498.
The invariant of R(4, 5)/R(1, 5) used in Proposition 6 is the distribution of
absolute Walsh spectra and absolute autocorrelation function. The invariant
of R(6, 6)/R(1, 6) used in Proposition 8 is the distribution of absolute Walsh
spectra and absolute autocorrelation function. In this step, we need to check
34× 215 Boolean functions.



3.3 Classification of R(3, 7)/R(1, 7)

We aim to classify R(3, 7)/R(1, 7) in this subsection. The number of orbits of
R(3, 7)/R(1, 7) under the action of AGL(7, 2) is 179 due to Hou’s work[11]. All
these 179 orbits can be obtained as follows:

1. In [12], the 12 orbits of R(3, 7)/R(2, 7) were given. Denote them by fi(x) +
R(2, 7), i = 0, 1, · · · , 11.

2. Using decomposition transform, the cosets fi(x)+R(2, 7), i = 0, 1, · · · , 11 can
be classified into 4,8,19,10,20,6,7,29,12,39,10,15 cosets of form gi(x)+R(1, 7)
respectively. The invariant of R(3, 6)/R(1, 6) used in Proposition 6 is the
distribution of absolute Walsh spectra and absolute autocorrelation function.

3.4 Almost Classification of R(4, 7)/R(2, 7)

Due to Hou’s result[12], the orbits of R(4, 7)/R(3, 7) and R(3, 7)/R(2, 7) are
complementary. Because the 12 orbits of R(3, 7)/R(2, 7) have been already given
by Hou[12], the 12 orbits of R(4, 7)/R(3, 7) are known too. We denote them by
gi(x) + R(3, 7), deg(gi) = 4, i = 1, 2, · · · , 12. That is, R(4, 7)/R(2, 7) can be
firstly classified into 12 sets of forms: gi(x) + R(3, 7)/R(2, 7), i = 1, 2, · · · , 12.
We can classify the 12 sets one by one. For a given set, say gi(x)+R(3, 7)/R(2, 7),
do the following steps.

Algorithm 1
For any a function f(x) ∈ gi(x) + R(3, 7)/R(2, 7),

1. invariant 1. Based on vector a, the function f(x) can be decomposed into
two subfunctions fax=0(x), fax=1(x) ∈ R(4, 6)/R(2, 6). Let D6

4,2 be the dis-
criminant of R(4, 6)/R(2, 6) known from Subsection 3.2. Let

DEa(f) = {D6
4,2(fax=0), D6

4,2(fax=1)},

then the distribution
{DEa|a ∈ Fn

2 , a 6= 0}
is an invariant of gi(x) + R(3, 7)/R(2, 7).

2. invariant 2. Let fa(x) ∈ R(3, 7)/R(1, 7) be the derivation function of f(x)
on vector a. Let D7

3,1 be the discriminant of R(3, 7)/R(1, 7) known from
Subsection 3.3, then the distribution {D7

3,1(fa)|a ∈ Fn
2 , a 6= 0} is an invariant

of gi(x) + R(3, 7)/R(2, 7).
3. final invariant. The direct product of the above two invariants is also an

invariant, denoted by IV T . We can use it to classify gi(x) + R(3, 7)/R(2, 7).

But Algorithm 1 is expensive in view of computation. It is not practical
because we have to check 235 functions in set gi(x) + R(3, 7)/R(2, 7). We give a
more practical method.

Algorithm 2: Practical One
There are 35 monomials of degree 3 in R(3, 7)/R(2, 7), and they can be

represented as xs, H(s) = 3. They can be numbered as 0, 1, · · · , 34 according



to the value of s, that is, xs is numbered as 0 if the s is the least, and xs is
numbered as 34 if the s is the largest. With the description above, we divide
the 35 monomials into two sets, named as G1, G2. G1 consist of the first 20
monomials and G2 consists of the rest 15 monomials. And denote by FG1, FG2
the set of homogeneous functions generated from G1, G2 respectively. The size
of FG1, FG2 are 220, 215 respectively.

For a given set gi(x) + R(3, 7)/R(2, 7),

1. classify the set {gi(x) + m(x)|m(x) ∈ FG1} using the invariant IV T , and
denote by RG1 the set of orbits.

2. classify the set {h(x) + m(x)|h(x) ∈ RG1,m(x) ∈ FG2} using the invariant
IV T . The heuristic searching algorithm we use is given below. We denote
by RG2 the set of representative functions of the orbits.
Heuristic Searching
for(h(x) ∈ RG1)
begin

neworbit = 0;
count = 0;
for(m(x) ∈ FG2)
begin

calculate the value of invariant IV T (h(x) + m(x)).
if (the value of IV T (h(x) + g(x)) is new)

then neworbit + +; and put h(x) + g(x) in set RG2.
count + +;
if (count > 1024 and neworbit == 0) break out;

end
end

Using Algorithm 2, the 12 sets are classified. The second line of Table 1
lists the exact number of orbits we obtain. The sum of all these orbits is 68095.
There are 68433 − 68095 = 338 orbits not found by our algorithm. The ratio
is 338/68433 ∼= 0.49%. That is, we almost classified R(4, 7)/R(2, 7) under the
action of AGL(7, 2).

Table 1. The Number of Orbit of gi + R(3, 7)/R(2, 7) Under the Action of AGL(7, 2)
and the Number of Reserved Orbits

gi g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 sum
Num. of Fun. 12 63 285 474 694 185 121 6371 1013 33598 1302 23987 68095

Num. of Reserved Fun. 6 24 128 156 328 55 44 3306 501 16851 657 11993 34049

The reason we don’t get all 68433 orbits is given below:

1. The invariant IV T used in Algorithm 1 may be not a discriminant of gi(x)+
R(3, 7)/R(2, 7).



2. Even the invariant IV T is indeed a discriminant, out of the consideration
on computation, we use a heuristic searching algorithm, not a exhaustive
searching algorithm. Therefore, the heuristic searching algorithm can also
lead to the loss of some orbits.

Beside the application in this paper, the almost classification of R(4, 7)/R(2, 7)
can be used to find the covering radius of R(2, 7) in R(4, 7).

4 construction of plateaued functions

In this section, we aim to solve the second key problem: construction of plateaued
functions. To this end, we study the Walsh spectra properties of the subfunc-
tions of bent function. We get some necessary conditions that the subfunctions
of a bent function must satisfy. Based on the necessary conditions, we divide
the 68095 orbits of R(4, 7)/R(2, 7) into two sets. While one set can be used to
construct 7-variable plateaued functions, the other set can’t. When we finish the
division, we also get all 7-variable plateaued functions.

4.1 Walsh Spectra Properties of the Subfunctions

Definition 6. Let

f(x) =
2k−1∑

i=0

δi(x′)fi(x′′),

where x = (x′, x′′), x′ = (x1, x2, · · · , xk), x′′ = (xk+1, xk+2, · · · , xn),

δi(x′) =
{

1, x′ = i
0, x′ 6= i

,

then fi(x′′), i = 0, 1, · · · , 2k − 1 are called the subfunctions of f(x).

The Walsh spectra properties of the subfunctions of bent function will be
studied below.

Theorem 1. [18]. Let

f(x) =
2k−1∑

i=0

δi(x′)fi(x′′)

defined as in Definition 6, then

[s(f0)(w
′′), s(f1)(w

′′), · · · , s(f2k−1)
(w′′)]

= [s(f)(0, w′′), s(f)(1, w′′), · · · , s(f)(2k − 1, w′′)]Hk/2k, (1)

where w = (w′, w′′), w′ ∈ F k
2 , w′′ ∈ Fn−k

2 , and Hk is a Hadamard matrix.



Corollary 3. If

f(x1, x2, · · · , xn) =
2k−1∑

i=0

δi(x′)fi(x′′), k < n/2

is a bent function, then every spectrum s(fi)(w
′′) can take the following 2k + 1

values:
(2k − 2j)2n/2−k, j = 0, 1, · · · , 2k.

All these values are called the kth-order Granted-value.

Proof. In equation (1), once s(f)(i, w′′), i = 0, 1, · · · , 2k − 1 takes one of the two
possible values {±2n/2}, the value of s(f0)(w

′′) can be calculated uniquely. The
number of different values the spectrum s(f0)(w

′′) can take is determined by
the number of positive values of s(f)(i, w′′), i = 0, 1, · · · , 2k − 1. Suppose the
number of positive values of s(f)(i, w′′), i = 0, 1, · · · , 2k − 1 is j, then s(f0)(w

′′)
takes value [(2k − j)2n/2 − j2n/2]/2k = (2k − 2j)2n/2−k. Let j = 0, 1, · · · , 2k,
then s(f0)(w

′′) takes 2k + 1 distinct values. Similarly, we can discuss s(fi)(w
′′)

for i = 1, 2, · · · , 2k − 1.

Let us consider the case n = 8. When k = 1, the set of the first-order
Granted-value is {0,±16}. When k = 2, the set of the second-order Granted-
value is {0,±8,±16}. When k = 3, the set of the third-order Granted-value is
{0,±4,±8,±12,±16}.

4.2 division of 68095 orbits into two sets

Corollary 3 can be used to check if a function is a bent function. For example,
let f(x) = (x0 + 1)f0(x′) + x0f1(x′). Generally, we calculate the Walsh spectra
of f(x) and see if it is a bent function. Using Corollary 3, we calculate the Walsh
spectra of f0(x) first and see if they take the first-order Granted-value. If the
Walsh spectra of f0(x) doesn’t take the first-order Granted-value, the function
f(x) can’t be bent function. Obviously, much computation is saved.

In Section 3, R(4, 7)/R(2, 7) is classified into 68095 orbits and the represen-
tative functions of all 68095 orbits are kept in RG2. With Corollary 3, we can
check whether the 68095 functions could be expanded into bent functions easily.
For any a function f(x) ∈ RG2, if there exists a function g(x) ∈ R(2, 7)/R(1, 7)
such that the Walsh spectra of f(x) + g(x) take the first-order Granted-Value,
then the function f(x) ∈ RG2 is reserved, otherwise f(x) is discarded. In this
way, we divide the 68095 functions into two sets. One set consists of reserved
functions, denoted by HB. The other set consists of the discarded functions.
The exact number of reserved functions is shown in Table 1. From Table 1, the
size of HB is 34049. In this step, though there are 68095 × 221 functions to be
checked, we can do it efficiently using Corollary 3 or the fast searching algorithm
in [19].

As the degree of 7-variable plateaued functions is no greater than 4 [26], we
also get all 7-variable plateaued functions when we get the division.



5 Algorithm to Enumerate 8-variable Bent Functions

In this section we present a fast algorithm to construct all bent functions that
are expanded from a given plateaued function.

Theorem 2. [24] Let f(x) ∈ pn be a bent function. f̃(x) be such that s(f)(w) =

2n/2(−1)f̃(x), then f̃(x) is a bent function, and is called the dual function of f(x).

Corollary 4. Let f(x) = (x1 + 1)f0(x′′) + x1f1(x′′) ∈ pn be a bent function,
then the size of {w′′|s(f0)(w

′′) = 0, w′′ = 0, · · · , 2n−1 − 1} is 2n−2.

Proof. If f(x) is a bent function, then f0(x′′) is a plateaued function. The Walsh
spectra of f0(x′′) take value 0,±2n/2. Denote by m the size of {w′′|s(f0)(w

′′) =
±2(n+1)/2, w′′ = 0, · · · , 2n−1 − 1}, then due to Parseval’s equation, m × 2n =
22(n−1). We get m = 2n−2. In other words, the size of {w′′|s(f0)(w

′′) = 0, w′′ =
0, · · · , 2n−1 − 1} is 2n−2.

Algorithm 3
Let f(x) = (x1 +1)f0(x′)+x1f1(x′), x = (x1, x2, · · · , x8), be a bent function.

By [26], the two subfunctions are called complementary plateaued functions. The
distribution of their Walsh spectra would be of the following forms respectively:

n1︷ ︸︸ ︷
a, · · · , a,

n2︷ ︸︸ ︷
b, · · · , b,

n3︷ ︸︸ ︷
a · · · , a, · · · (2)

n1︷ ︸︸ ︷
b, · · · , b,

n2︷ ︸︸ ︷
a′, · · · , a′,

n3︷ ︸︸ ︷
b · · · , b, · · · , (3)

where a = ±16, a′ = ±16, b = 0 and ni, i = 1, 2, · · · , are nonnegative integers.
The spectra sequence of f(x), denote by S, is of form like

n1︷ ︸︸ ︷
a, · · · , a,

n2︷ ︸︸ ︷
a′, · · · , a′,

n3︷ ︸︸ ︷
a · · · , a, · · · ,

n1︷ ︸︸ ︷
a, · · · , a,

n2︷ ︸︸ ︷
−a′, · · · ,−a′,

n3︷ ︸︸ ︷
a, · · · , a, · · · (4)

In above sequence, if 0 is substituted for 16 and 1 for -16, then the sequence
resulted from the substitution should be a truth table of another bent function
by Theorem 2. Given a plateaued function(i.e. a is known), to expand it into
bent functions is to determine the value of a′. Because the number of a′ is 64 by
Corollary 4, usually it is hard to determine. But using Corollary 3 we can do it.

1. Substitute 1 for a = 16 and -1 for a = −16 in sequence S.
2. The length of the sequence S is 256. The sequence S can be divided into

8 blocks of equal length. Suppose there are m1,m2,m3,m4 a′s in the first,
second, third and fourth block respectively, where m1 +m2 +m3 +m4 = 64.
The 5 − 8th blocks is determined by the 1 − 4th blocks respectively due to
formula (4). For each of the 8 blocks, substitute -1 or 1 for unknown a′, then
each block becomes a polarized truth table of a 5-variable Boolean function.
We check if the Walsh spectra of each block take the 3rd-order Granted-
value. If they do take the 3rd-order Granted-value, then the substitution



is right, otherwise the substitution is not proper and should be discarded.
The number of substitutions in this step is 2m1 + 2m2 + 2m3 + 2m4 . After
this step, suppose there are N1, N2, N3, N4 substitutions are reserved for the
1-4th blocks respectively.

3. Divide the sequence S into 4 blocks of equal length, each of which is then
a truth table of a 6-variable Boolean function. There are N1 × N2 substi-
tutions in the first block, and N3 × N4 substitutions in the second block.
The third and the fourth block is determined by the first and second block
respectively due to formula (4). For each of the four blocks, we check if
the Walsh spectra take the second-order Granted-value. Suppose there are
M1,M2 substitutions are reserved in first and second block respectively.

4. Divide the sequence S into 2 blocks of equal length, each of which is then a
truth table of a 7-variable Boolean function. There are M1×M2 substitutions
in the first block. The second block is determined by the first block. For the
two blocks, we check if the Walsh spectra take the first-order Granted-value.
Suppose there are M substitutions are reserved. Now for the M substitutions,
we check if the sequence S is a bent function.

The dual function of sequence S is the bent function we obtain.

6 Conclusion

In this paper, we present a practical method to enumerate 8-variable bent func-
tions. Because we don’t classify R(4, 7)/R(2, 7) completely, and in the small
number of missing orbits there may exist orbits that can be used to construct
bent function too, our enumeration is an almost enumeration. However, our re-
sults are still very useful. For example, they can be used to discover new proper-
ties of bent functions or disprove some conjectures about them. For the purpose
of being processed by 8-bit CPU, many symmetric ciphers use 8 bits as basic
computing unit. The designed 8-variable bent functions can used in symmetric
cipher.

Some immediate results of this paper are useful too. For example, the almost
classification of R(4, 7)/R(2, 7) can be used to find the covering radius of R(2, 7)
in R(4, 7); Covering radius is useful in coding and in cryptography. The 7-variable
plateaued functions obtained can be used to construct plateaued functions in
more variables by Corollary 2 in paper[25].
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