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Abstract: The main result of this paper is that the Dolev-Yao modeldafa abstraction of the computational model
for security protocols including those that combine asytnimend symmetric encryption, signature and hashing.
Moreover, message forwarding and private key transmissierllowed. To our knowledge this is the first result that
deals with hash functions and the combination of these egypphic primitives.

A key step towards this result is a general definition of adfom of cryptographic primitives, that unifies well known
correctness criteria such as IND-CPA, IND-CCA, unforgégbetc.... and a theorem that allows to reduce the
correctness of a composition of two cryptographic scheméset correctness of each one.

This updated version contains a new, simpler, proof for ¢ukeiction theorems.




Introduction

Historically, verification of cryptographic protocols hbsen separated in two distinct branches. In gimbolic
approach originating from the work of Dolev and Yad {], cryptographic primitives are viewed as functions on a
space of symbolic terms; while in thwmputational approacthey are viewed as possibly randomized functions on
bit strings.

A rich collection ofautomaticverification methods and tools have been developed 11, 29, 18, 10, 15] in
the symbolic approach. They rely upon the perfect cryptolgyaassumption which can be roughly summarized as
follows: messages are represented as algebraic termsesiane represented as names and fresh nonce creation is
perfect, that is, nonces range over an infinite domain of 1seemel each nonce creation yields a different name, the
same holds for keys. Moreover, no information can be extthfrom an encrypted message unless the inverse of the
key used to encrypt the message is known. In this approacé iha single attacker that is modeled as an infinite
process without bounds on its computational resources.

In the computational approackecryptographic primitives operate on strings of bits arelrtiecurity is defined in
terms of high complexity and weak probability of success [/] of any attacker. Protocols as well as attackers are
randomized polynomial-time Turing machines. This compaitel approach is recognized as more realistic than the
symbolic approach. However, its complexity makes it veffialilt to design automatic verification tools.

Therefore, results of the type:

If protocol IT uses the cryptographic schems8s, - - - , Sy, if each schemé); is correct with respect
to the security notior”; then correctness of the protocol established in the symlmtidel implies its
correctness in the computational one.

are of extreme importance for gaining confidence that a ogfaiphic protocol is secure. We call this type of results
soundness results of the symbolic approach

In this paper, we present a soundness result for protoctfsagymmetric and symmetric encryption, signature
and hashing. We emphasize that the main difficulty here isdhabination of these primitives.

The main step to get this result is the introduction of a sgcariterion that allows us to combine asymmetric and
symmetric key cryptography as well as signature and hasfimgnderstand what is going on, imagine a cryptographic
library that offers these different kinds of primitives. ‘attdoes it mean that this library is secure? A priori it is not
clear whether it is sufficient to say that each primitive isLse when taken on its own. There might be some unexpected
effects when for instance the encryption of a signed messageshed!

To answer this question we prove a powerful reduction thedoe security criteria. Typically, this theorem allows
us to prove results of the form: if the cryptographic schefndresp. Ss) satisfies the criteriod’; (resp. Cs) then
their combination satisfies criteriafi, whereC' is some combination of; andC,. Then, we introduce a security
criterion for cryptographic libraries as above and use #ueiction theorem to relate our security criterion to exigti
ones, namely IND-CCA, selective forgery against adapthesen-message attack and collision resistance.

Related work In the last years, effort has been invested to bridge the gapden the symbolic and computational
approaches. In their ground-breaking papgrAbadi and Rogaway prove that messagedistinguishabilityin the
symbolic model is valid in the computational model when magldome assumptions on the encryption scheme. In this
and subsequent papefs PO, 26, it is showed that if two messages are not distinguishattlee symbolic model, then
their computational interpretations cannot be separatedTuring machine in a reasonable (polynomial) time. These
papers deal with passive attackers that do not interveriagiprotocol execution. Active attackers are considered
in [30, 25, 4, 24, 13, 19, 12, 21]. Backes, Pflitzman and Waidner developed a Dolev-Yaastgyptographic library
with a provably correct implementatiof,[5, 3]. The security property considered there, catiegktive simulatability
is a very attractive and powerful notion which is robust extpo general composition. Canetti and Herzog demonstrate
in [12] how Dolev-Yao style symbolic analysis can be used to agkersecurity of cryptographic protocols within
the universally composable security framework. This frami also allows for strong composability properties.
Soundness of the symbolic approach for public key encrypi@onsidered inJ0, 25]. Asymmetric encryption and
digital signature are considered ihd 21].

Compared to our paper f], we improve with respect to the following: 1) i {] we only consider asymmetric en-
cryption and digital signature and 2) we substantially galiwe the reduction theorem to be applicable to asymmetric



and symmetric encryption, digital signature and hashirgnared to previous versions of this pap&i[ we clarify
the proof of the reduction theorem.

Paper organization The next section gives the necessary preliminaries retatéfte computational model. In the
following section, we generalize and simplify the notionseturity criterion and apply it to asymmetric encryption,
signature, symmetric encryption, hashing and a mix of as&primitives. Section 3 formulates the reduction theorem
Then, this theorem is applied to relate the combined seoeniierion to the simple ones. Section 4 uses these results
to show that, under some quite nonrestrictive hypothelsesymbolic model is a safe abstraction of the computational
model. Finally, some concluding remarks are drawn.

1 Preliminaries

1.1 Definitions for the Computational Model

An asymmetric encryption schem®& = (KG, £, D) is defined by three algorithms. The key generation algorithm
KCG is a randomized function which given a security paramgieutputs a pair of keyépk, sk), wherepk is a public
key andsk the associated secret key. The encryption algorhsalso a randomized function which given a message
and a public key outputs the encryption of the message byub&cgkey. Finally the decryption algorithr® takes

as input a secret key and a cipher text and outputs the comdsm plain-text, i.e.D(E(m, pk), sk) = m. The
execution time of the three algorithms is assumed to be potyally bounded by;.

A symmetric encryption schen€ = (KG, £, D) is defined as above except tHag generates one key instead
of a pair, and hence, we requit&(m, k), k) = m.

A signature schem&8S = (KG, S, V) is also defined by three algorithms. The key generation gfgorandomly
generates pairs of keysik, vk), wheresik is the signature key andk is the verification key. The signature algorithm
S randomly produces a signature of a given message by a giyeatare key. The verification algorithvhis given a
messagen, a signature and a verification keyk and tests it is a signature ofn with the signature key correspond-
ing to vk. HenceV(m, S(m, sik), vk) returns true for any message and any pair of key$sik, vk) generated by
KG. We say that is a valid signature undetk if there existsn such that’(m, o, vk) returns true. We still assume
that the algorithms have a polynomial complexity.

A hashing algorithms a polynomial deterministic algorithm that, given a keynd a bit-stringhs, computes
another bit-string of size. The key generation algorithm is not important and one cqpase that: is chosen
randomly among strings of sizg

1.2 Randomized Turing Machines with Oracle

An adversary for a given scheme is a Polynomial Random TuMaghine (PRTM) which has access to an oracle. In
the following, we consider Turing machines whose executgolynomially bounded in the security paramejger.e.
there exists a polynomidP such that for any input corresponding to security paramgtére machine stops within
P(n) steps.

To model access to the oracle, we slightly modify the deiniof Turing machines. Our Turing machines have two
additional tapes, one for arguments (of function/oraclisand one for the results. Then, [Etbe a new action. We
define our PRTM as a pair of a Turing machjdehat can use transitiol and another Turing machirfé representing
the oracle F' can also be described by a PRTM (which can also access grabfessemantics ofl/ F is the standard
semantics ofd except that wheneved fires the actionF', F' is executed with the arguments tape as input and the
results tape as output.

Itis possible to encode access to multiple oracles uBilflgy giving in the arguments tape the name of the chosen
oracle). Hence, to simplify notations, we directly wrif¢' f1, ..., f,, wheref; are PRTM and oracles are called using
the f; action when definingd.

Afunctiong : R — R is negligible if it is ultimately bounded by:—¢, for each positive € N, i.e., for allc > 0
there existsV, such thatg(x)| < ¢, forallz > N..



2 Security Criteria

A security criterion is defined as an experiment involvingaaiversary (represented by a PRTM). The experiment
proceeds as follows. First some paramefieaise generated randomly. The adversary is executed and eamusacle

F which depends of. At the end, the adversary has to answer a string of bits wikiekrified by an algorithnmy’
which also use8 (e.g.6 includes a bib and the adversary has to output the valué)of

2.1 Security Criterion
A criterion-y is a triple(©; F'; V') where
e Ois a PRTM that randomly generates some challeh(fer example, a bib and a pair of key$pk, sk)).

e F'is a PRTM that takes as arguments a string of bigd a challengé and outputs a new string of bitdr’
represents the oracles that an adversary can call to selgkatlenge.

e V is a PRTM that takes as arguments a string of bitsmd a challengé and outputs either true or false. It
represents the verification made on the result computedégdliersary. The answer true (resp. false) means
that the adversary solved (resp. did not solve) the chadleng

Note that® can generate an arbitrary number of parametersraoain represent an arbitrary number of oracles. Thus,
it is possible to define criteria with multipl€3 and /'. As soon as there is no risk for ambiguity, we use the same
notation for the challenge generatmnd the generated challengéboth are denoted usird).

The advantage of a PRTM againsty is

Adv’(n) = 2.(Pr[Exp(n) = true] — PrRand")
whereExp is the Turing machine defined by:

Experiment Exp’, (n):
0—O(n)
d—A/n, s.F(s,0)
return V(d, )

and PrRand” is the best probability to solve the challenge that an advgrsan have without using oracle For-
mally, PrRand” is the maximum ofPr[Exp'’ () = true] whereA ranges over any possible PRTM aBap’ is
similar to Exp except that" cannot be used hyl.

Experiment Exp’’ (n):
6—0O(n)
d—A/n
return V(d, )

2.2 The N-PAT-IND-CCA Criterion

We introduce a security criterion that turns out to be us@&ulprotocols where secret keys are exchanged. This
definition was first given in41] where more discussion is available. In the classi€alND-CCA criterion (see ]
about N-IND-CCA and its reduction to IND-CCA), a random Hitis sampled. For each key, the adversary has
access to a left-right oracle (the adversary submits a pait-stringsbsg, bs; and receives the encodingief,) and a
decryption oracle (that does not work on the outputs of tfieright oracle). The adversary has to guess the value of
b.

Since it has no information concerning secret keys, theradvg cannot get the encryption of a challenge secret
key under a challenge public key. Therefore, we introdNeBAT-IND-CCA, which allows the adversary to obtain
the encryption of messages containing challenge secrst kegn if he does not know the value of these secret keys.
For that purpose, the adversary is allowed to give pattemsdéo the left-right oracles.



Pattern termsare terms where new atomic constants have been addednpadtebles. These variables represent
the different challenge secret keys and are denoteld| ifthis asks the oracle to replace the pattern variable by the
value ofsk;). Variables can be used as atomic messages (data pattetrg &ey position (key pattern). When a left-
right oracle is given a pattern term, it replaces patterngabyes of corresponding keys and encodes the so-obtained
message. More formally, patterns are given by the follovwgregmmar wherés is a bit-string and is an integer.

In the definition of pattern terms, we use the following binaperators : concatenation, encryption and signature.
Concatenation of patterpat, andpat; is written (pato, pat1). Encryption ofpat with key bs is denoted by pat } 5.
Signature obpat with key bs is denoted byig(pat, bs). Similarly, when the key is a challenge key, it is represente
by a pattern variablg]. Finally, one unary operator, hashing, is defined over patand is denoted by.

pat = (pat,pat) | {pat}es | {pat}p) | bs | [i] | sig(pat, [i]) | sig(pat,bs) | h(pat)

The computation (valuation) made by the oracle is easilynddfiecursively in a contefitassociating bit-string values
to the different keys. Its result is a bit-string and it udes éncryption algorithrd and the concatenation denoted by
the operator.

EZ[)? 9? - i}i v({ples,0) = E(v(p,0),bs)
v((p1,p2),0) = v(Z 6).v(p2,0) v(sig(p,bs),0) = S(v(p,0),bs)
P1,p2 B gpl, , p2, o(siglp. [).0) = S(o(p.0). ski)
v({p}u.0) = E(p,0),pki) v(h(p),0) = H(k,v(p,0))

There is yet a restriction. Keys are ordered and a pafi¢man only be encrypted undek; if ¢ > j. This
restriction is well-known in cryptography and widely actah When the left-right pattern encryption oracle related
to keyi is given two pattern termgat, andpat;, it tests that none contains a pattéfhwith j < <. If this happens, it
outputs an error message, else it produces the encryptitre ohessage correspondingui@;, : v(paty, 8) encoded
by pk;. To win, the adversary has to guess the value of secrét Ibibte that an adversary can submit arguments of
different length to the left-right oracle but this does no#ate any problem (an interesting discussion on that point
appears ing)).

Henceforth, letA€ be an asymmetric encryption scheme. Then, criteAGRAT-IND-CCA is given byyy =
(©; F; V), where®© randomly generate¥ pairs of keys usindCG and a bith; V' verifies that the adversary gave the
right value for bith; and F’ gives access to three oracles for each left-right encryption oracle that takes as argument
a pair of patternspato, pat1) and outputpat, completed with the secret keys(paty, #)) and encoded usingk;; a
decryption oracle that decodes any message not producéxe igrimer encryption oracle; and an oracle that simply
makes the public key available.

Then, A€ is said N-PAT-IND-CCA iff for any adversary4 in PRT M, Adv " (1) is negligible. Note thafV-
PAT-IND-CCA with N = 1 corresponds to IND-CCA.

2.3 The N-UNF Criterion

The N-UNF criterion is an extension of Selective Forgery Agaiddaptive Chosen-Message Attacks to the case of
N different keys (a good survey on properties for signatuhestes is available inl[]). It was also already defined
in [21]. Here, we rephrase this definition to put it in the shape ofrmw criterion formalization.

The main requirement is that an adversary should not be alfierge a pair containing a messageand the
signature ofn using the secret signature key. AhUNF adversary4 is givenN verification keys and has to produce
a message and its signature under one of the keys. It is alen tlie security parametgrand N signature oracles
Ssiki ()

LetSS be a signature scheme. TheUNF criterion is given byyy = (©, F, V'), where© generatesV signature
key pairs using the key generation algorithm fréi&. F' permits the access to two oracles for each signature key
pair: the first one allows to sign any string of bits; the setone gives the verification key. Verifiét checks that the
output of the adversary is a pair containing a message asajitature. This signature must not have been produced
by the signature oracle.



An adversary wins againg{-UNF when it succeeds in producing a message and its signafarmally,SS is
said N-UNF, if for any adversaryd, Adv’ ~“"*(n) is negligible. WhenV = 1, N-UNF can be written UNF.

2.4 The N-PAT-SYM-CCA Criterion

A symmetric encryption scheme includes both aspects indisishability and authentication that are presentin asym
metric encryption and message signature respectivelyefdernulate it using our criteria framework in order to apply
our reduction theorem. That is, our criterion for symmegmecryption is a combination of IND-CCA and UNF. In-
deed, a symmetric encryption should be secure in two ways.fif$t one is related to IND-CCA, any PRTM should
not be able to guess any information from messages encodedmiunknown key. The second one is related to UNF;
any PRTM should not be able to forge an encoding without kngwlie key (the encrypted message is authenticated).
Hence, oracles are similar to those presented in IND-CCAgpithat no oracles output the public key), but there are
two different ways to win the challenge. The hypothesis gfchcity regarding keys still holdsk; can only appear
encoded by; if i > j. The N-PAT-SYM-CCA criterion isyy = (O, F, V') where© generatesV symmetric keys
and a bith; F' gives access to two oracles for each key: a left-right erntmgmracle that takes as argument a pair of
patterns(pato, pat1) and outputat, completed with the secret keys(pats, 6)) and encoded witlt;; a decryption
oracle that decodes any message not produced by the foriergpéon oracle. Finally)” is composed of two parts:
Vinp returns true when the adversary returngblty; y ¢ returns true when the adversary outputs a message encoded
by one of the symmetric key and this message has not beenqaddiy an encryption oracle. Thénis satisfied
if Vinp or Vynrp is satisfied. We require that there is no string that satisfegb V;yp and Vy e (this can be
done by asking the name of the challenge together with itgtisol to the adversary). The criterion related to IND
(0, F,Vinp) (resp. to UNK O, F, Viynr)) is denoted byV-PAT-SYM-CCA/IND (resp.N-PAT-SYM-CCA/UNF).

A symmetric encryption scheng is said N-PAT-SYM-CCA iff for any adversaryd in PRTM, Advgy 4(n)
is negligible, wherey is a criterion including the oracles explained above.

Existence of d-PAT-SYM-CCA encryption scheme can be proved under theragian that there exists an IND-
CCA asymmetric encryption scheme and an UNF signature selie@e appendiX). Thel-PAT-SYM-CCA criterion
is equivalent to the authenticated encryption criterioBANPA A INT-CTXT which is the strongest notion introduced
in [8] for authenticated encryption.

2.5 The HASH Criterion

The HASH criterion is a combination of an IND-CCA critericaip UNF criterion and a collision free criterion. A
hashing algorithm needs to verify three properties to bersecFirst an adversary cannot obtain information on a
bit-string bs when looking atH(k, bs). The second property is that if an adversary does not knowrsttinig bs, it
cannot producei(k, bs) even if it knows hashing of messages similabto Finally, it must be hard for an adversary
to find two different messages which have the same hash foea gey. More details about criteria related to HASH
can be found inq].

The HASH criterion isy = (0, F, V), where© generates a bit, a keyk and a random bit-string/ 7 of sizen.
OracleF' gives access to two oracles: an oracle which gives the vdlkeyd: and a left-right hashing oracle which
takes as input a paipato, pat,) of hollow patterns (these patterns can ask for inclusiai 8fand have to ask for it at
one position at least) and outp§k, pat,[ N7 ]). Moreover, each pattern can only be submitted once to thig@m
order to avoid guessing attacks. Verifléiis the disjunction of three part$; v p returns true if the adversary outputs
the challenge bil; Vi r returns true if the adversary outputs a pirpat) such that, = H(k, pat[N*7]) andh was
not produced byF'; Vo returns true if the adversary outputs a paif, bs1) such that(k, bsg) = H(k, bs1), and
bit-stringsbsg andbs; are different.

A hashing algorithm is said HASH iff for any adversafyin PRT M, Adv’{" (n) is negligible.

The criterion related to INDO, F, Vi p) (resp. to UNF O, F, Viynr)) is denoted by HASH/IND (resp. HASH/UNF).
The last criterion related to collision free is denoted HAGH

Proposition 2.1 If an algorithm? is secure against HASH/IND and HASH/CF aRdRand®* and PrRand"N ¥
are negligible, thert{ verifies HASH/UNF and so is secure against HASH.



Proof: This proof is detailed in appendB ]

Let us spend a few words explaining our requirements on hgsigorithms: indistinguishability and collision
freeness. In the cryptographic literature, one usuallysfimge-waynessand collision freeness as requirements. We
require, however, indistinguishability instead of oneywass. This is because, exactly as for asymmetric encryptio
one-wayness is too weak as it should not be possible to infeirdormation onm just by looking ath(m).

Note that it is not clear to us whether there exists an algorgatisfying our requirements. However our require-
ments seem necessary to prove soundness of the symboli¢. mode

2.6 Mixing all Criteria

Let us now consider an encryption scheme, or rather a crygpbdc library, that includes the cryptographic primisve
above, i.e., asymmetric encryption, symmetric encrypsignature and hashing. The security of such a library can be
defined as a game, where an adversary has access to eachrafiles above and wins the game, if it succeeds to guess
the value of the bib, forge a signature, forge an encryption by a symmetric kegpastruct a hash-collision. There
are some restriction on the patterns the adversary can hserestriction essentially forbids cycles, as in the case of
asymmetric encryption. We say that a cryptographic libsatysfies theV-PASSH-CCA criterion, if the advantage

of any adversary against this combined criterion is nelgligiMore formally, we have the followingy-PASSH-CCA
criterion:y = (©, F, V') where® is composed of four parts:

e O, generatedV pairs of asymmetric key®k;, sk1) to (pkn, skn).
e O, generatesvV symmetric keys; to ky.
e O, generatesV pairs of signature keyik;, vki) to (sikn, vky).
e O, generates a nondé’, a keyk as well as a challenge Wit

Fis also split in four parts:

e F, corresponds to the oracles usifigas in N-PAT-IND-CCA except that patterns can also ask for symroetri
encryption, symmetric keys, signature of a message, signéeys, hashing of a message and naNée F,
depends o#,, 8y, 6. andd,.

e F, corresponds to oracles usidg as in N-PAT-SYM-CCA, patterns are also extended but cannot irelud
asymmetric keys from,. I}, depends o#,, 6. andd,.

e F, corresponds to oracles usifigas in N-UNF, F,. depends only of..
e F, corresponds to oracles usifigas in HASH,F,; depends only ofl..
Finally V' is also a disjunction of five parts:
e V;np answers true if its argument if the biin © .
e Vunr_syn answers true if it receives a symmetric encryption not fdigg £y,
e Vunr_srian answers true if it receives a signature not forged-by

o Vunr_masm answers true if it receives a pair pat whereh = H(k,v(pat, N¥) and h has not been forged
usingFy.

e Vor_masy answers true if it receives a pair of distinct bit-strirkgs, bs; that have the same hash.

Let us define théV-PAT-ASYM-SYM-SIGN-HASH-CCA (V-PASSH-CCA) criterion ag = (0, F, V') where©
is composed of four parts:

Lntuitively, a functionf is one-way, if givenf (z) but notz it is hard to find a valugy such thatf (y) = f(x).



e O, generatedV pairs of asymmetric key@k;, sk1) to (pkn, skn).
e O, generatesV symmetric keys; to ky.
e O, generatesV pairs of signature keyik;, vky) to (sikn, vky).
e O, generates a nondé’, a keyk as well as a challenge it

Fis also split in four parts:

e F, corresponds to the oracles usifigas in N-PAT-IND-CCA except that patterns can also ask for symroetri
encryption, symmetric keys, signature of a message, signéeys, hashing of a message and nanée F,
depends o#,, 6y, 6. andd,.

e [}, corresponds to oracles usirfg as in N-PAT-SYM-CCA, patterns are also extended but cannot irelud
asymmetric keys from,. I}, depends o#,, 6. andf,.

e F, corresponds to oracles usifigas in N-UNF, F,. depends only of..
e F,; corresponds to oracles usifigas in HASH,F,; depends only of..
Finally V' is also a disjunction of five parts:
e Vinp answers true if its argument if the biin ©.
e Vunr_syn answers true if it receives a symmetric encryption not fdrigg £,
e Vunr—_sign answers true if it receives a signature not forgediby

o Vunr_masm answers true if it receives a pair pat whereh = H(k,v(pat, N¥) and h has not been forged
usingFy.

e Vor_masy answers true if it receives a pair of distinct bit-strirkgs, bs; that have the same hash.

3 Reductions of Criteria

In this section, we present a generic result allowing to prihwat a security criteriofy; can be reduced to a criterion
~2. This means that if there exists an adversary that breaksen there exists an adversary that bregksThe proof
is constructive in the sense that such an adversary;foan be effectively computed.

This result can be seen as a tool for proving that a criteyi@at least as secure as a criterigrbut also allows
to decompose and split a criterion into simpler ones. Werblegipresenting a simple version of the theorem.

3.1 Criterion Partition and the Reduction Theorems
Lety = (64, 02; F1, F»; V) be a criterion. Lety; and~, be two criteria such that:
e There exist two PRTM7 andH such that:
G(H(s,02,05),1,01) = Fi(s,01,02) 1)
G(H(s,02,05),0,01) = Fi(s,01,05) (2)
OracleG operates on a string of bits, thus it must receive two chgéiénformation, a bib andé;.

o o = (0a; Fy; V) andvy; = (b, 01; G; veri fp) whereb generates a random bit anei f, is the PRTM verifying
that the output of the adversarytisveri fy(s,b,61) = (s < b).

o F5(s,01,02) andVi(s, 61, 62) do not depend otk .



Then we say thaty, v2) is avalid simplified partitionof ~.

Theorem 3.1 (Simplified Reduction Theorem)Let (71, v2) be a valid simplified partition of.. For any PRTMA,
there exist two PRTML® and B such that

[Adv(n)] < 2.|Advg ()] + [Adv i, (1)]

The proof appears in appendx Notice that in applying the reduction theorem above, tiécdity is not to find
arbitrary functions7 and H that satisfy the Equationg)and @) but rather to find such functions that induce criteria
~1 and~s with negligible corresponding advantages.

The applicability of the simplified reduction theorem istreesed by the fact that the verfication algoritimonly
depend®),. We show now that we can avoid this restriction. So let usrassinat the PRTM/ is represented two
PRTM’s V; andV; such thafi; (resp.V:) depends only o8, (resp.fs) andV returns true ifi’; or V5 returns true.
By abuse of notation we writé; v V, to underpin this. The criterig; and~, are defined as above but now a new
criterionys = (b, 01; G; V1) occurs in the partition. Then, we say thiat, v2,v3) is a valid partition ofy, if there is no
string s such thafi’; andV; are both verified or (intuitively, the adversary should know which part of thaltbnge
he is trying to win).

Theorem 3.2 (Reduction Theorem)Let (v1,v2,3) be a valid partition ofy. For any PRTMA, there exist three
PRTM.A°, A and B such that

[Adv ()] < 2.|Advs (n)] + [Adv ()] + [Adv i ()]

3.2 Applications of the Reduction Theorems

This section contains application examples of our redadti@orems. These applications are mainly useful for com-
position of security criteria.

The first proposition (which was already given il]) states thatV-PAT-IND-CCA is equivalent to IND-CCA.
This proposition is useful as the criterion is well-studiedhe literature and as there are algorithms proven to be
IND-CCA.

Proposition 3.1 ( [21]) If an encryption scheme is secure against IND-CCA, thda gecure againsiv-PAT-IND-
CCA for anyN.

Proofs for all the proposition in this section appear in ajjpeD

Proposition 3.2 If a symmetric encryption scheme is secure against SYM{BIDAAnd SYM-CCA/UNF, then it is
secure againsiV-PAT-SYM-CCA for anyv.

The following proposition states that the combination afise encryption schemes is a secure encryption scheme. In
other words, combining secure encryption schemes is hasmakelong as cycles are avoided.

Proposition 3.3 If an asymmetric encryption scher# is IND-CCA, a symmetric encryption scheé& is SYM-
CCA, a signature schengS is UNF and a hashing algorithri is HASH, then the compositidilE, SE,SS, H) is
N-PASSH-CCA.

Proof: We only present here the first step of the proof, the otheissep similar. Le©; be (6,,0;) andO, be
(0©¢,04). In the same wayF; (resp.F») can be used to access andF, (resp.F. andFy). Vi is Vunp_sym and
V5 is the disjunction oVynr_sran, VunrF—masa, Vor—aasg andViyp. H is defined as above for IND-CCA
or UNF andG is also defined as above for encryption, decryption (asymiogtd symmetric keys) and public key.
Fy, F», V; andV; depend on the right parameters hence we define a valid partifiy. The reduction theorem gives
that for any PRTMA, there exist three PRTMS, .4° and.A! such that:

AdV ()] < 2/AdvE ()] + |AdVE ()] + [AdV 7 ()]

Criteria~y1, 2 and~vs can easily be partitioned in a similar way to get the conclusi [



3.3 Unbounded Number of Challenges

We want to consider the case where the number of challengex isounded any more like itv-IND-CCA where
only N keys are generated for amy For that purpose, criteria are extended to a polynomialbarmof challenges.
For example, ifP is a polynomial, then th&-IND-CCA criterion uses”(n) keys. The objective here is to generalize
the previous results to this case.

Proposition 3.4 Let P and@ be two polynomials froriN[X]. Let D be a PRTM that given an integéreturnsC;, a
PRTM whose execution takes less tidgam) steps. If the execution @ also takes less thaf () steps, then for any
criterion -y, there exists a PRTNI whose execution takes less tha®)(n) + P(n) steps such that for any.

P(n)
1
Adv)(n) = — E Adv),
C( ]) P(n) P C,L(?ﬂ

AdversaryC randomly chooses the PRT#; that it is going to use and executes it.

Adversary C:
r—[1..P(n)]
C, —D/r
d—Cy/n
return d

This property allows us to consider the case of a polynomiatimer of challenge (and also the case of an un-
bounded number of challenges as only a finite part of them earséd). If the advantage of any PRTMagainstyp
is the sum of the advantages Bfn) PRTM againsty. Then if each of the latest PRTM are bounded in time using a
same polynomial), the advantage ofl is also equal (modulo a division b§()) to the advantage of a PRTM against
~. Hence, if the considered scheme is secure agaijrsts also secure againsk.

This method applies on all the previous applications of eduction theorems. Hence, we have:

Proposition 3.5 If an encryption scheme is secure against IND-CCA, thenseure againsP-IND-CCA for any
polynomialP.

If a symmetric encryption scheme is secure against SYMGIDANd SYM-CCA/UNF, then it is secure against
P-PAT-SYM-CCA for any polynomiél.

If an asymmetric encryption schetd€ is IND-CCA, a symmetric encryption schef&is SYM-CCA, a signature
schemeSS is UNF and a hashing algorithriil is HASH, then the compositiqtdé, SE,SS, H) is P-PASSH-CCA
for any polynomialP.

4 Dolev-Yao is a Safe Abstraction

4.1 Definitions for the Symbolic Model

In this section, we give the basic definitions that are usedttoduce the symbolic aspects of protocol checking.
Symbolic studies rely on the concept of messages which ateofider terms. To define messages, we first introduce
three infinite disjoint sets Nonces, Identity and K eys. Elements ofVonces are usually denoted by and can be
thought as random numbers. Thus, it is impossible for amdlarto guess the value of a nonce without indications.
Elements ofl dentity are the possible names of agents involved in the protocohlllyj elements of{ ey s represent
asymmetric encryption keys, symmetric encryption keys sigdature keys. There is a unary function o¥é¢y s
associating each keyto its inversek—! such thatk = (k;—l)*l. For symmetric encryption, the inverse of a key is
itself: k = k—'. The following binary operators are defined over messagesatenation, encryption and signature.
Concatenation of messagesandn is written (m,n). Encryption of message: with key k is denoted by{m} .
Signature of message with key k is denoted bwig(m, k). Finally, one unary operator, hashing, is defined over
messages and is denoted/hy
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Next, we recall the definition of thentailmentrelation £ + m (introduced in [L4]) where E is a finite set of
messages anch a message. IntuitivelZ + m means thain can be deduced from the set of messafgesThis
relation is defined as the least binary relation verifying:

e If m € E, thenE - m.

o If EFmandE | n,thenE F (m,n).

e If EFmandE + kthenE F sig(m, k).
o If EF (m,n), thenE F m.

o If B+ (m,n), thenE F n.

o If EFmandE | k, thenE - {m},.

o If EF {m}yandE + k!, thenE + m.
o If B+ sig(m,k)thenE F m.

e If E+ m,thenE  h(m).

4.2 Symbolic and Computational Semantics

For the sake of presentation, we consider protocols thagtiomblve a single role. Moreover, this role is only instanti
ated in one session. This is done without loss of generalilgna bounded number of sessions is considered. Indeed,
each interleaving of the actions of the different partiaigacan be seen as a different protocol.

Thus, a protocol is described by a list of actions which atleegiemissiorim or reception?m of a messagen.

We consider the classical adversary model where the adyersatrols the network, receives all the outpuis)and
submits some forged message to the inptits)(

Henceforth, let us consider an arbitrary fixed protagel ...1,tx, wheref, is either "I” or "?” andt; is a term.
There are two different execution models, one for the syinlsetting and one for the computational setting producing
a symbolic and a computational trace, respectivelysyfbolic action sequende a list of actionss m wheres is
either? or ! andm is a ground (closed) message symbolic tracds a symbolic action sequentem; ...1;, mys with
k' < k that satisfies the following conditions:

1. There exists a ground substitutiersuch that for any, t;oc = my;

2. For anyi, if 1, is 7?7, thenm, is deducible from the previous messagesto m;_, and the initial knowledge
of the adversary),i.e.,
Eo,ml, ceey M1 - my;.

The setFE), contains the atomic messages of thgs that do not appear in any, i.e. Ey = |J, atoms(m;) \
U, atoms(t;).

The setirace(II) contains the possible traces for protofol

A computational action sequeni®a list of actionst bs wherebs is a bit-string and; is either”?” or”!”. A
computational tracés the result of the interaction of an adversatywhich is a polynomial random Turing machine,
and the protocol. This interaction is defined using the TanrachineExec( A, IT). Since we are interested in relating
the symbolic and computational semantics we definec in such way that along the computational trace it outputs
a corresponding symbolic action sequence. We then showthbatymbolic action sequence is a trace except for
negligible probability. The reader should be convinced firaducing the symbolic action sequence by no means
interferes with the computational semantics.

To simplify the presentation of thEzec algorithm, we only give pseudo-code using the followingdtions:

¢ init(Il) generates the keys and nonces and that are chosen by thegbidtae., those iratoms(II), and not
by the adversary. It returns a substitutbassociating bit-string values to these elements.

11



e parse(bs,t,d,0) parses the bit-strinlys using prototype and knowledge from, it returns the updated version
of # as well as an updated symbolic substitution

e concr(m,f) concretizes message using knowledge from and returns the corresponding bit-string.

e compl(o) completes the symbolic substitutienby associating remaining free variables to a distinct fresh
nonces.

The Exec algorithm uses two substitutions: the symbolic substituti that links protocol variables to messages
and the computational substitution that links variablesttimgs of bits. The adversary can decide to stop intergctin
with the protocol by providing an answer other than an uptlatemorymem and a bit stringhs when an actiorit is
to be executed.

Algorithm  Ezec(A, fin1...5nk):
0 — init(ilnl...iknk)

mem — ||
foriin [1,k] do
if 1, =!then

bs «— concr(n;, 0)
mem «— A(bs, mem)
te < append(i;bs,t.)
else
X — A(mem)
if X = bs, mem then
0,0 — parse(bs,m;,0,0)
t. < append(i;bs,t.)
else goto done
done
o «— compl (o)
return (f;mq...5,m;—1)o, t.

The next proposition relates precisely the computatioraet and symbolic action sequence thatec outputs.
A computational trace. is apossible concretizatioaf a symbolic action sequencg if there exists a computational
substitutior such that one of the possible valuatiortpfusingd is ¢..

Proposition 4.1 Let A be an adversary angll a protocol. If Ezec(A,II) outputst, t., thent. is a possible con-
cretization oft ;.

4.3 Relating the Symbolic and Computational Models

The main result of this section is that under some conditibegomputational adversary acts as a symbolic adversary
with overwhelming probability. This means that the comfioteal adversary, even with all the computing power of
polynomial-time random Turing machines, cannot have aviehaot represented by a symbolic adversary.
Hypotheses over Cryptographic Schemes and Protocols

In order to be able to use the former results, the cryptodcagithemes used in the implementation of the protocol
should verify the following properties.

e The asymmetric encryption schemd€ used in the protocol is IND-CCA.

e The symmetric encryption schens is 1-PAT-SYM-CCA and the probability to forge a cyphertext vtk
access to the oracles is negligible.

e The signature schemg&S is UNF and the probability to forge a signature without ascesthe oracles is
negligible.
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e The hashing algorithrit{ is HASH and the probability to construct a hash-collisionégligible.

These are also some restrictionsldrihat are defined in the symbolic world (as they are easier ¢alcthere with
automated tools).

¢ Inan asymmetric encoding usipg, anything can appear except secret keys generated hgf¢aad the secret
key related tgk too).

e In a symmetric encoding using forbidden messages are any secret keys nor any symmeysajemerated
beforek.

e In a signature usingik and in any hashed message, there cannot be any secret kaysesic keys nor any
signature keys.

e The protocol has to be secure for its secret, symmetric ghgire keys: using the Dolev-Yao model, these
keys related to an honest agent cannot be revealed to adentfihis assumption is reasonable as a protocol
should not reveal any key).

e Each hash message in a session between honest agentssantairce that remains secret.

We now formulate the main theorem. It states that if the dionl given above are met, then the probability that a
computational trace is NDY is negligible. A less generakian of this theorem was first given i&q] but only for
public key cryptography and protocols with just one layeengryption. It was then extended to protocols involving
emission of secret keys and signatureiri]][ Here we give a more general version of this theorem thathioes
the main cryptographic primitives: public key and symneetriyptography, digital signature and hashing. The proof
is a reduction argument: Given an adversarynteracting with the protocol, we construct an adversargginst
N-PASSH-CCA such that the probability thdtproduces a NDY trace is polynomially bounded by the advantdg

B.

Theorem 4.1 For any concrete adversapt:
pr(ts,te — Exec(A,II) and ty ¢ traces(I)) is negligible

Using this theorem, it is possible to relate symbolic and potational properties. This is easy to achieve for trace
properties as shown i2f] and [21], but can also be done for strong secret§][ In this last case, the adversary built
in the proof of theorem.1 has to be modified.

Conclusion

The main contribution of this paper is a proof of correctrefdhie Dolev-Yao model for protocols that may combine
asymmetric and symmetric encryption schemes, signatimenses as well as hash functions. This is important as
there is a number of automatic verification tools for protetbat are based on the Dolev-Yao model. The proof of
our theorem induces some restrictions on the protocolstieah practice easily met.

As future work, it would be of interest to investigate whetberrectness of Dolev-Yao can be proved under weaker
assumptions on the cryptographic primitives. Moreovesatild be significant to extend this result to other security
properties. A proof of the soundness of the symbolic modembiffie-Hellman exponentiation is considered is given

in [2.
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A Existence of a N-PAT-SYM-CCA Algorithm

To show that our new criterion makes sens, we prove the @&xdstef a symmetric encryption scheme that\is
PAT-SYM-CCA. However, the algorithm built here is very ifieflent as it uses an underlying asymmetric encryption
scheme. Led€ = (KG1, &1, D1) be an asymmetric encryption scheme that is IND-CCA.&8t= (KG», S, V) be

a signature scheme secure against UNF. Then the symmetrigption scheme&E = (KG, €, D) is defined by G
generates a pair of asymmetric kéyé, sk) usingkG, as well as a pair of signature kefsk, vk); the encryption al-
gorithm is defined by (m, (pk, sk, sik,vk)) = m’.S(m/, sik) wherem’ = £, (m, pk); and the decryption algorithm
verifies that the signature partis valid and decodes thesdigressage:’.

To prove thatS€ is N-PAT-SYM-CCA, it is sufficient to prove thaf& is PAT-SYM-CCA/IND and PAT-SYM-
CCAJ/UNEF (this is proven by propositiaB.2).

Let A be an adversary against PAT-SYM-CCA/UNF. Then it is easytostruct an adversay’ from .4 working
against UNF that has the same advantage.

Let. A be an adversary against PAT-SYM-CCA/IND. Then we build aveasary.A’ from A working against IND-
CCA such that:4’ is still polynomial; A’ and.A have the same advantag#’. has to generate a signature key pair and
executesd. It uses IND-CCA oracles to simulate its encryption orablete that for the decryption oracle, two cases
may occur:m’ has not been produced by the IND-CCA encryption oracle, thesND-CCA decryption oracle can
be usedyn’ has been produced by the IND-CCA encryption oracle but tpeasure part is fresh. Then the former
adversary (against UNF) can be modified to have the relateshaage.

B HASH/IND and HASH/CF imply HASH

LetH be a hash function that is secure against HASH/IND and HASHL/Et us suppose that there exists an adversary
A against HASH/UNF which advantage is not negligible. Therbwitd the adversary against HASH/IND which
run A (A uses directly oracles given 8).

Adversary B:

pat, bs—A

N {0,1}"

pat’ — ([I.N")

bs' = H’(pat, pat’)

if bs = bs’ return 0

elset’ — {0,1}
return b’

The advantage df against IND is detailed thereafter.
AdviNP = pr(B — 0in Expg P|b = 0)
—pr(B — 0in ExpgPb=1)
1
= pr(ExpQM =1) + Q.pr(Expf{‘NF =)

1
—pr(Exp%VF =t)— E.pr(Epo{VF =f)

Where A’ is an adversary againgtV F' defined by:

Adversary A’
pat, bs—A
N’ —{0,1}"
pat’ — {[J, N")
return pat’, bs
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We obtain
2.AdvEP = AdvQYT — AdviF

Hence, a’Advy ' ~ is negligible andAdvUNF is not,. A’ has a non negllglble advantage against HASH/UNF.
Finally, we bund fromA an adversar¢ against collision free which advantage is related to theaathge of4’.
For that purpose] generates a nondg” in order to simulate with a functionthe hash oracle used by.

IND ;

Adversary C:

NH « {0,1}7

pat, bs—A/k, p

N« {0,1}"

N" —{0,1}"

pat’ — ([, N')

pat” — ([, N")

return pat’'[NH], pat” [N H]

Then, asPrRand®¥ is negligible, the probability that finds a collision is negligible. Moreover, this probability
greater than the probability thétfinds a collision and the hash péit'|[ N ] is equal to thebs produced byA. In the
following, events likeH (pat'[N]) = bs means: after the random executiorxp /¥ ¥, we obtairpat’, N¥ andbs

such that this equality holds. To deduce the second inaguak use lemma.1 that is given later in this appendix.

pr(Expg© =1t) pr(H(pat'[N"']) = bs = H(pat"[N"]))
pr(H(pat' [IN"]) =
pr(H(pat” [N"] ) )

(pr(ExpYF = 1))

>
>

Y

There is a contradiction ad’ has a non negligible advantage aRdRand"N ¥ is negligible. HenceH verifies
HASH/UNF.

LemmaB.1 Let X, Y andY”’ be three random variablesX is chosen randomly in a finite séty, Y andY”’ are
chosen randomly in the finite s&{ . Let £’ be a predicate ovefx x Sy . Then

pr(E(X,Y)AEX,Y') > [pr(E(X,Y))]’
To prove this lemma, let be the left probability. Hence,

p = pT(E(XaY) /\E(X7Y/>)
1

- X ) )
1 /

- @m;: pr(E(x,Y))-pT(E(xvy ))

= 5o o ey

ze€Sx
Then, using lemm8.2, we get:
bz 2 wlEEY) (B )]

T,x'€Sx

(5 X wrl(EE )
z€Sx

> (prl(Ey)])



Lemma B.2 Let(a;)1<i<n ben real numbers. Then

By developing(a; — a;)* > 0, we obtain
a,? + a? Z 2.ai.aj

Z a?—i—a?ZQ. Z a;.a;

1<i,j<n 1<i,j<n

2.n. Z a?22. Z a;.Gj

1<i<n 1<4,j<n

Z afZ% Z a;.a;

1<i<n 1<i,j<n

C Proof of the Simplified Reduction Theorem

The intuition of the proof relies on the following principlie adversaryl® is built usingA as a sub-routine. However,
as.A° works againsty,, requests made byt to F; are answered using some fresh challefig€éhe adversary also
usesA as a sub-routine and works against It is designed in such a way that whenever the challengg diity,
equalsl, the experiment involving againsty; is similar to the experiment involvingl againsty. Whenb equals)
then the experiment involving againsty; is similar to the experiment involvingl® againsty.

The formal definitions for adversarie®” and’5 are detailed thereafter:

Adversary A°: Adversary B:
02—02(n)
91&61(77) 9/ e}
Oy=O2(1) 522/37(71)3 G(H (s,02,05)), \s.Fa(s, 02)
- / — ’ A4 »V2,V2)), L7219, U2
fetufr{ A AP 000 B i (s, return 1

else return0

It is now possible to relate the advantages of our threerdiffieadversaries. For that purpose, note that the
experiment involvings is successful in two cases:

e If b = 1 andB outputsl. Then the experimerfxp}; is similar toExp’; To prove this, we detail the two
experiments:

Experiment Exp}; (n):

b—[0, 1]

61—0(n) Experiment Exp’, (1):

02—0O2(n) 61—©1(n)

05—0O2(n) 0202 (n)

s—A/n, As.G(H (s,02,05),b,61), s—A/n, As.Fy(s,01,09),
)\S.FQ(S, 92) )\S.FQ(S, 92)

if Va(s,02) return verify(1) return Va(s, 62)

else returnwveri f;,(0)

Using the assumption o6&, G(H (s, 02,65),1,601) = Fi(s,01,62) the equivalence of the two experiments
appears clearly in the case= 1. Moreover,5 outputsl means tha4 solved its challenge.
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e In a similar way, ifv = 0 then the experimerExp}; is similar toExp’f, (their boolean outputs are opposite),
B outputsd means that4° failed to solve the challenge. Using the assumptioz0i6:(H (s, 02, 05),0,61) =
Fi(s, 61, 0)) the equivalence between the two experiment is immediate.

Experiment Exp}' (1):
b0, 1] Experiment Exp 2, ():
61—6(n) breOr()
0205 (1) 6101 ()
005 (1) o On()
s A/p A GUH (5,00,05). 0,00, 270
As.Fy(s,62) By

if Va(s,02) return verify(1)

else returnveri f,(0) return Vs (s, 6)

Adv}(n) = 2.(Pr[Exp} (n) = true] — PrRand™)
= Pr[Exp}(n) = true]
+Pr[Exp.(n) = false] — 1
= Pr[Exp)(n) = true] — PrRand”
+PrRand” — PrlExp ., (n) = true]

1 1
= §Advj4(77) — §Advj420 (n)
In this computation, we used th&Rand™ = 1/2 as bitb is chosen among two possible values. We also used that

PrRand” = PrRand”* which is true becausg and~, have the same verification oradfe.
This gives the awaited result:

[Adv (n)] < 2.|Adv (n)] + |AdV L (n)]

Proof of the Reduction Theorem
AdversaryA' represents adversag/trying to solve its challenge againigt.

Adversary A':
02—0O2(n)
s—A/n,\s.G(H(s,02,02)), As.F>(s,02)
return s

PRTM A can gain its advantage by solving challengeor challengd/’,. As we suppose that a string can solve at
most one challenge, the following equality holds wher#; denotes criterion using onlyV; as verifier.

Adv(n) = Adv; " () + Adv 3 (n)

Then, by keeping the same construction as above, the adesatminst; is known. Moreover, the advantage df
againstl; is equal to the advantage gf* againstys.

Adv(n) = Advyi(n) + Adv i + 2. Adv) (n)

This gives the conclusion of the theorem:

[Adv ()] < 2.|Advyy (n)| + [AdV L ()] + [AdV i ()]
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D Application of the Reduction Theorems

D.1 From N-PAT-IND-CCA to IND-CCA

In order to reduce th& -PAT-IND-CCA criterion (denoted by ), we only need the simplified version of the reduction
theorem. InN-PAT-IND-CCA, encoded messages can be patterns and thame asder among keyssk; can be
encoded usingk; iff ¢ > j. The reduction operates frofiy 11 to yx and~ (i.e. IND-CCA) as follows.

e O, generates the key paipk, sk1).

O, generates the other key pafysgk., sk2) to (pkn+1, sky+1) as well as the challenge it

Fy (resp.Fy) is the oracle for encryption, decryption, public key retato key pairs if; (resp. inds).

V4, verifies that bith has been correctly guessed.

H is the identity when considering decryption and public keyssion and> is exactlyF; in that case.

G is the classical left-right encryption add(s, 62, 65) is defined as follows:
H({pato, pat1), 02, 65) = (v(paty,,05), v(paty,, 02))
Whereb, (resp.b) is the challenge bit contained #h (resp.65).
We first want to verify that~y, v ) defines a valid simplified partition ofy 1.
e As secret keyk; cannot occur under any public ke only depends ofis.
o Verifier V3 only depends ofis.

As (v, vn) is a valid simplified partition ofy 1, itis possible to apply the simplified version of the redoctiheorem.
For any PRTMA, there exist two PRTM3 and.A° such that:

[AdV " (n)] < 2.|Advg(n)] + [AdVIE (n)]

Itis then possible to conclude using a simple recursion.

D.2 From N-PAT-SYM-CCA to SYM-CCA/IND and SYM-CCA/UNF

In order to reduce th&’-PAT-SYM-CCA criterion (denoted byy ), we need the full version of the reduction theorem.
As in N-PAT-IND-CCA, encoded messages can be patterns and themeisler among keyé; can be encoded using
k; iff ¢ > 7, but there are also two ways to win the challenge, either Bssing the value of b (criterion SYM-
CCAJ/IND) or by forging an encoded message without using tieygtion oracles (criterion SYM-CCA/UNF).

The reduction operates fromy1 to vn, vinvp (i.e. SYM-CCA/IND) andvyynr (i.e. SYM-CCA/UNF) as
follows.

e O generates key; .

e O, generates the other keys to k41 as well as the challenge it

Fy (resp.Fy) is the oracle for encryption and decryption related to kgir(6; (resp. infs).

V; verifies that bith has been correctly guessed or that the final output is an edaodssage by a key frofg
that has not been produced by an encryption oracle.

V1 verifies that the output message is encodeébgnd has not been produced By.

H is the identity when considering decryption afds exactlyF in that case.

20



e G is the classical left-right encryption add(s, 62, 65) is defined as follows:

H ((pato, paty),02,05) = (v(pate,, 05), v(paty,, 62))
Whereb, (resp.b) is the challenge bit contained #i (resp.65).
We first want to verify thaty; np, vv, Yo~ ) defines a valid partition of n 41.
e As keyk; cannot occur under any public ke, only depends of,.
o Verifier V5 only depends ofl; andV; only depends o#;

Partition(vnp,vn, YunF) is a valid partition ofyy 1, it is possible to apply the reduction theorem. For any PRTM
A, there exist three PRTNS, A° and.A! such that:

[AdVY | < 2 AdVEYP | + [AdVE |+ [AdVIEYT

Itis then possible to conclude using a simple recursion.

D.3 Mixing all Criteria

Let us define theV-PAT-ASYM-SYM-SIGN-HASH-CCA (V-PASSH-CCA) criterion ag = (0, F, V) where© is
composed of four parts:

e O, generatedV pairs of asymmetric key@k;, ski) to (pkn, skn).
e O, generatesvV symmetric keys; to ky.
e O, generatesV pairs of signature key&ik,, vky) to (sikn, vkn).
e O, generates a nondé’’, a keyk as well as a challenge Hit

Fis also split in four parts:

e F, corresponds to the oracles usifigas in N-PAT-IND-CCA except that patterns can also ask for symroetri
encryption, symmetric keys, signature of a message, sigméieys, hashing of a message and naNée F,
depends o#,, 6y, 6. andd,.

e [}, corresponds to oracles usirfig as in N-PAT-SYM-CCA, patterns are also extended but cannot irelud
asymmetric keys from,. I}, depends o#,, 6. andf,.

e F, corresponds to oracles usifigas in N-UNF, F,. depends only of..
e F,; corresponds to oracles usifigas in HASH,F,; depends only of..
Finally V' is also a disjunction of five parts:
e V;np answers true if its argument if the Biin © .
o Vunr—_syn answers true if it receives a symmetric encryption not fdrigg F,.
e VunF_sicn answers true if it receives a signature not forgedby

o Vunr_masm answers true if it receives a pair pat whereh = H(k,v(pat, N¥') and h has not been forged
usingFy.

e Vor_masy answers true if it receives a pair of distinct bit-strirkgs, bs; that have the same hash.
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E Proof of Theorem4.1

The intuition is that if an adversaryl can produce a NDY trace, then it is able to break one of thetagypphic
schemes. Lef) be the number of atoms (keys and nonces) that occut.iWe build aQ-PASSH-CCA (criterion
denoted byy) adversary3 such that ifp is the probability:

p = Prlty,tc — Exec(A,II) and ty ¢ traces(II)]
We have the following majoration ¢f.

p < (2.Q +7).Adv(n) + f(n) ®3)

wheref is a negligible function. Using propositiéh3, it is possible to deduce that the probability férto produce a
non Dolev-Yao trace is negligible.

Our Q-PASSH-CCA adversar usesA as a subroutine and deduces a string solving its challengextmple
the challenge bib or a new signature) as soon A3ec(.A, II) produces an invalid trace. Using its own oraclBs,
simulatesExzec(A, IT) and produces the formal trace in order to find a non-dedu(iil) message.

During its initialization, the adversar§ randomly chooses an integebetweerd andQ. If i # 0, then theit”
nonce generated by (denoted byN) is trapped. In order to answer queries frem3 randomly generates identities
and nonces fronhl exceptN. B uses its challenge keys for the different keydlin For nonceN, B generates two
noncesN, and Ny, B uses its oracles in such a way that messages involingesN,. N (resp.N;.N ) when the
challenge bib is 0 (resp.1). N is the challenge nonce related to hashing in PASSH-CC/(@ses not know ifV,
or N7 is used, this is required in order to compute the hashing oéssage involvingVv using an oracle).

When.A waits for a message:, 55 has to forgen = (m4, ..., m,,) where messages; are not pairs of messages.
ThenB generates eaat; using its oracles (e.qg. ih; is an encoding usingk, 5 uses the left-right encryption oracle
related topk). If NV appears "under” a left-right oracle, théfy.[N 7] (resp.N;.[N 7)) is used for the left (resp. right)
argument of the oracle. IV appears anywhere else it is impossiblefoto continue the protocol simulation. Hence
B aborts its execution. Note th&t cannot be asked to reveal a secret key, a signature key or melyim key in a
messagen; (such keys have to be protected by an encryption layer andedt-@ght oracle is used with a pattern
asking for the key).

When A emits a messager, m is parsed according to the protocol specification. Duringsipg, if 5 has to
decrypt a message then either this message has been pragirggd left-right encryption oracle and there is no new
information inside o3 can use its decryption oracles. To achieve pardiigas to be able to test whether a string is
a secret/signature/symmetric key, this can easily be aetiiesing oracles.

Eventually, A stops. Thers checks that there are no collisions between two messagssdas hash. If this is
not the casel3 wins against HASH/CF, this event is denotedfiy. Else if the trace is NDY the8 knows the first
NDY messagen and a recursive procedure is appliedmrin order to win the challenge.

1. Ifmis No.NH or N;.N¥, B deduces the challenge bit
. If m is another nonce3 aborts.
. If m is a secret key or a symmetric ké¥also deduces.

2

3

4. If m is a signature key3 can forge a new fresh signature and thus wins its challenge.
5. If mis a pair(my,m2), thenm; or my is NDY and this procedure is applied recursively.
6

. If m is an asymmetric encryptiofim’} i, asm is NDY it has not been produced by an oracle (otherwise,
would have circulated not protected). Hence using the giticny oracle B obtainsm’ which is also NDY.

7. If m is a signature or a symmetric encodimg,is NDY thus it has not been produced by an oracle Briths
forged a new signature or a new symmetric encoding.

8. If m is a hashing:(m’), thenm’ has to be known (to test during the protocol execution). i’ containsi,
then can deduce a hollow pattepat such that (k, v(pat, N7)) = h. HenceB wins. Else 3 aborts.
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9. If mis a hashindi(m’) andm’ does not contaitV, then5 aborts.

Whenevel3 decides to abort, it answers a random bit for the challentye bi
If A produces aninvalid trace, then we consider the differesivans that the former procedure can have produced.
E; denotes the event where the procedure stopped iit'tlease of the list. Hence,

9
p= Z Pr(E;)
i=0

As nonceN is chosen randomhyPr(E>) and Pr(Ey) are lower than respectively. Pr(E;) and@.Pr(Eg). More-
over, eventsy; for i different from2, 5 and9 imply that B3 wins its challenge without aborting. Let us call(resp.
—B) the event wher# does not abort (resp. aborts). Hence,

p<(2.Q+7).Pr(B)

As PrRand is negligible for criteria related to UNF, there exists aliggle functiong such that:

Advi(n) = 2.Pr(Bwins)—1—g(n)
= 2.Pr(B)+ Pr(-B) —1—g(n)
= Pr(B)—g(n)

Hence, it is easy to obtain formubeand the awaited result.

Nonces are Probably Different

We consider that anytime a computational adversary picksoape nonces, they are different one from another. The
adversary can only get a numberof nonces that is polynomial in and we suppose that the numleof possible
nonces is exponential im(som < n). Let P be the probability that the adversary gets two times the samees.
nn—1 n—(m-—1)

1-P=—
n n n

Thus, we have the following inequalities:

0<p<1—(1- 2 hym

n

Proposition E.1 For anyz € [0,1[anda > 1,

(1fx)a21f:c.a

Proof: Consider the functiof(z) = (1 — z)” — 1 + z.a. Derive it twice to get the resullt. [
Applying the proposition, we get:
0<P< m.(m—1)
n

As m is polynomial andr is exponential i, P is negligible inn. When considering an adversary that has a non-
negligible advantage against something, it still has itgaathge if we consider only executions where nonces are
distinct.
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