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Abstract 
 

Current hash chain traversal techniques require that the intermediate links of the 
hash chain be stored secretly on a trusted storage. This requirement is undesirable 
in several applications. We propose a new construction of hash chains based on 
inserting a ‘breakpoint’ after fixed number of links in the chain. We also propose 
a method with which the current hash chain traversal techniques can be applied 
to our construction without any significant changes in the storage and 
computation requirements and with the added advantage that the intermediate 
links may be stored on a public and non-trusted storage. We are also able to 
prove the security of our construction by replacing the hash function with a MAC 
function. 

 
1 Introduction 
 
The idea of hash chains was first proposed by Lamport [1] to design an authentication system 
called one time passwords (OTPs), which would be safe from both eavesdropping as well as 
server database compromise. Since then it has been employed extensively in a wide range of 
cryptographic systems, many of them proposed only recently. Hash chains have interesting public 
key cryptography like properties while employing nothing more than a fast one way hash function 
(OWHF). 
 Examples of system build upon the concept of hash chains include password based 
authentication [1, 3], micropayments [19, 38, 39], server-supported signatures [35, 36], certificate 
revocation [10, 37], secure address resolution [21], online auctions [14], digital cash [40], web 
click hit shaving [22], efficient multicasting [11-13], spam fighting protocols [41], one time 
signature schemes [42], sensor network security protocols [48-49] and securing routing 
information[43-47]. 
 Hash chains are generated by applying a one way hash function recursively to a seed value. 
The chain is used by exposing its links one by one in the reverse order. For this, unless all the 
links are stored, the next link to be exposed should be computed when required. This is done 
efficiently using hash chain traversal techniques. A number of traversal techniques exist [50-53] 
which trade space for time and are efficient and practical for most applications. In particular, the 
solution presented in [52] has been proved to be an almost optimal solution to the traversal 
problem. 
 All these traversal technique require some intermediate hash chain link values to be stored 
secretly. This may be an unrealistic assumption in some applications. Consider the original 
application of hash chains, i.e., one time passwords (OTPs). Devised in 1981 [1], OTPs are 
implemented, standardized [2, 3, 6, 7, 8] and widely used. In OTPs, the hash chain is generated 
by the user using the password as the seed. The user authenticates to the server by revealing links 
of the hash chain one by one. This system is secure against server compromise (or server fraud) in 
the sense that no security sensitive quantities are stored on the server. Now, for using the current 
hash chain traversal techniques in order to efficiently compute the successive links, the user must 



secretly store a number of intermediate hash chain links. However, this is not possible since in all 
‘password based authentication systems’, the user is assumed to be stateless and cannot be 
assumed to store anything. The only thing a user is required for logging in is the password. 
Hence, the hash chain traversal techniques are not applicable to this system. Consequently, for 
authentication, the user must compute the successive link values starting with the seed, i.e., the 
password itself, which is computationally intensive. Clearly, the system could be significantly 
more efficient if the secrecy of the intermediate links was not required. In that case, the server 
would store those links on behalf of the user and would supply them to the user at the time of 
authentication. 
 In general, these traversal techniques cannot be applied when the hash chain generator does 
not have a secure and trusted non-volatile memory for secretly storing the intermediate links. 
Further, when the hash chain generator is a mobile device having limited storage [35, 36, 48, 49], 
it may be desirable to use alternate storage, like hash chain verifier’s database, whenever 
possible. 
 In applications like micropayments [19, 38, 39], a user typically establishes payment chains 
simultaneously with many vendors, e.g., to use web services provided by several different 
vendors or to repeatedly view web pages of many paid websites. This means that a hash chain 
generator has to deal with and hence store intermediate links of several hash chains at the same 
time. The system could have new possibilities if each vendor server had stored the intermediate 
links of the hash chain meant for itself on behalf of the user. In that case, the user could generate 
all the hash chain seeds pseudorandomly with a master secret such as with the key embedded in 
his smartcard and could utilize any (possibly untrusted) terminal in the world to continue 
payments to any vendor. This kind of setting is also preferable in cases where the user is a mobile 
device. 
 We introduce a new construction of hash chains. The basic idea is insert a number of 
breakpoints after fixed distances in the hash chain. A breakpoint is inserted at a link by re-seeding 
the hash chain at that link with a derivative of the seed value. The links at which a breakpoint is 
inserted may be made public and are no longer considered to be security sensitive. Further, it 
turns out that there is a method with which any existing hash train traversal technique may be 
applied to our construction also, without any significant changes in the storage and computation 
complexity. Thus, with our construction, effectively, without compromising efficiency, we 
remove the restriction that the intermediate links be secretly stored. 
 It should be stated here that our construction is not meant to replace regular hash chain 
construction in all applications. In many of the system like certificate revocation [10, 37], secure 
address resolution [21] and multicasting [11-13] etc, the present construction and traversal 
techniques work well since the hash chain generator is not expected to have trusted storage 
constraints. Further, there is no fixed verifier (or obvious third party) whose memory may be used 
for storing the intermediate links of the hash chain. 
 Rest of the paper is organized as follows- Section 2 gives a background on hash chains and 
hash chain traversal techniques, section 3 describes the proposed construction of hash chains, 
section 4 describes the application of present traversal techniques to our construction, section 5 
computes the optimal number of links between two breakpoints for minimizing the computation 
complexity, section 6 provides the security proof for the optimal construction by replacing the 
hash function with a MAC function, section 7 concludes the paper. 
 
2 Hash Chain Construction and Traversal Techniques 
 
Hash chains are based a public function H that is easy to compute but computationally infeasible 
to invert, for suitable definitions of “easy” and “infeasible”. Such functions are called one-way 
functions (OWF) and were first employed for use in login procedures by Needham [27]. If the 



output of a one-way function is of fixed length, it is called a one-way hash function (OWHF). 
More precisely, the definition of a OWHF is given as [26]- 
 
Definition A function H that maps bit strings, either of an arbitrary length or a predetermined 
length, to strings of a fixed length is a OWHF if it satisfies two additional properties- 

 Given x, it is easy to compute H(x) 
 Given H(x), it is hard to compute x 

 
A hash chain of length N is constructed by applying a one-way hash function H(.) recursively to 
an initial seed value s. 

( ) ( )( )( )
N times

...NH s H H H s=  

The last element HN(s) also called the tip T of the hash chain resembles the public key in public 
key cryptography i.e., by knowing HN(s) but not s, HN-1(s) can not be computed but its correctness 
can be verified. This property of hash chains has directly evolved from the property of one-way 
hash functions. 
 In the hash-chain applications, first the tip T or HN(s) is securely distributed to the verifying 
party (or parties) and then the links of the hash chain are spent (or used) one by one in the reverse 
order starting from HN-1(s) and continuing until the value of s is reached. In general, the ith link of 
the hash chain is Hi(s) and can be verified for correctness by the verifying party by hashing it 
once and comparing with the (i+1)th link. 
 Straightforward methods of computing the hash chain links require either too much storage or 
too much computation. A trivial solution to this problem could be to re-compute the next link 
whenever required directly from the seed s. Clearly, this requires O(N) hash function evaluations 
per link computation. Another trivial solution would store all the links of the chain, and would 
plainly perform a lookup for each link to be output. Such a solution would have a memory 
complexity of O(N). One could easily trade memory and storage against each other in these trivial 
solutions by storing some fraction of the values, and computing the next required link from the 
nearest stored link. It can be seen that all such variations of these trivial approaches will have a 
memory-times computational complexity of O(N). 
 Jakobsson initiated the study of this problem and proposed a traversal technique [50, 51] to 
reduce the computation-times-storage complexity to ( )( )2

2logO N . This was accomplished by 
the introduction of a technique in which a constantly changing set of intermediary hash chain 
links are stored. The computation as well as storage complexity is this technique is ( )⎡ ⎤2log N . 
This technique was improved by Coppersmith and Jakobsson [52] who proposed a new idea 
which allows for a reduction of the computational requirements to slightly less than half of 
Jakobsson’s, while slightly reducing the storage demands for most practical parameter choices. 
The computational costs of this solution are approximately ½ ( )2log N  hash function evaluations, 
using only a little more than ( )2log N  storage cells. An interesting result in this work was the 
lower bound provided for the optimal solution of this problem and the fact that their technique is 
very close to the optimal solution. Recently, Sella [53] studied the traversal problem with a 
constant bound, m, on the number of hash function evaluations allowed per link usage of the hash 
chain. The result is a generalized technique having storage requirements kk N  where 

1k m= + . 
 All these techniques require the storage of some intermediate hash chain links. These links 
should be stored secretly as the exposure of the ith link in the chain would enable an adversary to 
compute all the links from ( )1i +  to N  just by recursive hashing. 

 



3 The Proposed Hash Chain Construction 
 
In this section, we describe the proposed construction of hash chains. As discussed before, the 
basic idea is to insert a ‘breakpoint’ after fixed number of links in the chain. This is done by 
reseeding the hash chain with a reseeding factor (RF) which is a derivative of the seed value s . 
Before going further, we introduce a few basic notations to be used in this paper. 
 
( )H X  Output of a hash function applied to X . We discover the exact propoerties 

required from H in section 6. For now, it suffices to assume that H is a one 
way hash function. 

,X Y< >  Concatenation of X and Y 
( ),H X Y  ( ),H X Y< >  

D  The distance between two breakpoints in the hash chain. The minimum value 
of D is 1 (when a breakpoint is inserted at every link in the chain). We 
compute the optimal value of D in section 5. 

N  Total number of links in the hash chain 
 

The hash chain generator first chooses a seed s with which the chain is generated. s should be 
kept secret by the generator, e.g., by memorizing or writing it down as a password or by storing it 
if a limited trusted storage is available. s may also be generated pseudorandomly from a master 
secret which is used for multiple purposes. In that case, there is no need of storing the seed s and 
multiple hash chain seeds may be generated from the same master secret. This kind of setting is 
preferable in applications like micropayments [19, 38, 39] as discussed before. 
 The length N of the chain is selected by choosing a parameter n. We have N n D= × . 
Define a function ω  as follows- 
 ( ) ( )( ) ( )1 , 0 1i i

D iD s H s s i Nω ω+ = ≤ ≤ −  
 ( )0

D s sω =  

 
( ) ( ), if there exists an integer , s.t., , 0 1

otherwisei
H s j j j D i j N

s null
× = ≤ ≤ −⎧⎪⎪= ⎨⎪⎪⎩

 

 
Where null  is a string of length zero, i.e., { }00,1null ∈ . The above function ω  describes the 
proposed hash chain construction, ( )N

D sω  being the tip of the hash chain. Observe that the chain 
is being reseeded for ( )0, ,2 ,..., 1i D D N D= −  with the reseeding factor is . 
 Note that an important security property of our construction is that the links ( )i

D sω , with i 
being a multiple of D , are not security sensitive and may be made public. This is because with 
the knowledge of ( )i

D sω , an adversary can neither compute ( )1i
D sω −  (one way-ness of the hash 

function) nor ( )1i
D sω +  (knowledge of is , and hence that of the seed s  required). 

 The proposed chain is used by exposing its links ( )i
D sω  one by one in the reverse order as in 

ordinary hash chains, the only difference being for links where i  is a multiple of D . Such links 
require the exposure of the reseeding factor is  along with themselves to enable verification. 
 This completes our description of the proposed hash chain construction. Though we will call 
our chain to be a hash chain in a general sense, we will denote it by ω -chain and an ordinary 
hash chain by H-chain wherever we need to distinguish between the two. 
 
 



4 Applying Present Hash Chain Traversal Techniques to Our 
Construction 
 
In this section, we discuss the application of present hash chain traversal techniques to our 
construction, i.e., the application of H-chain traversal techniques (HCTT) to ω -chain, and discuss 
the computational and storage complexity changes if any. Note that HCTT cannot be directly 
applied to ω -chain since we require all the stored intermediate links to be non-security sensitive. 
 We model a H-chain traversal technique by the following- 
 
( ),iS s N  Set of stored links after the ith link of the H-chain with seed s  and 

length N  has been exposed or used 
( )( )1 , , ,i iC s N S s N−  Denotes the algorithm for the computation of the (i-1)th link of the H-

chain with seed s  and length N  using ( ),iS s N . The algorithm 
returns the (i-1)th link and also outputs the new set of links to be stored 

( )1 ,iS s N−  
( )SC N  Storage complexity (i.e., the number of intermediate links stored) of 

the HCTT for a H-chain of length N . Equal to the average number of 
elements in ( ),iS s N  for all i . 

( )CC N  Computational complexity (i.e., the number of hash function 
evaluations required per successive link computation) of the HCTT for 
a H-chain of length N . Equal to the average number of hash function 
evaluations made by ( )( )1, , ,i iC s N S s N+  for all i . 

 
We stress that the above parameters can be defined for any HCTT. Consequently, our method for 
applying HCTT to ω -chains is generic and is independent of the actual working of the HCTT. 
 To apply a HCTT to a ω -chain with seed s  and having length N n D= × , we define a γ -
chain of length n  as follows- 

( ) ( ) ( )( ) ( )1 , , 0 1i D i
DD s H s H s i i nγ γ+ = ≤ ≤ −  

 ( )0
D s sγ =  

Observe that the links of the γ -chain are actually the same as those links of the ω -chain which 
are non-security sensitive. In particular, we have ( ) ( )i iD

D Ds sγ ω= . The non security sensitivity 
of the γ -chain links is also suggested by the fact that a γ -function evaluation can only be done 
by the γ -chain generator since the evaluation will require the knowledge of seed s to compute 
the reseeding factor ( ),H s i . Hence, it follows that neither the link ( )1i

D sγ − , nor ( )1i
D sγ +  can be 

computed from a given link ( )i
D sγ . 

 To apply the HCTT to a ω -chain of length N , we actually apply it to the corresponding γ -
chain of length n N D= . All the hash function evaluation made by algorithm C  are replaced 

by γ  function evaluations. This results in a traversal technique in which the ith link of the γ -
chain is computed as follows- 
 ( ) ( )( )' '

1, , ,i
D i is C s n S s nγ +=  

Where '
iC  denotes the algorithm obtained by replacing all the hash function evaluations in 

algorithm iC  by γ  function evaluations. '
iS  denotes the set of intermediate links output by '

iC . 
 The security property we achieve through this technique is that the intermediate links in the 
set '

iS  are non-security sensitive since all of them will be the links of the γ -chain. Hence, the 



chain generator may store these links at a public and non-trusted storage. In order to compute the 
next ω -chain link, the generator will read the link set stored at the public storage, will compute 
the appropriate γ -chain link from it by running '

iC  and will finally compute the required ω -
chain link from the obtained γ -chain link. More precisely, the computation of the link 

. ,i j D k k D= + <  of the ω -chain, i.e. ( )i
D sω , is done as follows- 

 ( ) ( )( )' '
1, , ,j

j jD s C s n S s nγ +=  

Since ( ) ( )i iD
D Ds sγ ω= , we have 

 ( ) ( ) ( )( ), ,ji k
D Ds H s H s jω γ=  

Note that it is possible to do the above computation on a non-trusted terminal with the aid of a 
smartcard holding the seed value (or the master key with which the seed is generated). The 
terminal passes all the γ  function evaluation calls to the smartcard which, without any checks, 
does the required evaluations and passes the result back to the terminal. However, any reseeding 
factor is not revealed by the card at this stage. For the second part of the computation, the 
smartcard prompts the user for the pin number and only then computes ( )i

D sω  from ( )j
D sγ . If 

0k = , the smartcard also reveals ( ),H s j . 
 For verification, the chain generator exposes ( )i

D sω . If 0k = , i.e., i  is a multiple of D , the 
reseeding factor is  (or ( ),H s j ) is also exposed. Further, if 0k = , the stored set of links 

( )'
1 ,jS s n+  is replaced by the new set ( )' ,jS s n  output by ( )( )' '

1, , ,j jC s n S s n+ . The 
complexities of the resulting traversal technique may be computed as follows- 
 
STORAGE COMPLEXITY 
Since the traversal technique is actually applied on a chain of length n , we have 
 ( ) ( ) ( )'SC N SC n SC N D= =  

 
COMPUTATIONAL COMPLEXITY 
( )'CC N  = Computing ( )j

D sγ  by running ( )( )' '
1, , ,j jC s n S s n−  + computing reseeding factor 

( ),H s j  + computing ( )i
D sω  using ( )j

D sγ  and ( ),H s j  

 ( ) ( ) ( )' 1 . 1NCC N D CC kD= + + +  

The factor ( )1D +  with ( )CC N D  is because of the fact that each call to hash function H is 

replaced by a γ -function whose evaluation requires ( )1D +  H functions evaluations. 

 
5 The Optimal Construction 
 
In this section, we discover the optimal distance D  between two breakpoints in the ω -chain for 
the HCTT by coppersmith et al [52] shown to be almost optimal by them. Given the ω -chain 
length N , our goal will be to minimize the average computation complexity as found in the 
previous section 
 ( ) ( ) ( )' 1 . 1NCC N D CC kD= + + +  
 Clearly, k  varies uniformly from 0  to ( )1D − , the average value being ( )1 2D − . 

Further, ( ) ( ) ( ). 1 2 log .CC =  for HCTT in [52]. Hence, we have 



 
( ) ( )

( )

' 1 1. log 1
2 2

1 1. log
2 2

D DNCC N D
D DN

D

+ −= + +

+ += +
 

There is no minimum for the above expression due to the factor ( )1 2D + .The expression may 

potentially vary from −∞  to +∞ . However, we are only interested in the +ve integral values of 
D . The minima can be found out with a simple analysis with various values of D . We rewrite 
the above equation as 

 ( ) ( )( ) ( ) ( )( )'

factor 1
factor 2

1 1log 1 . log . log
2 2 2
D N DCC N N ND

D
−= + + + −  

 It can be shown that the second factor is always +ve for 2D >  as well as for 2D =  and 
4N ≥ . Further, this factor is zero for 1D = . This means for ( )'CC N  to be minimum, we 

have 
 {1 for 4

2 otherwise
ND ≥=  

The above values clearly depict that for the interesting values of N , the optimal distance D  
between two breakpoints is one1. Hence, a value of D  may be set as the constant for ω -chain 
with [52] as the HCTT. 
 1D =  
Thus, for the optimal construction, the ω -chain coincides with the γ -chain. 

 
6 Security Analysis 
 
In this section, we analyze the security of our optimal ω -chain construction, i.e., with 1D = . 
The chain can be defined as follows 
 ( ) ( )( ) ( )1

11 , 0 1i i
is H s s i Nω ω+ = ≤ ≤ −  

 ( )0
1 s sω = , ( ),is H s i=  

The links ( )1
i sω  of the ω -chain are not considered to be security sensitive. The reseeding factor 

(RF) is  should be revealed along with the link ( )1
i sω  to enable verification and is the basis of the 

security of our construction. Clearly, our security is based on the assumption that with the 
knowledge of ( ),H X Y  as well as X , an adversary is not able to compute Y  with a non-
negligible probability. However, the definition and the properties of hash functions are usually 
analyzed with a single argument ( )H X  and the above assumption is not proved or widely 
supported in the literature. To overcome this fact, we replace H with a MAC function and redefine 
the chain construction as follows- 
 ( ) ( )( ) ( )1

11 0 1
i

i i
ss MAC s i Nω ω+ = ≤ ≤ −  

 ( )0
1 s sω =  

We will call the above chain to be a modified ω -chain (M Cω ). To introduce provable security, 
we assume that the reseeding factors is ’s are random. Later, we instantiate is  with a keyed 
pseudorandom number generator like a hash function. 

                                                           
1 Traversal techniques are applied to efficiently compute the successive hash chain links. For a hash chain 
of length 3 or less, talking about optimization of the traversal technique used makes little sense since the 
successive hash chain links may even be computed directly from the seed itself. Hence, for N<4, D=1 is 
equally acceptable. 



 The security of a MAC function has been defined as follows- 
 
Definition 1  We say that a MAC function MAC is secure if any probabilistic polynomial time 
algorithm F , which is given as input the MACs ( ) ( ) ( )1 2, , ...,k k k qMAC m MAC m MAC m  of 
the adaptively chosen message 1 2, , ..., qm m m  with key k , outputs a valid MAC ( )kMAC m  of a 
new previously unseen message m  only with negligible probability. 
 
Observe that an adversary who recovers the key certainly breaks the MAC function. The MAC 
functions satisfying the above definition do exist. In particular, Bellare et al [54] designed NMAC 
and HMAC using a hash function as the underlying primitive. Both of them are provably secure if 
the hash function used satisfies some reasonable properties like weak collision resistance [54]. 
Further, their performance is essentially as good as that of the underlying hash function. 
 Now, we define and prove the security of our modified ω -chain construction. 
 
Definition 2  We say that a modified ω -chain is secure if any probabilistic polynomial time 
algorithm F , which is given access to the M Cω  links ( )1 , 1i s i Nω ≤ ≤  and is allowed to 

query a RF (reseeding factor) oracle for getting the reseeding factors is ’s one by one in the 
reverse order, outputs a valid and previously unseen reseeding factor only with a negligible 
probability. 
 
Theorem 1  If MAC is a secure MAC function, the resulting modified ω -chain M Cω  is secure. 
 
Proof 

Assume that the thesis is false, i.e., that there is an algorithm F , given as input M Cω  
links ( )1 , 1i s i Nω ≤ ≤ , that succeds in computing a reseeding factor is  by querying the RF 

oracle to get 1 1, , ...,j j Ns s s+ −  with i j< , with a non-negligible probability ε . We show how F  
can be used to build an algorithm MF  which forges the MAC  function. 
 Before going further, we state two results which we can prove in this theorem. 
 
Result 1  MF  takes as input one MAC ( )kMAC m  of the message m  of its choice and recovers 
the key k  with probability Nε . 

 
Result 2  MF  takes as input one MAC each ( ) ( ) ( )

1 21 2, , ...,
Nk k k NMAC m MAC m MAC m  of 

the adaptively chosen messages 1 2, ,..., Nm m m  with secret keys 1 2, , ..., Nk k k , asks for a set of 
keys 1, ,...,j j Nk k k+  to be revealed and then recovers a key ,ik i j<  with probability ε . 
 
Result 2 seems to be a stronger result. While Result 1 implies a security loss of a factor N , 
Result 2 essentially implies that a MAC forgery can be done with the same probability as M Cω  
forgery. Result 2 means that a key recovery is done for at least one of the (message, MAC) pairs 
in a set of N  such pairs. Further, it can easily be shown that Result 1 follows from Result 2. 
Hence, we choose to prove Result 2 in this theorem. The construction of MF  follows. 
 MF  randomly chooses the seed s  of the M Cω  chain and constructs the chain with the 
unknown keys 1 2, , ..., Nk k k  as the reseeding factors 0 1 1, ,..., Ns s s − . This is done by asking for the 
MAC of one message of its choice with each of the keys. More precisely, the M Cω  is 



constructed by setting ( )0
1 s sω =  and asking for the MAC of ( )1

i sω  with is  (i.e., with 1ik + ) to 
get ( )1

1
i sω + . 

 Now, MF  runs F  giving all the computed links ( )1
i sω ’s for 1 toi N=  as input. When 

F  first queries the RF oracle, MF  asks for key Nk  to be revealed and answers the query by 
supplying Nk  as 1Ns − . MF  does so for 2 3, , ...,N N js s s− −  for subsequent queries by F  by asking 
for 1 2 1, , ...,N N jk k k− − +  to be revealed. Now, F  outputs a reseeding factor ,is i j<  with 

probability ε . This in turn means that MF  gets a key 1ik +  which it did not ask to be revealed. 
Thus, MF  halts outputting 1ik +  to demonstrate a successful key recovery attack. 
 
Since the existence of MF  contradicts our hypothesis, the thesis must be true.  

■ 
 
Remark 1 As shown by MF , forging our M Cω  construction requires the adversary to be 
capable of recovering the key just by seeing a single MAC. This attack is much stronger than 
forging MAC of a message by seeing MAC of several messages of its choice. Thus, even if the 
adversary is able to forge a MAC in the sense of definition 1, it is still possible that he may not be 
able to forge M Cω  construction. 
 
Remark 2 In the proof, we assume that the reseeding factors are random and independent of 
each other or the seed s . We may replace them with a keyed pseudorandom number generator 
like a hash function with s  as the key. Although this obviously is secure with random oracle 
assumption, we stress that we require a weaker assumption than random oracle for security. Our 
security is in-tact even if a reseeding factor is  is distinguishable from a pure random number but 
cannot be computed given the knowledge of other reseeding factors and the MAC of one chosen 
message with is  as the key. 
 
Remark 3 We have proved the security of the modified ω -chain obtained by replacing a H 
function with a MAC function. It is commonly believed that a H function with two arguments 
( ),H X Y  possesses a MAC function like properties. With this assumption, our ω -chain 

construction also seems to be secure. However, if the above assumption is undesirable, a M Cω  
may actually be used in practice instead of ω -chains. Our traversal technique and complexity 
analysis is also applicable to M Cω . The results of Bellare et al [54] implies that this can be 
done with essentially negligible performance degradation. 
 
7 Conclusion 
 
We remove the requirement that for using the hash chain traversal techniques, the intermediate 
hash chain links be stored secretly. This is done by slightly modifying the hash chain 
construction. Our technique expands the scope of hash chain traversal techniques to the 
applications where a secure and trusted non-volatile memory is not available to the hash chain 
generator. A possible example is one time passwords. Further, storage reduction is possible in 
cases where the generator is a mobile device. The generator may store the intermediate links with 
the hash chain verifier or on a third party storage. This is especially useful in systems like 
micropayments where a (possibly constrained) user may have to deal with several hash chains 
simultaneously. Our complexity analysis shows that there are no significant changes in storage 
and computational requirements. Further, we also prove the security of our optimal construction 
by replacing a hash function with a MAC function. 
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