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Abstract: The main result of this paper is that the Dolev-Yao model is asafe abstraction of the computational model
for security protocols including those that combine asymmetric and symmetric encryption, signature and hashing.
Moreover, message forwarding and private key transmissionare allowed. To our knowledge this is the first result that
deals with hash functions and the combination of these cryptographic primitives.
A key step towards this result is a general definition of correction of cryptographic primitives, that unifies well known
correctness criteria such as IND-CPA, IND-CCA, unforgeability etc.... and a theorem that allows to reduce the
correctness of a composition of two cryptographic schemes to the correctness of each one.

This updated version contains a new, simpler, proof for the reduction theorems.
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Introduction

Historically, verification of cryptographic protocols hasbeen separated in two distinct branches. In thesymbolic
approach, originating from the work of Dolev and Yao [14], cryptographic primitives are viewed as functions on a
space of symbolic terms; while in thecomputational approachthey are viewed as possibly randomized functions on
bit strings.

A rich collection ofautomaticverification methods and tools have been developed [27, 11, 29, 18, 10, 15] in
the symbolic approach. They rely upon the perfect cryptography assumption which can be roughly summarized as
follows: messages are represented as algebraic terms, nonces are represented as names and fresh nonce creation is
perfect, that is, nonces range over an infinite domain of names and each nonce creation yields a different name, the
same holds for keys. Moreover, no information can be extracted from an encrypted message unless the inverse of the
key used to encrypt the message is known. In this approach there is a single attacker that is modeled as an infinite
process without bounds on its computational resources.

In thecomputational approach, cryptographic primitives operate on strings of bits and their security is defined in
terms of high complexity and weak probability of success [16, 7] of any attacker. Protocols as well as attackers are
randomized polynomial-time Turing machines. This computational approach is recognized as more realistic than the
symbolic approach. However, its complexity makes it very difficult to design automatic verification tools.

Therefore, results of the type:

If protocol Π uses the cryptographic schemesS1, · · · , SN , if each schemeSi is correct with respect
to the security notionCi then correctness of the protocol established in the symbolic model implies its
correctness in the computational one.

are of extreme importance for gaining confidence that a cryptographic protocol is secure. We call this type of results
soundness results of the symbolic approach.

In this paper, we present a soundness result for protocols with asymmetric and symmetric encryption, signature
and hashing. We emphasize that the main difficulty here is thecombination of these primitives.

The main step to get this result is the introduction of a security criterion that allows us to combine asymmetric and
symmetric key cryptographyas well as signature and hashing. To understand what is going on, imagine a cryptographic
library that offers these different kinds of primitives. What does it mean that this library is secure? A priori it is not
clear whether it is sufficient to say that each primitive is secure when taken on its own. There might be some unexpected
effects when for instance the encryption of a signed messageis hashed!

To answer this question we prove a powerful reduction theorem for security criteria. Typically, this theorem allows
us to prove results of the form: if the cryptographic schemeS1 (resp. S2) satisfies the criterionC1 (resp. C2) then
their combination satisfies criterionC, whereC is some combination ofC1 andC2. Then, we introduce a security
criterion for cryptographic libraries as above and use the reduction theorem to relate our security criterion to existing
ones, namely IND-CCA, selective forgery against adaptive chosen-message attack and collision resistance.

Related work In the last years, effort has been invested to bridge the gap between the symbolic and computational
approaches. In their ground-breaking paper [2] Abadi and Rogaway prove that messageindistinguishabilityin the
symbolic model is valid in the computational model when making some assumptions on the encryption scheme. In this
and subsequent papers [1, 20, 26], it is showed that if two messages are not distinguishable in the symbolic model, then
their computational interpretations cannot be separated by a Turing machine in a reasonable (polynomial) time. These
papers deal with passive attackers that do not intervene during protocol execution. Active attackers are considered
in [30, 25, 4, 24, 13, 19, 12, 21]. Backes, Pflitzman and Waidner developed a Dolev-Yao-style cryptographic library
with a provably correct implementation [4, 5, 3]. The security property considered there, calledreactive simulatability,
is a very attractive and powerful notion which is robust respect to general composition. Canetti and Herzog demonstrate
in [12] how Dolev-Yao style symbolic analysis can be used to assertthe security of cryptographic protocols within
the universally composable security framework. This framework also allows for strong composability properties.
Soundness of the symbolic approach for public key encryption is considered in [30, 25]. Asymmetric encryption and
digital signature are considered in [13, 21].

Compared to our paper [21], we improve with respect to the following: 1) in [21] we only consider asymmetric en-
cryption and digital signature and 2) we substantially generalize the reduction theorem to be applicable to asymmetric
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and symmetric encryption, digital signature and hashing. Compared to previous versions of this paper [22], we clarify
the proof of the reduction theorem.

Paper organization The next section gives the necessary preliminaries relatedto the computational model. In the
following section, we generalize and simplify the notion ofsecurity criterion and apply it to asymmetric encryption,
signature, symmetric encryption, hashing and a mix of all these primitives. Section 3 formulates the reduction theorem.
Then, this theorem is applied to relate the combined security criterion to the simple ones. Section 4 uses these results
to show that, under some quite nonrestrictive hypotheses, the symbolic model is a safe abstraction of the computational
model. Finally, some concluding remarks are drawn.

1 Preliminaries

1.1 Definitions for the Computational Model

An asymmetric encryption schemeAE = (KG, E ,D) is defined by three algorithms. The key generation algorithm
KG is a randomized function which given a security parameterη outputs a pair of keys(pk, sk), wherepk is a public
key andsk the associated secret key. The encryption algorithmE is also a randomized function which given a message
and a public key outputs the encryption of the message by the public key. Finally the decryption algorithmD takes
as input a secret key and a cipher text and outputs the corresponding plain-text, i.e.,D(E(m, pk), sk) = m. The
execution time of the three algorithms is assumed to be polynomially bounded byη.

A symmetric encryption schemeSE = (KG, E ,D) is defined as above except thatKG generates one key instead
of a pair, and hence, we requireD(E(m, k), k) = m.

A signature schemeSS = (KG,S,V) is also defined by three algorithms. The key generation algorithm randomly
generates pairs of keys(sik, vk), wheresik is the signature key andvk is the verification key. The signature algorithm
S randomly produces a signature of a given message by a given signature key. The verification algorithmV is given a
messagem, a signatureσ and a verification keyvk and tests ifσ is a signature ofm with the signature key correspond-
ing to vk. Hence,V(m,S(m, sik), vk) returns true for any messagem and any pair of keys(sik, vk) generated by
KG. We say thatσ is a valid signature undersik if there existsm such thatV(m, σ, vk) returns true. We still assume
that the algorithms have a polynomial complexity.

A hashing algorithmis a polynomial deterministic algorithm that, given a keyk and a bit-stringbs, computes
another bit-string of sizeη. The key generation algorithm is not important and one can suppose thatk is chosen
randomly among strings of sizeη.

1.2 Randomized Turing Machines with Oracle

An adversary for a given scheme is a Polynomial Random TuringMachine (PRTM) which has access to an oracle. In
the following, we consider Turing machines whose executionis polynomially bounded in the security parameterη, i.e.
there exists a polynomialP such that for any input corresponding to security parameterη, the machine stops within
P (η) steps.

To model access to the oracle, we slightly modify the definition of Turing machines. Our Turing machines have two
additional tapes, one for arguments (of function/oracle calls) and one for the results. Then, letF be a new action. We
define our PRTM as a pair of a Turing machineA that can use transitionF and another Turing machineF representing
the oracle.F can also be described by a PRTM (which can also access oracles). The semantics ofA/F is the standard
semantics ofA except that wheneverA fires the actionF , F is executed with the arguments tape as input and the
results tape as output.

It is possible to encode access to multiple oracles usingF (by giving in the arguments tape the name of the chosen
oracle). Hence, to simplify notations, we directly writeA/f1, ..., fn wherefi are PRTM and oracles are called using
thefi action when definingA.

A functiong : R → R is negligible, if it is ultimately bounded byx−c, for each positivec ∈
�

, i.e., for allc > 0
there existsNc such that|g(x)| < x−c, for all x > Nc.

3



2 Security Criteria

A security criterion is defined as an experiment involving anadversary (represented by a PRTM). The experiment
proceeds as follows. First some parametersθ are generated randomly. The adversary is executed and can use an oracle
F which depends onθ. At the end, the adversary has to answer a string of bits whichis verified by an algorithmV
which also usesθ (e.g.θ includes a bitb and the adversary has to output the value ofb).

2.1 Security Criterion

A criterionγ is a triple(Θ; F ; V ) where

• Θ is a PRTM that randomly generates some challengeθ (for example, a bitb and a pair of keys(pk, sk)).

• F is a PRTM that takes as arguments a string of bitss and a challengeθ and outputs a new string of bits.F
represents the oracles that an adversary can call to solve its challenge.

• V is a PRTM that takes as arguments a string of bitss and a challengeθ and outputs either true or false. It
represents the verification made on the result computed by the adversary. The answer true (resp. false) means
that the adversary solved (resp. did not solve) the challenge.

Note thatΘ can generate an arbitrary number of parameters andF can represent an arbitrary number of oracles. Thus,
it is possible to define criteria with multiplesΘ andF . As soon as there is no risk for ambiguity, we use the same
notation for the challenge generatorΘ and the generated challengeθ (both are denoted usingθ).

The advantage of a PRTMA againstγ is

Adv
γ
A(η) = 2.

(

Pr[Exp
γ
A(η) = true]− PrRandγ

)

whereExp is the Turing machine defined by:

Experiment Exp
γ
A(η):

θ←Θ(η)
d←A/η, λs.F (s, θ)
return V (d, θ)

andPrRandγ is the best probability to solve the challenge that an adversary can have without using oracleF . For-
mally, PrRandγ is the maximum ofPr[Exp′γ

A(η) = true] whereA ranges over any possible PRTM andExp′ is
similar toExp except thatF cannot be used byA.

Experiment Exp′γ
A(η):

θ←Θ(η)
d←A/η
return V (d, θ)

2.2 The N-PAT-IND-CCA Criterion

We introduce a security criterion that turns out to be usefulfor protocols where secret keys are exchanged. This
definition was first given in [21] where more discussion is available. In the classicalN -IND-CCA criterion (see [6]
aboutN -IND-CCA and its reduction to IND-CCA), a random bitb is sampled. For each key, the adversary has
access to a left-right oracle (the adversary submits a pair of bit-stringsbs0, bs1 and receives the encoding ofbsb) and a
decryption oracle (that does not work on the outputs of the left-right oracle). The adversary has to guess the value of
b.

Since it has no information concerning secret keys, the adversary cannot get the encryption of a challenge secret
key under a challenge public key. Therefore, we introduceN -PAT-IND-CCA, which allows the adversary to obtain
the encryption of messages containing challenge secret keys, even if he does not know the value of these secret keys.
For that purpose, the adversary is allowed to give pattern terms to the left-right oracles.
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Pattern termsare terms where new atomic constants have been added: pattern variables. These variables represent
the different challenge secret keys and are denoted by[i] (this asks the oracle to replace the pattern variable by the
value ofski). Variables can be used as atomic messages (data pattern) orat a key position (key pattern). When a left-
right oracle is given a pattern term, it replaces patterns byvalues of corresponding keys and encodes the so-obtained
message. More formally, patterns are given by the followinggrammar wherebs is a bit-string andi is an integer.
In the definition of pattern terms, we use the following binary operators : concatenation, encryption and signature.
Concatenation of patternspat0 andpat1 is written〈pat0, pat1〉. Encryption ofpat with keybs is denoted by{pat}bs.
Signature ofpat with key bs is denoted bysig(pat, bs). Similarly, when the key is a challenge key, it is represented
by a pattern variable[i]. Finally, one unary operator, hashing, is defined over patterns and is denoted byh.

pat ::= 〈pat, pat〉 | {pat}bs | {pat}[i] | bs | [i] | sig(pat, [i]) | sig(pat, bs) | h(pat)

The computation (valuation) made by the oracle is easily defined recursively in a contextθ associating bit-string values
to the different keys. Its result is a bit-string and it uses the encryption algorithmE and the concatenation denoted by
the operator·.

v(bs, θ) = bs

v([i], θ) = ski

v(〈p1, p2〉, θ) = v(p1, θ).v(p2, θ)

v({p}[i], θ) = E(v(p, θ), pki)

v({p}bs, θ) = E(v(p, θ), bs)

v(sig(p, bs), θ) = S(v(p, θ), bs)

v(sig(p, [i]), θ) = S(v(p, θ), ski)

v(h(p), θ) = H(k, v(p, θ))

There is yet a restriction. Keys are ordered and a pattern[i] can only be encrypted underpkj if i > j. This
restriction is well-known in cryptography and widely accepted. When the left-right pattern encryption oracle related
to keyi is given two pattern termspat0 andpat1, it tests that none contains a pattern[j] with j < i. If this happens, it
outputs an error message, else it produces the encryption ofthe message corresponding topatb : v(patb, θ) encoded
by pki. To win, the adversary has to guess the value of secret bitb. Note that an adversary can submit arguments of
different length to the left-right oracle but this does not create any problem (an interesting discussion on that point
appears in [2]).

Henceforth, letAE be an asymmetric encryption scheme. Then, criterionN -PAT-IND-CCA is given byγN =
(Θ; F ; V ), whereΘ randomly generatesN pairs of keys usingKG and a bitb; V verifies that the adversary gave the
right value for bitb; andF gives access to three oracles for eachi : a left-right encryption oracle that takes as argument
a pair of patterns〈pat0, pat1〉 and outputspatb completed with the secret keys (v(patb, θ)) and encoded usingpki; a
decryption oracle that decodes any message not produced by the former encryption oracle; and an oracle that simply
makes the public key available.

Then,AE is saidN -PAT-IND-CCA iff for any adversaryA in PRTM , Adv
γN

A (η) is negligible. Note thatN -
PAT-IND-CCA with N = 1 corresponds to IND-CCA.

2.3 The N-UNF Criterion

TheN -UNF criterion is an extension of Selective Forgery AgainstAdaptive Chosen-Message Attacks to the case of
N different keys (a good survey on properties for signature schemes is available in [17]). It was also already defined
in [21]. Here, we rephrase this definition to put it in the shape of our new criterion formalization.

The main requirement is that an adversary should not be able to forge a pair containing a messagem and the
signature ofm using the secret signature key. AnN -UNF adversaryA is givenN verification keys and has to produce
a message and its signature under one of the keys. It is also given the security parameterη andN signature oracles
Ssiki

(.).
LetSS be a signature scheme. TheN -UNF criterion is given byγN = (Θ, F, V ), whereΘ generatesN signature

key pairs using the key generation algorithm fromSS. F permits the access to two oracles for each signature key
pair: the first one allows to sign any string of bits; the second one gives the verification key. VerifierV checks that the
output of the adversary is a pair containing a message and itssignature. This signature must not have been produced
by the signature oracle.
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An adversary wins againstN -UNF when it succeeds in producing a message and its signature. Formally,SS is
saidN -UNF, if for any adversaryA, AdvN−UNF

A (η) is negligible. WhenN = 1, N -UNF can be written UNF.

2.4 The N-PAT-SYM-CCA Criterion

A symmetric encryption scheme includes both aspects indistinguishability and authentication that are present in asym-
metric encryption and message signature respectively. We reformulate it using our criteria framework in order to apply
our reduction theorem. That is, our criterion for symmetricencryption is a combination of IND-CCA and UNF. In-
deed, a symmetric encryption should be secure in two ways. The first one is related to IND-CCA, any PRTM should
not be able to guess any information from messages encoded with an unknown key. The second one is related to UNF;
any PRTM should not be able to forge an encoding without knowing the key (the encrypted message is authenticated).
Hence, oracles are similar to those presented in IND-CCA (except that no oracles output the public key), but there are
two different ways to win the challenge. The hypothesis of acyclicity regarding keys still holds:ki can only appear
encoded bykj if i > j. TheN -PAT-SYM-CCA criterion isγN = (Θ, F, V ) whereΘ generatesN symmetric keys
and a bitb; F gives access to two oracles for each key: a left-right encryption oracle that takes as argument a pair of
patterns〈pat0, pat1〉 and outputspatb completed with the secret keys (v(patb, θ)) and encoded withki; a decryption
oracle that decodes any message not produced by the former encryption oracle. Finally,V is composed of two parts:
VIND returns true when the adversary returns bitb; VUNF returns true when the adversary outputs a message encoded
by one of the symmetric key and this message has not been produced by an encryption oracle. ThenV is satisfied
if VIND or VUNF is satisfied. We require that there is no string that satisfiesboth VIND andVUNF (this can be
done by asking the name of the challenge together with its solution to the adversary). The criterion related to IND
(Θ, F, VIND) (resp. to UNF(Θ, F, VUNF )) is denoted byN -PAT-SYM-CCA/IND (resp.N -PAT-SYM-CCA/UNF).

A symmetric encryption schemeSE is saidN -PAT-SYM-CCA iff for any adversaryA in PRTM , Adv
γN

SE,A(η)
is negligible, whereγN is a criterion including the oracles explained above.

Existence of a1-PAT-SYM-CCA encryption scheme can be proved under the assumption that there exists an IND-
CCA asymmetric encryption scheme and an UNF signature scheme (see appendixA). The1-PAT-SYM-CCA criterion
is equivalent to the authenticated encryption criterion IND-CPA∧ INT-CTXT which is the strongest notion introduced
in [8] for authenticated encryption.

2.5 The HASH Criterion

The HASH criterion is a combination of an IND-CCA criterion,an UNF criterion and a collision free criterion. A
hashing algorithm needs to verify three properties to be secure. First an adversary cannot obtain information on a
bit-stringbs when looking atH(k, bs). The second property is that if an adversary does not know a bit-stringbs, it
cannot produceH(k, bs) even if it knows hashing of messages similar tobs. Finally, it must be hard for an adversary
to find two different messages which have the same hash for a given key. More details about criteria related to HASH
can be found in [9].

The HASH criterion isγ = (Θ, F, V ), whereΘ generates a bitb, a keyk and a random bit-stringNH of sizeη.
OracleF gives access to two oracles: an oracle which gives the value of key k and a left-right hashing oracle which
takes as input a pair〈pat0, pat1〉 of hollow patterns (these patterns can ask for inclusion ofNH and have to ask for it at
one position at least) and outputsH(k, patb[N

H ]). Moreover, each pattern can only be submitted once to this oracle in
order to avoid guessing attacks. VerifierV is the disjunction of three parts:VIND returns true if the adversary outputs
the challenge bitb; VUNF returns true if the adversary outputs a pair〈h, pat〉 such thath = H(k, pat[NH ]) andh was
not produced byF ; VCF returns true if the adversary outputs a pair〈bs0, bs1〉 such thatH(k, bs0) = H(k, bs1), and
bit-stringsbs0 andbs1 are different.

A hashing algorithm is said HASH iff for any adversaryA in PRTM , Adv
γH

A (η) is negligible.
The criterion related to IND(Θ, F, VIND) (resp. to UNF(Θ, F, VUNF )) is denoted by HASH/IND (resp. HASH/UNF).

The last criterion related to collision free is denoted HASH/CF.

Proposition 2.1 If an algorithmH is secure against HASH/IND and HASH/CF andPrRandCF andPrRandUNF

are negligible, thenH verifies HASH/UNF and so is secure against HASH.
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Proof: This proof is detailed in appendixB.
Let us spend a few words explaining our requirements on hashing algorithms: indistinguishability and collision

freeness. In the cryptographic literature, one usually finds one-wayness1 and collision freeness as requirements. We
require, however, indistinguishability instead of one-wayness. This is because, exactly as for asymmetric encryption,
one-wayness is too weak as it should not be possible to infer any information onm just by looking ath(m).

Note that it is not clear to us whether there exists an algorithm satisfying our requirements. However our require-
ments seem necessary to prove soundness of the symbolic model.

2.6 Mixing all Criteria

Let us now consider an encryption scheme, or rather a cryptographic library, that includes the cryptographic primitives
above, i.e., asymmetric encryption, symmetric encryption, signature and hashing. The security of such a library can be
defined as a game, where an adversary has access to each of the oracles above and wins the game, if it succeeds to guess
the value of the bitb, forge a signature, forge an encryption by a symmetric key, or construct a hash-collision. There
are some restriction on the patterns the adversary can use. The restriction essentially forbids cycles, as in the case of
asymmetric encryption. We say that a cryptographic librarysatisfies theN -PASSH-CCA criterion, if the advantage
of any adversary against this combined criterion is negligible. More formally, we have the followingN -PASSH-CCA
criterion:γ = (Θ, F, V ) whereΘ is composed of four parts:

• Θa generatesN pairs of asymmetric keys(pk1, sk1) to (pkN , skN ).

• Θb generatesN symmetric keysk1 to kN .

• Θc generatesN pairs of signature keys(sik1, vk1) to (sikN , vkN ).

• Θd generates a nonceNH , a keyk as well as a challenge bitb.

F is also split in four parts:

• Fa corresponds to the oracles usingθa as inN -PAT-IND-CCA except that patterns can also ask for symmetric
encryption, symmetric keys, signature of a message, signature keys, hashing of a message and nonceNH . Fa

depends onθa, θb, θc andθd.

• Fb corresponds to oracles usingθb as in N -PAT-SYM-CCA, patterns are also extended but cannot include
asymmetric keys fromθa. Fb depends onθb, θc andθd.

• Fc corresponds to oracles usingθc as inN -UNF, Fc depends only onθc.

• Fd corresponds to oracles usingθd as in HASH,Fd depends only onθc.

Finally V is also a disjunction of five parts:

• VIND answers true if its argument if the bitb in Θd.

• VUNF−SY M answers true if it receives a symmetric encryption not forged byFb.

• VUNF−SIGN answers true if it receives a signature not forged byFc.

• VUNF−HASH answers true if it receives a pairh, pat whereh = H(k, v(pat, NH) and h has not been forged
usingFd.

• VCF−HASH answers true if it receives a pair of distinct bit-stringsbs0, bs1 that have the same hash.

Let us define theN -PAT-ASYM-SYM-SIGN-HASH-CCA (N -PASSH-CCA) criterion asγ = (Θ, F, V ) whereΘ
is composed of four parts:

1Intuitively, a functionf is one-way, if givenf(x) but notx it is hard to find a valuey such thatf(y) = f(x).
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• Θa generatesN pairs of asymmetric keys(pk1, sk1) to (pkN , skN ).

• Θb generatesN symmetric keysk1 to kN .

• Θc generatesN pairs of signature keys(sik1, vk1) to (sikN , vkN ).

• Θd generates a nonceNH , a keyk as well as a challenge bitb.

F is also split in four parts:

• Fa corresponds to the oracles usingθa as inN -PAT-IND-CCA except that patterns can also ask for symmetric
encryption, symmetric keys, signature of a message, signature keys, hashing of a message and nonceNH . Fa

depends onθa, θb, θc andθd.

• Fb corresponds to oracles usingθb as in N -PAT-SYM-CCA, patterns are also extended but cannot include
asymmetric keys fromθa. Fb depends onθb, θc andθd.

• Fc corresponds to oracles usingθc as inN -UNF, Fc depends only onθc.

• Fd corresponds to oracles usingθd as in HASH,Fd depends only onθc.

Finally V is also a disjunction of five parts:

• VIND answers true if its argument if the bitb in Θd.

• VUNF−SY M answers true if it receives a symmetric encryption not forged byFb.

• VUNF−SIGN answers true if it receives a signature not forged byFc.

• VUNF−HASH answers true if it receives a pairh, pat whereh = H(k, v(pat, NH) and h has not been forged
usingFd.

• VCF−HASH answers true if it receives a pair of distinct bit-stringsbs0, bs1 that have the same hash.

3 Reductions of Criteria

In this section, we present a generic result allowing to prove that a security criterionγ1 can be reduced to a criterion
γ2. This means that if there exists an adversary that breaksγ2 then there exists an adversary that breaksγ1. The proof
is constructive in the sense that such an adversary forγ1 can be effectively computed.

This result can be seen as a tool for proving that a criterionγ is at least as secure as a criterionγ′ but also allows
to decompose and split a criterion into simpler ones. We begin by presenting a simple version of the theorem.

3.1 Criterion Partition and the Reduction Theorems

Let γ = (θ1, θ2; F1, F2; V2) be a criterion. Letγ1 andγ2 be two criteria such that:

• There exist two PRTMG andH such that:

G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2) (1)

G(H(s, θ2, θ
′
2), 0, θ1) = F1(s, θ1, θ

′
2) (2)

OracleG operates on a string of bits, thus it must receive two challenge information, a bitb andθ1.

• γ2 = (θ2; F2; V2) andγ1 = (b, θ1; G; verifb) whereb generates a random bit andverifb is the PRTM verifying
that the output of the adversary isb: verifb(s, b, θ1) = (s⇔ b).

• F2(s, θ1, θ2) andV2(s, θ1, θ2) do not depend onθ1.
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Then we say that(γ1, γ2) is avalid simplified partitionof γ.

Theorem 3.1 (Simplified Reduction Theorem)Let (γ1, γ2) be a valid simplified partition ofγ. For any PRTMA,
there exist two PRTMAo andB such that

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|

The proof appears in appendixC. Notice that in applying the reduction theorem above, the difficulty is not to find
arbitrary functionsG andH that satisfy the Equations (1) and (2) but rather to find such functions that induce criteria
γ1 andγ2 with negligible corresponding advantages.

The applicability of the simplified reduction theorem is restricted by the fact that the verfication algorithmV only
dependsθ2. We show now that we can avoid this restriction. So let us assume that the PRTMV is represented two
PRTM’s V1 andV2 such thatV1 (resp.V2) depends only onθ1 (resp.θ2) andV returns true ifV1 or V2 returns true.
By abuse of notation we writeV1 ∨ V2 to underpin this. The criteriaγ1 andγ2 are defined as above but now a new
criterionγ3 = (b, θ1; G; V1) occurs in the partition. Then, we say that(γ1, γ2, γ3) is a valid partition ofγ, if there is no
strings such thatV1 andV2 are both verified ons (intuitively, the adversary should know which part of the challenge
he is trying to win).

Theorem 3.2 (Reduction Theorem)Let (γ1, γ2, γ3) be a valid partition ofγ. For any PRTMA, there exist three
PRTMAo,A1 andB such that

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)| + |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

3.2 Applications of the Reduction Theorems

This section contains application examples of our reduction theorems. These applications are mainly useful for com-
position of security criteria.

The first proposition (which was already given in [21]) states thatN -PAT-IND-CCA is equivalent to IND-CCA.
This proposition is useful as the criterion is well-studiedin the literature and as there are algorithms proven to be
IND-CCA.

Proposition 3.1 ( [21]) If an encryption scheme is secure against IND-CCA, then itis secure againstN -PAT-IND-
CCA for anyN .

Proofs for all the proposition in this section appear in appendix D

Proposition 3.2 If a symmetric encryption scheme is secure against SYM-CCA/IND and SYM-CCA/UNF, then it is
secure againstN -PAT-SYM-CCA for anyN .

The following proposition states that the combination of secure encryption schemes is a secure encryption scheme. In
other words, combining secure encryption schemes is harmless as long as cycles are avoided.

Proposition 3.3 If an asymmetric encryption schemeAE is IND-CCA, a symmetric encryption schemeSE is SYM-
CCA, a signature schemeSS is UNF and a hashing algorithmH is HASH, then the composition(AE ,SE ,SS,H) is
N -PASSH-CCA.

Proof: We only present here the first step of the proof, the other steps are similar. LetΘ1 be (Θa, Θb) andΘ2 be
(Θc, Θd). In the same way,F1 (resp.F2) can be used to accessFa andFb (resp.Fc andFd). V1 is VUNF−SY M and
V2 is the disjunction ofVUNF−SIGN , VUNF−HASH , VCF−HASH andVIND. H is defined as above for IND-CCA
or UNF andG is also defined as above for encryption, decryption (asymmetric and symmetric keys) and public key.
F1, F2, V1 andV2 depend on the right parameters hence we define a valid partition ofγ. The reduction theorem gives
that for any PRTMA, there exist three PRTMB,Ao andA1 such that:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)| + |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

Criteriaγ1, γ2 andγ3 can easily be partitioned in a similar way to get the conclusion.

9



3.3 Unbounded Number of Challenges

We want to consider the case where the number of challenges isnot bounded any more like inN -IND-CCA where
only N keys are generated for anyη. For that purpose, criteria are extended to a polynomial number of challenges.
For example, ifP is a polynomial, then theP -IND-CCA criterion usesP (η) keys. The objective here is to generalize
the previous results to this case.

Proposition 3.4 LetP andQ be two polynomials from
�

[X ]. LetD be a PRTM that given an integeri returnsCi, a
PRTM whose execution takes less thanQ(η) steps. If the execution ofD also takes less thanQ(η) steps, then for any
criterion γ, there exists a PRTMC whose execution takes less than2.Q(η) + P (η) steps such that for anyη:

Adv
γ
C(η) =

1

P (η)

P (η)
∑

i=1

Adv
γ
Ci

(η)

AdversaryC randomly chooses the PRTMCi that it is going to use and executes it.

Adversary C:
r←[1..P (η)]
Cr ← D/r
d←Cr/η
return d

This property allows us to consider the case of a polynomial number of challenge (and also the case of an un-
bounded number of challenges as only a finite part of them can be used). If the advantage of any PRTMA againstγP

is the sum of the advantages ofP (η) PRTM againstγ. Then if each of the latest PRTM are bounded in time using a
same polynomialQ, the advantage ofA is also equal (modulo a division byP (η)) to the advantage of a PRTM against
γ. Hence, if the considered scheme is secure againstγ, it is also secure againstγP .

This method applies on all the previous applications of our reduction theorems. Hence, we have:

Proposition 3.5 If an encryption scheme is secure against IND-CCA, then it issecure againstP -IND-CCA for any
polynomialP .

If a symmetric encryption scheme is secure against SYM-CCA/IND and SYM-CCA/UNF, then it is secure against
P -PAT-SYM-CCA for any polynomialP .

If an asymmetric encryption schemeAE is IND-CCA, a symmetric encryption schemeSE is SYM-CCA, a signature
schemeSS is UNF and a hashing algorithmH is HASH, then the composition(AE ,SE ,SS,H) is P -PASSH-CCA
for any polynomialP .

4 Dolev-Yao is a Safe Abstraction

4.1 Definitions for the Symbolic Model

In this section, we give the basic definitions that are used tointroduce the symbolic aspects of protocol checking.
Symbolic studies rely on the concept of messages which are first order terms. To define messages, we first introduce
three infinite disjoint sets :Nonces, Identity andKeys. Elements ofNonces are usually denoted byN and can be
thought as random numbers. Thus, it is impossible for an intruder to guess the value of a nonce without indications.
Elements ofIdentity are the possible names of agents involved in the protocol. Finally, elements ofKeys represent
asymmetric encryption keys, symmetric encryption keys andsignature keys. There is a unary function overKeys

associating each keyk to its inversek−1 such thatk = (k−1)
−1

. For symmetric encryption, the inverse of a key is
itself: k = k−1. The following binary operators are defined over messages: concatenation, encryption and signature.
Concatenation of messagesm andn is written 〈m, n〉. Encryption of messagem with key k is denoted by{m}k.
Signature of messagem with key k is denoted bysig(m, k). Finally, one unary operator, hashing, is defined over
messages and is denoted byh.
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Next, we recall the definition of theentailmentrelationE ` m (introduced in [14]) whereE is a finite set of
messages andm a message. Intuitively,E ` m means thatm can be deduced from the set of messagesE. This
relation is defined as the least binary relation verifying:

• If m ∈ E, thenE ` m.

• If E ` m andE ` n, thenE ` 〈m, n〉.

• If E ` m andE ` k thenE ` sig(m, k).

• If E ` 〈m, n〉, thenE ` m.

• If E ` 〈m, n〉, thenE ` n.

• If E ` m andE ` k, thenE ` {m}k.

• If E ` {m}k andE ` k−1, thenE ` m.

• If E ` sig(m, k) thenE ` m.

• If E ` m, thenE ` h(m).

4.2 Symbolic and Computational Semantics

For the sake of presentation, we consider protocols that only involve a single role. Moreover, this role is only instanti-
ated in one session. This is done without loss of generality when a bounded number of sessions is considered. Indeed,
each interleaving of the actions of the different participants can be seen as a different protocol.

Thus, a protocol is described by a list of actions which are either emission!m or reception?m of a messagem.
We consider the classical adversary model where the adversary controls the network, receives all the outputs (!m) and
submits some forged message to the inputs (?m).

Henceforth, let us consider an arbitrary fixed protocol‡1t1...‡ktk, where‡i is either ”!” or ”?” and ti is a term.
There are two different execution models, one for the symbolic setting and one for the computational setting producing
a symbolic and a computational trace, respectively. Asymbolic action sequenceis a list of actionss m wheres is
either? or ! andm is a ground (closed) message. Asymbolic traceis a symbolic action sequence‡1m1...‡k′mk′ with
k′ ≤ k that satisfies the following conditions:

1. There exists a ground substitutionσ such that for anyi, tiσ = mi;

2. For anyi, if ‡i is ”?”, thenmi is deducible from the previous messagesm1 to mi−1 and the initial knowledge
of the adversaryE0,i.e.,

E0, m1, ..., mi−1 ` mi.

The setE0 contains the atomic messages of themi’s that do not appear in anyti, i.e. E0 =
⋃

i atoms(mi) \
⋃

i atoms(ti).

The settrace(Π) contains the possible traces for protocolΠ.
A computational action sequenceis a list of actions‡ bs wherebs is a bit-string and‡ is either”?” or ”!”. A

computational traceis the result of the interaction of an adversaryA, which is a polynomial random Turing machine,
and the protocol. This interaction is defined using the Turing machineExec(A, Π). Since we are interested in relating
the symbolic and computational semantics we defineExec in such way that along the computational trace it outputs
a corresponding symbolic action sequence. We then show thatthe symbolic action sequence is a trace except for
negligible probability. The reader should be convinced that producing the symbolic action sequence by no means
interferes with the computational semantics.

To simplify the presentation of theExec algorithm, we only give pseudo-code using the following functions:

• init(Π) generates the keys and nonces and that are chosen by the protocol Π, i.e., those inatoms(Π), and not
by the adversary. It returns a substitutionθ associating bit-string values to these elements.
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• parse(bs, t, θ, σ) parses the bit-stringbs using prototypet and knowledge fromθ, it returns the updated version
of θ as well as an updated symbolic substitutionσ.

• concr(m, θ) concretizes messagem using knowledge fromθ and returns the corresponding bit-string.

• compl(σ) completes the symbolic substitutionσ by associating remaining free variables to a distinct fresh
nonces.

TheExec algorithm uses two substitutions: the symbolic substitutionσ that links protocol variables to messages
and the computational substitution that links variables tostrings of bits. The adversary can decide to stop interacting
with the protocol by providing an answer other than an updated memorymem and a bit stringbs when an action?t is
to be executed.

Algorithm Exec(A, ‡1n1...‡knk):
θ ← init(‡1n1...‡knk)
mem← []
for i in [1, k] do

if ‡i =! then
bs← concr(ni, θ)
mem← A(bs, mem)
tc ← append(‡ibs, tc)

else
X ← A(mem)
if X = bs, mem then

σ, θ ← parse(bs, mi, θ, σ)
tc ← append(‡ibs, tc)

else goto done
done
σ ← compl(σ)
return (‡1m1...‡imi−1)σ, tc

The next proposition relates precisely the computational trace and symbolic action sequence thatExec outputs.
A computational tracetc is apossible concretizationof a symbolic action sequencetf if there exists a computational
substitutionθ such that one of the possible valuation oftf usingθ is tc.

Proposition 4.1 LetA be an adversary andΠ a protocol. IfExec(A, Π) outputstf , tc, thentc is a possible con-
cretization oftf .

4.3 Relating the Symbolic and Computational Models

The main result of this section is that under some conditionsthe computational adversary acts as a symbolic adversary
with overwhelming probability. This means that the computational adversary, even with all the computing power of
polynomial-time random Turing machines, cannot have a behavior not represented by a symbolic adversary.

Hypotheses over Cryptographic Schemes and Protocols

In order to be able to use the former results, the cryptographic schemes used in the implementation of the protocol
should verify the following properties.

• The asymmetric encryption schemeAE used in the protocol is IND-CCA.

• The symmetric encryption schemeSE is 1-PAT-SYM-CCA and the probability to forge a cyphertext without
access to the oracles is negligible.

• The signature schemeSS is UNF and the probability to forge a signature without access to the oracles is
negligible.
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• The hashing algorithmH is HASH and the probability to construct a hash-collision isnegligible.

These are also some restrictions onΠ that are defined in the symbolic world (as they are easier to check there with
automated tools).

• In an asymmetric encoding usingpk, anything can appear except secret keys generated beforepk (and the secret
key related topk too).

• In a symmetric encoding usingk, forbidden messages are any secret keys nor any symmetric keys generated
beforek.

• In a signature usingsik and in any hashed message, there cannot be any secret keys, symmetric keys nor any
signature keys.

• The protocol has to be secure for its secret, symmetric and signature keys: using the Dolev-Yao model, these
keys related to an honest agent cannot be revealed to an intruder (this assumption is reasonable as a protocol
should not reveal any key).

• Each hash message in a session between honest agents contains a nonce that remains secret.

We now formulate the main theorem. It states that if the conditions given above are met, then the probability that a
computational trace is NDY is negligible. A less general version of this theorem was first given in [25] but only for
public key cryptography and protocols with just one layer ofencryption. It was then extended to protocols involving
emission of secret keys and signature in [21]. Here we give a more general version of this theorem that combines
the main cryptographic primitives: public key and symmetric cryptography, digital signature and hashing. The proof
is a reduction argument: Given an adversaryA interacting with the protocol, we construct an adversaryB aginst
N -PASSH-CCA such that the probability thatA produces a NDY trace is polynomially bounded by the advantage of
B.

Theorem 4.1 For any concrete adversaryA:

pr
(

tf , tc ← Exec(A, Π) and tf /∈ traces(Π)
)

is negligible

Using this theorem, it is possible to relate symbolic and computational properties. This is easy to achieve for trace
properties as shown in [25] and [21], but can also be done for strong secrecy [13]. In this last case, the adversary built
in the proof of theorem4.1has to be modified.

Conclusion

The main contribution of this paper is a proof of correctnessof the Dolev-Yao model for protocols that may combine
asymmetric and symmetric encryption schemes, signature schemes as well as hash functions. This is important as
there is a number of automatic verification tools for protocols that are based on the Dolev-Yao model. The proof of
our theorem induces some restrictions on the protocols thatare in practice easily met.

As future work, it would be of interest to investigate whether correctness of Dolev-Yao can be proved under weaker
assumptions on the cryptographic primitives. Moreover, itwould be significant to extend this result to other security
properties. A proof of the soundness of the symbolic model when Diffie-Hellman exponentiation is considered is given
in [23].
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A Existence of a N-PAT-SYM-CCA Algorithm

To show that our new criterion makes sens, we prove the existence of a symmetric encryption scheme that isN -
PAT-SYM-CCA. However, the algorithm built here is very inefficient as it uses an underlying asymmetric encryption
scheme. LetAE = (KG1, E1,D1) be an asymmetric encryption scheme that is IND-CCA. LetSS = (KG2,S,V) be
a signature scheme secure against UNF. Then the symmetric encryption schemeSE = (KG, E ,D) is defined by:KG
generates a pair of asymmetric keys(pk, sk) usingKG1 as well as a pair of signature keys(sik, vk); the encryption al-
gorithm is defined byE(m, (pk, sk, sik, vk)) = m′.S(m′, sik) wherem′ = E1(m, pk); and the decryption algorithm
verifies that the signature part is valid and decodes the signed messagem′.

To prove thatSE is N -PAT-SYM-CCA, it is sufficient to prove thatSE is PAT-SYM-CCA/IND and PAT-SYM-
CCA/UNF (this is proven by proposition3.2).

LetA be an adversary against PAT-SYM-CCA/UNF. Then it is easy to construct an adversaryA′ fromA working
against UNF that has the same advantage.

LetA be an adversary against PAT-SYM-CCA/IND. Then we build an adversaryA′ fromA working against IND-
CCA such that:A′ is still polynomial;A′ andA have the same advantage.A′ has to generate a signature key pair and
executesA. It uses IND-CCA oracles to simulate its encryption oracle.Note that for the decryption oracle, two cases
may occur:m′ has not been produced by the IND-CCA encryption oracle, thusthe IND-CCA decryption oracle can
be used;m′ has been produced by the IND-CCA encryption oracle but the signature part is fresh. Then the former
adversary (against UNF) can be modified to have the related advantage.

B HASH/IND and HASH/CF imply HASH

LetH be a hash function that is secure against HASH/IND and HASH/CF. Let us suppose that there exists an adversary
A against HASH/UNF which advantage is not negligible. Then webuild the adversaryB against HASH/IND which
runA (A uses directly oracles given toB).

Adversary B:
pat, bs←A
N ′ ← {0, 1}η

pat′ ← 〈[], N ′〉
bs′ = Hb(pat, pat′)
if bs = bs′ return 0
elseb′ ← {0, 1}

return b′

The advantage ofB against IND is detailed thereafter.

AdvIND
B = pr(B → 0 in ExpIND

B |b = 0)

−pr(B → 0 in ExpIND
B |b = 1)

= pr(ExpUNF
A = t) +

1

2
.pr(ExpUNF

A = f)

−pr(ExpUNF
A′ = t)−

1

2
.pr(ExpUNF

A′ = f)

WhereA′ is an adversary againstUNF defined by:

AdversaryA′:
pat, bs←A
N ′ ← {0, 1}η

pat′ ← 〈[], N ′〉
return pat′, bs
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We obtain
2.AdvIND

B = AdvUNF
A −AdvUNF

A′

Hence, asAdvIND
B is negligible andAdvUNF

A is not,A′ has a non negligible advantage against HASH/UNF.
Finally, we build fromA an adversaryC against collision free which advantage is related to the advantage ofA′.

For that purpose,C generates a nonceNH in order to simulate with a functionρ the hash oracle used byA.

Adversary C:
NH ← {0, 1}η

pat, bs←A/k, ρ
N ′ ← {0, 1}η

N ′′ ← {0, 1}η

pat′ ← 〈[], N ′〉
pat′′ ← 〈[], N ′′〉
return pat′[NH ], pat′′[NH ]

Then, asPrRandCF is negligible, the probability thatC finds a collision is negligible. Moreover, this probabilityis
greater than the probability thatC finds a collision and the hash ofpat′[NH ] is equal to thebs produced byA. In the
following, events likeH(pat′[NH ]) = bs means: after the random execution ofExpUNF

A′ , we obtainpat′, NH andbs
such that this equality holds. To deduce the second inequality, we use lemmaB.1 that is given later in this appendix.

pr(ExpNC
C = t) ≥ pr

(

H(pat′[NH ]) = bs = H(pat′′[NH ])
)

≥ pr(H(pat′[NH ]) = bs)

.pr(H(pat′′[NH ]) = bs)

≥
(

pr(ExpUNF
A′ = t)

)2

There is a contradiction asA′ has a non negligible advantage andPrRandUNF is negligible. HenceH verifies
HASH/UNF.

Lemma B.1 Let X , Y andY ′ be three random variables.X is chosen randomly in a finite setSX , Y andY ′ are
chosen randomly in the finite setSY . LetE be a predicate overSX × SY . Then

pr
(

E(X, Y ) ∧ E(X, Y ′
)

≥
[

pr
(

E(X, Y )
)]2

To prove this lemma, letp be the left probability. Hence,

p = pr
(

E(X, Y ) ∧ E(X, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
(

E(x, Y ) ∧E(x, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
(

E(x, Y )
)

.pr
(

E(x, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
[(

E(x, Y )
)]2

Then, using lemmaB.2, we get:

p ≥
1

|SX |2

∑

x,x′∈SX

pr
[(

E(x, Y )
)]

.pr
[(

E(x′, Y )
)]

≥
( 1

|SX |

∑

x∈SX

pr
[(

E(x, Y )
)]

)2

≥
(

pr
[(

E(X, Y )
)]

)2
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Lemma B.2 Let (ai)1≤i≤n ben real numbers. Then

∑

1≤i≤n

a2
i ≥

1

n

∑

1≤i,j≤n

ai.aj

By developing(ai − aj)
2 ≥ 0, we obtain

a2
i + a2

j ≥ 2.ai.aj

∑

1≤i,j≤n

a2
i + a2

j ≥ 2.
∑

1≤i,j≤n

ai.aj

2.n.
∑

1≤i≤n

a2
i ≥ 2.

∑

1≤i,j≤n

ai.aj

∑

1≤i≤n

a2
i ≥

1

n

∑

1≤i,j≤n

ai.aj

C Proof of the Simplified Reduction Theorem

The intuition of the proof relies on the following principle: the adversaryAo is built usingA as a sub-routine. However,
asAo works againstγ2, requests made byA to F1 are answered using some fresh challengeθ. The adversaryB also
usesA as a sub-routine and works againstγ1. It is designed in such a way that whenever the challenge bitb of γ1

equals1, the experiment involvingB againstγ1 is similar to the experiment involvingA againstγ. Whenb equals0
then the experiment involvingB againstγ1 is similar to the experiment involvingAo againstγ2.

The formal definitions for adversariesAo andB are detailed thereafter:

AdversaryAo:
θ1←Θ1(η)
θ′2←Θ2(η)
s←A/η, λs.F1(s, θ1, θ

′
2), F2

return s

Adversary B:
θ2←Θ2(η)
θ′2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ

′
2)), λs.F2(s, θ2)

if V2(s, θ2) return 1
else return0

It is now possible to relate the advantages of our three different adversaries. For that purpose, note that the
experiment involvingB is successful in two cases:

• If b = 1 andB outputs1. Then the experimentExp
γ1

B is similar toExp
γ
A To prove this, we detail the two

experiments:

Experiment Exp
γ1

B (η):
b←[0, 1]
θ1←Θ(η)
θ2←Θ2(η)
θ′2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ

′
2), b, θ1),

λs.F2(s, θ2)
if V2(s, θ2) return verifb(1)
else returnverifb(0)

Experiment Exp
γ
A(η):

θ1←Θ1(η)
θ2←Θ2(η)
s←A/η, λs.F1(s, θ1, θ2),

λs.F2(s, θ2)
return V2(s, θ2)

Using the assumption onG, G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2) the equivalence of the two experiments

appears clearly in the caseb = 1. Moreover,B outputs1 means thatA solved its challenge.
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• In a similar way, ifb = 0 then the experimentExp
γ1

B is similar toExp
γ2

Ao (their boolean outputs are opposite),
B outputs0 means thatAo failed to solve the challenge. Using the assumption onG, G(H(s, θ2, θ

′
2), 0, θ1) =

F1(s, θ1, θ
′
2) the equivalence between the two experiment is immediate.

Experiment Exp
γ1

B (η):
b←[0, 1]
θ1←Θ(η)
θ2←Θ2(η)
θ′2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ

′
2), b, θ1),

λs.F2(s, θ2)
if V2(s, θ2) return verifb(1)
else returnverifb(0)

Experiment Exp
γ2

A0(η):
θ2←Θ2(η)
θ1←Θ1(η)
θ′2←Θ2(η)
s←A/η, λs.F1(s, θ1, θ

′
2),

λs.F2(s, θ2)
return V2(s, θ2)

Adv
γ1

B (η) = 2.
(

Pr[Exp
γ1

B (η) = true]− PrRandγ1
)

= Pr[Exp
γ
A(η) = true]

+Pr[Exp
γ2

Ao(η) = false]− 1

= Pr[Exp
γ
A(η) = true]− PrRandγ

+PrRandγ2 − Pr[Exp
γ2

Ao(η) = true]

=
1

2
Adv

γ
A(η) −

1

2
Adv

γ2

Ao(η)

In this computation, we used thatPrRandγ1 = 1/2 as bitb is chosen among two possible values. We also used that
PrRandγ = PrRandγ2 which is true becauseγ andγ2 have the same verification oracleV2.

This gives the awaited result:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|

Proof of the Reduction Theorem

AdversaryA1 represents adversaryA trying to solve its challenge againstV1.

AdversaryA1:
θ2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ2)), λs.F2(s, θ2)
return s

PRTMA can gain its advantage by solving challengeV1 or challengeV2. As we suppose that a string can solve at
most one challenge, the following equality holds whereγ, Vi denotes criterionγ using onlyVi as verifier.

Adv
γ
A(η) = Adv

γ,V1

A (η) + Adv
γ,V2

A (η)

Then, by keeping the same construction as above, the advantage againstV2 is known. Moreover, the advantage ofA
againstV1 is equal to the advantage ofA1 againstγ3.

Adv
γ
A(η) = Adv

γ3

A1(η) + Adv
γ2

Ao + 2.Adv
γ1

B (η)

This gives the conclusion of the theorem:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)| + |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|
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D Application of the Reduction Theorems

D.1 From N-PAT-IND-CCA to IND-CCA

In order to reduce theN -PAT-IND-CCA criterion (denoted byγN ), we only need the simplified version of the reduction
theorem. InN -PAT-IND-CCA, encoded messages can be patterns and there isan order among keys:ski can be
encoded usingpkj iff i > j. The reduction operates fromγN+1 to γN andγ (i.e. IND-CCA) as follows.

• Θ1 generates the key pair(pk1, sk1).

• Θ2 generates the other key pairs(pk2, sk2) to (pkN+1, skN+1) as well as the challenge bitb.

• F1 (resp.F2) is the oracle for encryption, decryption, public key related to key pairs inθ1 (resp. inθ2).

• V2 verifies that bitb has been correctly guessed.

• H is the identity when considering decryption and public key emission andG is exactlyF1 in that case.

• G is the classical left-right encryption andH(s, θ2, θ
′
2) is defined as follows:

H(〈pat0, pat1〉, θ2, θ
′
2) = 〈v(patb′

2
, θ′2), v(patb2 , θ2)〉

Whereb2 (resp.b′2) is the challenge bit contained inθ2 (resp.θ′2).

We first want to verify that(γ, γN ) defines a valid simplified partition ofγN+1.

• As secret keysk1 cannot occur under any public key,F2 only depends onθ2.

• Verifier V2 only depends onθ2.

As (γ, γN) is a valid simplified partition ofγN+1, it is possible to apply the simplified version of the reduction theorem.
For any PRTMA, there exist two PRTMB andAo such that:

|Adv
γN+1

A (η)| ≤ 2.|Adv
γ
B(η)|+ |Adv

γN

Ao (η)|

It is then possible to conclude using a simple recursion.

D.2 From N-PAT-SYM-CCA to SYM-CCA/IND and SYM-CCA/UNF

In order to reduce theN -PAT-SYM-CCA criterion (denoted byγN ), we need the full version of the reduction theorem.
As in N -PAT-IND-CCA, encoded messages can be patterns and there isan order among keys:ki can be encoded using
kj iff i > j, but there are also two ways to win the challenge, either by guessing the value of bitb (criterion SYM-
CCA/IND) or by forging an encoded message without using the encryption oracles (criterion SYM-CCA/UNF).

The reduction operates fromγN+1 to γN , γIND (i.e. SYM-CCA/IND) andγUNF (i.e. SYM-CCA/UNF) as
follows.

• Θ1 generates keyk1.

• Θ2 generates the other keysk2 to kN+1 as well as the challenge bitb.

• F1 (resp.F2) is the oracle for encryption and decryption related to key(s) in θ1 (resp. inθ2).

• V2 verifies that bitb has been correctly guessed or that the final output is an encoded message by a key fromθ2

that has not been produced by an encryption oracle.

• V1 verifies that the output message is encoded byk1 and has not been produced byF1.

• H is the identity when considering decryption andG is exactlyF1 in that case.
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• G is the classical left-right encryption andH(s, θ2, θ
′
2) is defined as follows:

H(〈pat0, pat1〉, θ2, θ
′
2) = 〈v(patb′

2
, θ′2), v(patb2 , θ2)〉

Whereb2 (resp.b′2) is the challenge bit contained inθ2 (resp.θ′2).

We first want to verify that(γIND, γN , γUNF ) defines a valid partition ofγN+1.

• As keyk1 cannot occur under any public key,F2 only depends onθ2.

• Verifier V2 only depends onθ2 andV1 only depends onθ1

Partition(γIND, γN , γUNF ) is a valid partition ofγN+1, it is possible to apply the reduction theorem. For any PRTM
A, there exist three PRTMB,Ao andA1 such that:

|Adv
γN+1

A | ≤ 2.|Adv
γIND

B |+ |Adv
γN

Ao |+ |Adv
γUNF

A1 |

It is then possible to conclude using a simple recursion.

D.3 Mixing all Criteria

Let us define theN -PAT-ASYM-SYM-SIGN-HASH-CCA (N -PASSH-CCA) criterion asγ = (Θ, F, V ) whereΘ is
composed of four parts:

• Θa generatesN pairs of asymmetric keys(pk1, sk1) to (pkN , skN ).

• Θb generatesN symmetric keysk1 to kN .

• Θc generatesN pairs of signature keys(sik1, vk1) to (sikN , vkN ).

• Θd generates a nonceNH , a keyk as well as a challenge bitb.

F is also split in four parts:

• Fa corresponds to the oracles usingθa as inN -PAT-IND-CCA except that patterns can also ask for symmetric
encryption, symmetric keys, signature of a message, signature keys, hashing of a message and nonceNH . Fa

depends onθa, θb, θc andθd.

• Fb corresponds to oracles usingθb as in N -PAT-SYM-CCA, patterns are also extended but cannot include
asymmetric keys fromθa. Fb depends onθb, θc andθd.

• Fc corresponds to oracles usingθc as inN -UNF, Fc depends only onθc.

• Fd corresponds to oracles usingθd as in HASH,Fd depends only onθc.

Finally V is also a disjunction of five parts:

• VIND answers true if its argument if the bitb in Θd.

• VUNF−SY M answers true if it receives a symmetric encryption not forged byFb.

• VUNF−SIGN answers true if it receives a signature not forged byFc.

• VUNF−HASH answers true if it receives a pairh, pat whereh = H(k, v(pat, NH) and h has not been forged
usingFd.

• VCF−HASH answers true if it receives a pair of distinct bit-stringsbs0, bs1 that have the same hash.
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E Proof of Theorem4.1

The intuition is that if an adversaryA can produce a NDY trace, then it is able to break one of the cryptographic
schemes. LetQ be the number of atoms (keys and nonces) that occur inA. We build aQ-PASSH-CCA (criterion
denoted byγ) adversaryB such that ifp is the probability:

p = Pr
[

tf , tc ← Exec(A, Π) and tf /∈ traces(Π)
]

We have the following majoration ofp.

p ≤
(

2.Q + 7
)

.Adv
γ
B(η) + f(η) (3)

wheref is a negligible function. Using proposition3.3, it is possible to deduce that the probability forA to produce a
non Dolev-Yao trace is negligible.

Our Q-PASSH-CCA adversaryB usesA as a subroutine and deduces a string solving its challenge (for example
the challenge bitb or a new signature) as soon asExec(A, Π) produces an invalid trace. Using its own oracles,B
simulatesExec(A, Π) and produces the formal trace in order to find a non-deducible(NDY) message.

During its initialization, the adversaryB randomly chooses an integeri between0 andQ. If i 6= 0, then theith

nonce generated byB (denoted byN ) is trapped. In order to answer queries fromA, B randomly generates identities
and nonces fromΠ exceptN . B uses its challenge keys for the different keys inΠ. For nonceN , B generates two
noncesN0 andN1, B uses its oracles in such a way that messages involvingN usesN0.N

H (resp.N1.N
H ) when the

challenge bitb is 0 (resp.1). NH is the challenge nonce related to hashing in PASSH-CCA (asB does not know ifN0

or N1 is used, this is required in order to compute the hashing of a message involvingN using an oracle).
WhenA waits for a messagem, B has to forgem = 〈m1, ..., mn〉 where messagesmi are not pairs of messages.

ThenB generates eachmi using its oracles (e.g. ifmi is an encoding usingpk, B uses the left-right encryption oracle
related topk). If N appears ”under” a left-right oracle, thenN0.[N

H ] (resp.N1.[N
H ]) is used for the left (resp. right)

argument of the oracle. IfN appears anywhere else it is impossible forB to continue the protocol simulation. Hence
B aborts its execution. Note thatB cannot be asked to reveal a secret key, a signature key or a symmetric key in a
messagemi (such keys have to be protected by an encryption layer and so aleft-right oracle is used with a pattern
asking for the key).

WhenA emits a messagem, m is parsed according to the protocol specification. During parsing, if B has to
decrypt a message then either this message has been producedusing a left-right encryption oracle and there is no new
information inside orB can use its decryption oracles. To achieve parsing,B has to be able to test whether a string is
a secret/signature/symmetric key, this can easily be achieved using oracles.

Eventually,A stops. ThenB checks that there are no collisions between two messages parsed as hash. If this is
not the case,B wins against HASH/CF, this event is denoted byE0. Else if the trace is NDY thenB knows the first
NDY messagem and a recursive procedure is applied onm in order to win the challenge.

1. If m is N0.N
H or N1.N

H , B deduces the challenge bitb.

2. If m is another nonce,B aborts.

3. If m is a secret key or a symmetric key,B also deducesb.

4. If m is a signature key,B can forge a new fresh signature and thus wins its challenge.

5. If m is a pair〈m1, m2〉, thenm1 or m2 is NDY and this procedure is applied recursively.

6. If m is an asymmetric encryption{m′}pk, asm is NDY it has not been produced by an oracle (otherwise,m
would have circulated not protected). Hence using the decryption oracle,B obtainsm′ which is also NDY.

7. If m is a signature or a symmetric encoding,m is NDY thus it has not been produced by an oracle andB has
forged a new signature or a new symmetric encoding.

8. If m is a hashingh(m′), thenm′ has to be known (to testm during the protocol execution). Ifm′ containsN ,
thenB can deduce a hollow patternpat such thatH(k, v(pat, NH)) = h. HenceB wins. Else,B aborts.
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9. If m is a hashingh(m′) andm′ does not containN , thenB aborts.

WheneverB decides to abort, it answers a random bit for the challenge bit b.
If A produces an invalid trace, then we consider the different answers that the former procedure can have produced.

Ei denotes the event where the procedure stopped in theith case of the list. Hence,

p =

9
∑

i=0

Pr(Ei)

As nonceN is chosen randomly,Pr(E2) andPr(E9) are lower than respectivelyQ.Pr(E1) andQ.Pr(E8). More-
over, eventsEi for i different from2, 5 and9 imply thatB wins its challenge without aborting. Let us callB (resp.
¬B) the event whereB does not abort (resp. aborts). Hence,

p ≤
(

2.Q + 7
)

.P r(B)

As PrRand is negligible for criteria related to UNF, there exists a negligible functiong such that:

Adv
γ
B(η) = 2.P r(Bwins)− 1− g(η)

= 2.P r(B) + Pr(¬B) − 1− g(η)

= Pr(B) − g(η)

Hence, it is easy to obtain formula3 and the awaited result.

Nonces are Probably Different

We consider that anytime a computational adversary picks upsome nonces, they are different one from another. The
adversary can only get a numberm of nonces that is polynomial inη and we suppose that the numbern of possible
nonces is exponential inη (som < n). Let P be the probability that the adversary gets two times the samenonces.

1− P =
n

n

n− 1

n
...

n− (m− 1)

n

Thus, we have the following inequalities:

0 ≤ P ≤ 1−
(

1−
m− 1

n

)m

Proposition E.1 For anyx ∈ [0, 1[ anda ≥ 1,

(

1− x
)a
≥ 1− x.a

Proof: Consider the functionf(x) =
(

1− x
)a
− 1 + x.a. Derive it twice to get the result.

Applying the proposition, we get:

0 ≤ P ≤
m.(m− 1)

n

As m is polynomial andn is exponential inη, P is negligible inη. When considering an adversary that has a non-
negligible advantage against something, it still has its advantage if we consider only executions where nonces are
distinct.
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