

Accredited Standards Committee X9, Incorporated

The following document contains excerpts from draft standard of the Accredited
Standards Committee, X9, Inc. (ASC X9) entitled ANS X9.102- Wrapping of Keys and
Associated Data. ASC X9 grants permission to the editor of this draft standard, the
National Institute of Standards and Technology, to reproduce these excerpts, and they are
to be used solely for the purpose of commenting and adding input to the draft standard.

These excerpts will be made available on the Cryptology ePrint Archive of the
International Association of Cryptologic Research with permission of ASC X9 for a six
month period but may not be made available on any other website, public network,
satellite or otherwise without the prior written consent of the ACCREDITED
STANDARDS COMMITTEE X9, INC., Contact: Cindy Fuller, Executive Director, ASC
X9, Inc., P.O. Box 4035, Annapolis, MD 21403 USA.

© ASC X9, Inc.

P.O. Box 4035 • Annapolis, MD 21403 • 410-267-7707 or 301-879-7988 • www.X9.org

Request for Review of Key Wrap Algorithms
November, 2004

1 Introduction
American Standards Committee X9, Financial Services, Inc., Subcommittee F, Working
Group 1 (X9F1) requests a cryptographic review of the four key wrap algorithms in the
draft key wrap standard, ANS X9.102. This request for review outlines the security goals
and the specifications of the four algorithms. Comments on the security of the algorithms
should be submitted to the editor of ANS X9.102, the National Institute of Standards and
Technology (NIST), at dworkin@nist.gov. Comments will be accepted until May 21,
2005.

The four key wrap algorithms are intended to provide privacy and integrity protection for
specialized data such as cryptographic keys, called the key data string, without the use of
nonces. In addition, for three of the algorithms, integrity protection optionally may be
provided for cleartext associated data, called the header, which will typically contain
control information about the wrapped key.

The four algorithms that are currently proposed in Draft ANS X9.102 are named
AESKW, TDKW, AKW1, and AKW2. The essential specification of AESKW has been
available on the NIST key management web page since 2002. The underlying block
cipher for AESKW is the Advanced Encryption Standard (AES) algorithm; TDKW is the
analogue of AESKW for the Triple Data Encryption Algorithm (TDEA).

TDEA is also the underlying block cipher for the two alternative key wraps, AKW1 and
AKW2. AKW1 is essentially the algorithm proposed in the Internet Engineering Task
Force (IETF) Request for Comment (RFC) 3217. AKW2 is the algorithm that is
implicitly defined in a “key block” specification that has been developed for use in
constrained legacy systems in the financial services industry.

2 Security Models

2.1 Overview
The analysis of the privacy or integrity that is provided by an algorithm is typically
undertaken in the context of a security model: a specific security property/goal with
respect to a specific attack model. In Section 2.2., security models with respect to both
privacy and integrity are discussed for AESKW, TDKW, and AKW1. For AKW2,
Section 2.3 contains background on the design considerations, and Section 2.4 discusses
security models.

2.2 Security Models for AESKW, TDKW, AKW1
With respect to privacy, for AESKW, TDKW, and AKW1, the X9F1 working group
proposes the goal of indistinguishability of ciphertexts under adaptive chosen ciphertext

 1

attacks1. For this model, the adversary chooses two distinct “target” inputs to the
wrapping function that are not distinguishable by their length. The wrapping function is
then applied to one of the two targets, chosen uniformly at random, under a secret key
protection key, also chosen uniformly at random, and the result is returned to the
adversary. The adversary breaches the goal if he can distinguish with probability greater
than 0.5 which of the two target strings was wrapped.

In an adaptive chosen ciphertext attack, the adversary has access to oracles for both the
wrapping and unwrapping functions of the key wrap, under the same key protection key2.
The oracles may be queried adaptively, i.e., taking into account the results of previous
queries, both before and after the adversary chooses the target strings and receives the
target ciphertext. Of course, the adversary may not query 1) the wrapping oracle on
either of the target strings or 2) the unwrapping oracle on the target ciphertext. For
queries to the wrapping oracle for AKW1, which incorporates random bits into the input,
the bits are selected uniformly at random, out of the adversary's control.

The queries to the wrapping oracles are limited to 248 for AESKW and 232 for TDKW and
AKW1, consistent with the data requirements of the specifications. Moreover, the
adversary's computing operations/time in the adaptive chosen ciphertext attack model are
assumed to be less than what would be required to break the underlying block cipher by a
brute force search of the key space, where the key size for TDEA is interpreted as the
associated “security level,” i.e., 112 bits for three-key TDEA, and 80 bits for two-key
TDEA.

With respect to data integrity, the attack model is the same, and the security goal is
unforgeability. In particular, it should not be feasible for an adversary to produce a valid
ciphertext that is new, i.e., different than the result of any query to the wrapping oracle3.
Feasibility here is assessed in relation to the number of bits of redundancy in the
specification of the algorithm: at least 63 in AESKWand TDKW, and at least 64 in
AKW1. A forgery is considered feasible if the probability of producing such a ciphertext
is greater than could be achieved by random guessing.

The above security models are presented for convenience; however, the X9F1 working
group will also consider attacks with a different privacy or integrity goal, or a different
attack model, such as, for example, attacks based on related keys or weak keys.

1 This model is essentially the symmetric key analogue of IND-CCA2 privacy discussed in M. Bellare, A.
Desai, D. Pointcheval, and P. Rogaway, Relations among Notions of Security for Public-Key Encryption
Schemes Advances in Cryptology—CRYPTO 1998, Lecture Notes in Computer Science, vol. 1462, Hugo
Krawczyk, ed., Springer-Verlag, 1998..
2 For a well-designed key wrap, however, each output of the unwrapping oracle is likely to be “invalid.”
3 This captures the usual definition of data integrity, because the introduction of bit errors into a valid
ciphertext, either unintentionally or intentionally, is equivalent to an adversary flipping the corresponding
bits of a corresponding oracle output. If the result is a valid ciphertext with sufficiently high probability,
then forgery is feasible, contrary to the definition of unforgeability.

 2

2.3 Background on the Design Considerations for AKW2
Unlike AESKW and TDKW, the AKW2 method was developed for a specific
environment, the ATM/POS network. This network has evolved over 20 years, so it
contains a large number of legacy, computationally limited devices. Many of the devices
were originally deployed to implement only 56-bit DEA, and are being retrofitted to
support TDEA. The original DEA-based network encrypted DEA keys with ECB. This
approach was reasonable given that DEA keys fit within a single block. As TDEA was
gradually added to the network, these keys continued to be either ECB encrypted, or CBC
encrypted with a zero IV (no MAC). The risks of such an approach are obvious to the
cryptographic community.

AKW2 was designed to run on computationally limited devices. As a result, the AKW2
method just employs a TDEA crypto-primitive since these devices often lack sufficient
memory and computational power to support other algorithms. The design was created
with the realization that every additional TDEA block operation in AKW2 increases the
probability that these devices will continue to be operated with ECB-based key
management. The method is very specific to the threat model for this network. Other
systems must examine the security assumptions very carefully if they are considering
using AKW2.

A complete description of the ATM/POS threat model is beyond the scope of this
document. However, to help the reader understand the environment, the list below
groups the major vulnerabilities that affect key management with symmetric keys into
four categories. For more information, consult ANS X9.24 part 1.

1) Failures of procedure – This class of vulnerabilities includes most of the security

vulnerabilities that have been exploited in actual networks. It includes bad practices
such as the use of test keys in production environments, failures in the enforcement of
dual control, and even e-mailing keys to vendors for debugging purposes. Protection
from this type of vulnerability is largely a matter for auditors to enforce.

2) Bad random number generation – This class of vulnerabilities is not limited to the

financial networks and is included here only for completeness. Techniques for
generating good random numbers are beyond the scope of the key wrapping standard.

3) Exhaustive search of 56-bit DEA keys – This class of vulnerabilities is divided into

two parts. There are a number of 56-bit DEA keys still in use in the financial
networks. The vulnerability of such keys can only be fixed by upgrading the
cryptography to TDEA. There is an additional class of attacks that may be performed
on TDEA keys wrapped using techniques that do not ensure integrity of the key block
that allows an attacker to manipulate encrypted keys to reduce the security of the
system to 56-bit keys.

4) Manipulation of Key Usage – This class of vulnerabilities is primarily exploitable at

the server, within a data center or switch. At the server, key wrapping and other
cryptographic operations are performed within hardware cryptographic modules. The

 3

modules are designed to prevent exposure of cleartext keys to the calling application
or any single user. However, if the usage of the keys is not cryptographically
enforced within the module, a single user may be able to manipulate the interface to
expose keys. These attacks have been well known for years and every vendor
includes protection against such attacks. Unfortunately, different vendors use
different methods, and these methods are not interoperable. Thus, part of the process
of deploying systems that must work in a multi-vendor environment is often a
deliberate re-introduction of these vulnerabilities.

The goal of AKW2 is to reduce the threat of attacks based on the third and fourth types of
vulnerability.

Threat Model Characteristics:
1) As in the other TDEA-based wrapping schemes, we consider that an oracle attack is

impractical if it requires more than 232 queries of the hardware.
2) Financial institutions have controls that make it impractical for an attacker to create a

related key by XORing the wrapping key with the constant 0x4545454545454545,
0x4D4D4D4D4D4D4D4D, or 0x0808080808080808.

3) Finally, we consider that leakage about plaintext key information tends to happen in
an “all-or-nothing” manner. Procedural failures that leak key information tend to
reveal the entire key. This does not mean that power analysis or other side-channel
type of attacks are not capable of leaking partial information about a key, merely that
in the financial network the most convenient attack does not involve attacking the
wrapped key.

Note that one of the significant security features of the method is not included in the
specification of AKW2 in this request for review. The X9F6 working group has created a
Technical Report, TR-31, to define a set of headers for common types of keys that will
allow keys to be labeled consistently for transport between two vendors. This definition
will eliminate many of the O(1) attacks that are currently possible for insiders using
multi-vendor solutions.4

Balancing the constraints of the legacy network and the security goals led to the
following choices for AKW2:

1) Key derivation is performed by a simple XOR, rather than a one-way key derivation

function. In order to prevent catastrophic failure if a procedural error results in the
misuse of a key-wrapping key in both ECB wrapping schemes and AKW2,the key-
wrapping key is not used directly for encryption.5

2) The CBC encryption scheme allows the use of a non-random IV.
a) Using a non-random IV allows an attacker to identify when the first block of two

wrapped keys are equal. Note that valid keys on a database or in transit are
random values. The X9F6 working group assumes that the system will not wrap
232 key values under the same wrapping key.

4 Attacks against key usage can be performed independent of the key length.
5 Note that the assumption about related keys is vitally important to the security of this approach.

 4

b) When the IV is non-random, the IV is derived from the header to separate
different types of keys under different IVs. This helps reduce the number of keys
under a particular IV.6

3) The MAC algorithm in AKW2 is based on Algorithm 1 of ISO 9797-1.
a) Algorithms 2 and 3 are clearly inappropriate with keys derived by XOR.
b) Algorithm 1 is vulnerable to simple concatenation attacks. The requirements in

Section 7.2, Item 5 provide protection against these attacks.

2.4 Security Models for AKW2
With respect to data integrity, the security model for AKW2 is the same as described in
Section 2.2 for the other proposed key wraps: unforgeability under adaptive chosen
ciphertext attacks. The number of bits of redundancy is a parameter (the MAC length) of
AKW2 between 32 and 64.

However, AKW2 cannot satisfy the same privacy goal as the other three key wrap
algorithms. In particular, because the encryption mechanism in AKW2 is the cipher
block chaining (CBC) mode of TDEA with a predictable initialization vector (IV), it is
straightforward for an adversary to distinguish ciphertexts under adaptive chosen
ciphertext attacks. The X9F1 working group suggests the following two alternative
models for AKW2.

• Known Plaintext Security. The privacy model in Section 2.2 is weakened in two
ways: 1) the two target plaintexts are generated uniformly at random, i.e., not by
the adversary; and 2) the adversary may not query the wrapping oracle after
receiving the target plaintexts. The adversary may still adaptively query the
oracles prior to receiving the target plaintexts and ciphertext, in order to try to
learn about the encryption function. The goal is still to determine which of the
target plaintexts was encrypted to produce the target ciphertext.

• Ciphertext Only Security. The adversary is given the ciphertexts, i.e. the wrapped

forms, of a set of target plaintexts that are generated uniformly at random. The
adversary breaches the privacy goal if he can guess any bit of any target plaintext
with probability greater than 0.5. As in the known plaintext model, the adversary
may adaptively query the oracles prior to receiving the target plaintexts and
ciphertext, in order to try to learn about the encryption function.

As with the other key wrap algorithms, analysts are free to devise other models, keeping
in mind the threat model characteristics in Section 2.3. Note that AKW2 is designed for a
system that provides protection against the use of related keys; however, this protection is
independent of the important question of whether the simple relationship between the two
subkeys introduces vulnerabilities into AKW2.

6 In addition, this usage provides some very weak protection against another common procedural
vulnerability. There are protocols that require the use of a single key for multiple purposes despite the
inherent risk. The header IV hides such deliberate re-use from the casual observer. Note that it does not
provide any security against knowledgeable insiders.

 5

3 Notation
The following notational conventions apply to the specifications below:

• Variables are italicized: a single, lower case letter represents an integer; other
variables, possibly with subscripts or superscripts, represent strings.

• MSBx(٠) and LSBx(٠) are the functions for the most and least significant x bits.
• AESK(٠) and TDEAK(٠) are the (forward) AES and TDEA algorithms under

the key K; AESK
-1(٠) and TDEAK

-1(٠) are the inverse algorithms.
• The concatenation operation is denoted ||.
• The bit length of a string X is denoted |X|.
• The bit string consisting of x ‘0’ bits is denoted 0x.
• Given a nonnegative integer x and a positive integer y such that x < 2y, the

representation of x as a binary string of y bits is denoted [x]y.

4 AESKW

4.1 Overview
A link to the original specification of AESKW is available at the NIST key management
home page <http://csrc.nist.gov/CryptoToolkit/kms/>. The specification proposed for
ANS X9.102 extends the original specification, mainly in the following two ways:

1) A formatting function including a padding scheme is specified for encoding the
key data string into a sequence of blocks, i.e., the plaintext; thus, AESKW applies
to key data strings of arbitrary length (up to the specified maximum).

2) A cleartext header may be authenticated, essentially by duplicating the header
within the formatting of the key data string into the plaintext. The header is
verified within the integrity check function that corresponds to the formatting
function.

In practice, the header may be a representative, or message digest, of some other, larger
string. In this case, of course, the scope of the integrity assurance extends to the message
digest, but not necessarily to the larger string.

Below are specifications of the elements of AESKW: the data requirements, the plaintext
formatting function, the integrity check function, the wrapping function, and the
unwrapping function.

4.2 Data Requirements for AESKW
1) The header, H, shall be an octet string whose octet length is less than 256.
2) The number of plaintext blocks, n, shall satisfy 2 ≤ n ≤ 232. Consequently, at least one
of the two input strings to the formatting function, H and KeyData, shall be nonempty.
3) For any given key protection key, no more than 248 inputs shall be wrapped in the
lifetime of the key.

4.3 AESKW Plaintext Formatting Function
Prerequisites:

 6

—ICV, integrity check value of 48 bits.
Inputs:
—H, header string;
—KeyData, key data string.
Outputs:
—P1, P2, …Pn: plaintext, n 64 bit semiblocks.
Steps:
1) Let s = (64- (|H| + |KeyData|)) mod 64.
2) Let PadLen= [s]8, e.g., if s = 13 then Padlen = 00001101.
3) Let Hlen be the binary representation of the octet length of H as a string of 8 bits.
4) Let P1, P2, …Pn be the sequence of semiblocks such that

P1 || P2 || … || Pn = ICV || PadLen || Hlen || H || KeyData || 0s.

4.4 AESKW Integrity Check Function
Prerequisites:
—ICV, integrity check value of 48 bits.
Inputs:
—H, header string;
—P1, P2, …Pn: purported plaintext, sequence of 64 bit semiblocks.
Outputs:
—either “INVALID” or KeyData, a key data string.
Steps:
1) Verify the header length:

If H is not an octet string of octet length LSB8(P1), then return “INVALID.”
2) Verify the header:

If H is not a prefix of P2 || P3 || … || Pn, then return “INVALID.”
3) Verify the integrity check value:
 If MSB48(P1) ≠ ICV, then return “INVALID.”
4) Verify the padding:

Let r be the integer whose binary representation is LSB8(MSB56(P1)).
If r > 63 or LSBr(Pn) ≠ 0r, then return “INVALID”; else, return the unique string
KeyData such that H || KeyData || 0r = P2 || P3 || … || Pn.

4.5 AESKW Wrapping
Prerequisites:
—K: key protection key, established among all the parties to the data;
—ICV, integrity check value of 48 bits.
Inputs:
—H, header string;
—KeyData, key data string.
Outputs:
—C1, C2, …Cn,: ciphertext, n 64 bit semiblocks.
Steps:
1) Format the plaintext:

Apply the plaintext formatting function (Section 4.3) to H and KeyData to
produce P1, P2, … Pn, a sequence of n 64 bit semiblocks for some n.

 7

2) Initialize variables:
 Let A0 = P1.
 For i = 2, …, n,
 Ri

0 = Pi.
3) Calculate intermediate values:
 For t = 1, …, s, where s = 6(n-1):
 At = MSB64(AESK(At-1 || R2

t-1)) ⊕ [t]64;
 For i = 2, …, n-1,
 Ri

t = Ri+1
t-1;

 Rn
t = LSB64(AESK(At-1 || R2

t-1)).
4) Output the results:

Let C1 = As.
For i = 2, …, n,

 Ci = Ri
s.

Diagram:
The following diagram illustrates the motion of the AESKW wrapping function. The
variable that indexes the iterations, t, increases from 1 to 6(n-1). The plaintext formatting
function is not illustrated.

Rn
t-1R2

t-1At-1

Concatenate

AESK

MSB64 LSB64

[t]64

128

12864

64 64

64

… Rn
t-1R2

t-1At-1

Concatenate

AESK

MSB64 LSB64

[t]64

128

12864

64 64

64

…

4.6 AESKW Unwrapping
Prerequisites
—K: key protection key, established among all the parties to the data;
—ICV, integrity check value of 48 bits.
Inputs:
—H, header string;
—C1, C2, …Cn: the ciphertext, n 64 bit semiblocks.
Outputs:

 —either “INVALID” or KeyData, a key data string.
Steps:
1) Initialize variables:

 8

Set As = C1, where s = 6(n-1).
For i = 2, …, n,

Ri
s = Ci.

2) Calculate the intermediate values:
For t = s, s-1, …, 1:
 At-1 = MSB64(AES-1

K((At ⊕ [t]64) || Rn
t));

R2
t-1 = LSB64(AES-1

K((At ⊕ [t]64) || Rn
t));

For i = 3, …, n,
 Ri

t-1 = Ri-1
t.

3) Define the purported plaintext:
 Let P1 =A0.

 For i = 2, ..., n,
 Pi = Ri

0.
4) Verify the purported plaintext:

Apply the integrity check function (Section 4.4) to H and P1, P2, …Pn and return
the result.

Diagram:
The following diagram illustrates the motion of the AESKW unwrapping function. The
variable that indexes the iterations, t, decreases from 6(n-1) to 1. The integrity check
function is not illustrated.

[t]64

128

128

64

64
64

64

R2
tRn

tAt

Concatenate

AESK
-1

MSB64 LSB64

[t]64

128

128

128

128

64

64
64

64

R2
tRn

tAt

Concatenate

AESK
-1

MSB64 LSB64

5 TDKW

5.1 Overview
TDKW is the analogue of AESKW with TDEA as the underlying block cipher. Thus, a
semiblock now consists of 32 bits, and two semiblocks are essentially devoted to integrity
protection.

 9

Below are specifications of the elements of TDKW: the data requirements, the formatting
function, the integrity check function, the wrapping function, and the unwrapping
function.

5.2 Data Requirements for TDKW
1) The header, H, shall be an octet string whose octet length is less than 256.
2) The number of plaintext blocks, n, shall satisfy 2 ≤ n ≤ 216.
3) For any given key protection key, no more than 232 inputs shall be wrapped in the
lifetime of the key.

5.3 TDKW Plaintext Formatting Function
Prerequisites:
—ICV, integrity check value of 48 bits.
Inputs:
—H, header string;
—KeyData, key data string.
Outputs:
—P1, P2, …Pn: plaintext, n 32 bit semiblocks.
Steps:
1) Let s = (32-(|H| + |KeyData|)) mod 32.
2) Let PadLen = [s]8, e.g., if s = 13 then Padlen = 00001101.
3) Let Hlen be the binary representation of the octet length of H as a string of 8 bits.
4) Let P1, P2, …Pn be the sequence of semiblocks such that

P1 || P2 || … || Pn = ICV || PadLen || Hlen || H || KeyData || 0s.

5.4 TDKW Integrity Check Function
Prerequisites:
—ICV, integrity check value of 51 bits.
Inputs:
—H, header string;
—P1, P2, …Pn: purported plaintext, sequence of 32 bit semiblocks.
Outputs:
—either “INVALID” or KeyData, a key data string.
Steps:
1) Verify the header length:

If H is not an octet string of octet length LSB8(P2), then return “INVALID.”
2) Verify the header:

If H is not a prefix of P3 || P4 || … || Pn, then return “INVALID.”
3) Verify the integrity check value:
 If MSB48(P1 || P2) ≠ ICV, then return “INVALID.”
4) Verify the padding:

Let r be the integer whose binary representation is LSB8(MSB24(P2)).
If r > 31 or LSBr(Pn) ≠ 0r, then return “INVALID”; else, return the unique string
KeyData such that H || KeyData || 0r = P3 || P4 || … || Pn.

 10

5.5 TDKW Wrapping
Prerequisites:
—K: key protection key, established among all the parties to the data;
—ICV, integrity check value of 48 bits.
Inputs:
—H, header string;
—KeyData, key data string.
Outputs:
—C1, C2, …Cn,: ciphertext, n 32 bit semiblocks.
Steps:
1) Format the key data and header into plaintext:

Apply the plaintext formatting function (Section 5.3) to H and KeyData to
produce P1, P2, …Pn, a sequence of n 32 bit semiblocks for some n.

2) Initialize variables:
 Let A0 = P1.
 For i = 2, …, n,
 Ri

0 = Pi.
2) Calculate intermediate values:
 For t = 1, …, s, where s = 6(n-1):
 At = MSB32(TDEAK(At-1 || R2

t-1)) ⊕ [t]32;
 For i = 2, …, n-1,
 Ri

t = Ri+1
t-1;

 Rn
t = LSB32(TDEAK(At-1 || R2

t-1)).
3) Output the results:

Let C1 = As.
For i = 2, …, n,

 Ci = Ri
s.

Diagram:
See the analogous diagram for the AESKW wrapping function in Section 4.5.

5.6 TDKW Unwrapping
Prerequisites
—K: key protection key, established among all the parties to the data;
—ICV, integrity check value of 51 bits.
Inputs:
—H, header string;
—C1, C2, …Cn: the ciphertext, n 32 bit semiblocks.
Outputs:

 —either “INVALID” or KeyData, a key data string.
Steps:
1) Initialize variables:

Set As = C1, where s = 6(n-1).
For i = 2, …, n,

Ri
s = Ci.

2) Calculate the intermediate values:
For t = s, s-1, …, 1:

 11

 At-1 = MSB32(TDEA-1
K((At ⊕ [t]32) || Rn

t));
R2

t-1 = LSB32(TDEA-1
K((At ⊕ [t]32) || Rn

t));
For i = 3, …, n,

 Ri
t-1 = Ri-1

t.
3) Define the purported plaintext:
 Let P1 =A0.

 For i = 2, ..., n,
 Pi = Ri

0.
4) Verify the purported plaintext:

Apply the integrity check function (Section 5.4) to H and P1, P2, …Pn and return
the result.

Diagram:
See the analogous diagram for the AESKW unwrapping function in Section 4.6.

6 AKW1

6.1 Overview
AKW2 essentially employs two passes of CBC encryption: the first pass over the
plaintext and a hash-based integrity check value, the second pass in reverse order over the
results of the first pass. The elements of AKW1 are specified below: the data
requirements, the wrapping function, and the unwrapping function. The formatting of
key data into plaintext is not explicitly specified.

6.2 Data Requirements for AKW1
1) The number of plaintext blocks, n, shall satisfy 1 ≤ n ≤ 216.
2) For any given key protection key, no more than 232 inputs shall be wrapped in the
lifetime of the key.

6.3 AKW1 Wrapping
Prerequisites
—K: key protection key, established among all the parties to the data;
Inputs:
— P1, P2, …Pn: the plaintext, n 64 bit blocks.
Outputs:
— C1, C2, …Cn+1, Cn+2: the ciphertext, n+2 64 bit blocks.
Steps:
1) Use an approved random bit generator to generate a random block of 64 bits. Call the
result IV.
2) Let ICV = MSB64(SHA1(P1 || P2 || …|| Pn)).
3) Encrypt P1 || P2|| …|| Pn || ICV, using TDEA in CBC mode under K, with IV as the
initialization vector. Call the resulting ciphertext TEMP1.
4) Set TEMP2 = IV || TEMP1.
5) Reverse the order of the octets in TEMP2. That is, the most significant (first) octet is
swapped with the least significant (last) octet, and so on. Call the result TEMP3.
6) Encrypt TEMP3 using TDEA in CBC mode under K, with the hexadecimal string
0x4adda22c79e82105 as the initialization vector. Return the result as the ciphertext.

 12

Diagram:

TDEA K

⊕ IV

P 1

⊕

P2

⊕

Pn…

TDEAK TDEAK

REV
OCT

REV
OCT

REV
OCT

REV
OCT

⊕ ⊕ ⊕ ⊕

⊕

ICV

TDEA K

REV
OCT

⊕

C n +1 Cn C2… C 1 C n +2

Const

TDEA K TDEAK TDEAK TDEA K TDEA K

TDEA K

⊕ IV

P 1

⊕

P2

⊕

Pn…

TDEAK TDEAK

REV
OCT

REV
OCT

REV
OCT

REV
OCT

⊕ ⊕ ⊕ ⊕

⊕

ICV

TDEA K

REV
OCT

⊕

C n +1 Cn C2… C 1 C n +2

Const

TDEA K TDEAK TDEAK TDEA K TDEA K

6.4 AKW1 Unwrapping
Prerequisites
—K: key protection key, established among all the parties to the data.
Inputs:
—C1, C2, … Cn+1, Cn+2: the ciphertext, n+2 64 bit blocks.
Outputs:
—either “INVALID” or P1, P2, …Pn: the plaintext sequence of n 64 bit blocks.
Steps:
1) Decrypt the ciphertext using TDEA in CBC mode under K, with the hexadecimal
string 0x4adda22c79e82105 as the initialization vector. Call the result TEMP3.
2) Reverse the order of the octets in TEMP3. That is, the most significant (first) octet is
swapped with the least significant (last) octet, and so on. Call the result TEMP2.
3) Let IV be the single block and TEMP1 the concatenation of n+1 blocks such that
TEMP2 = IV || TEMP1.
4) Decrypt TEMP1 using TDEA in CBC mode under K, with IV as the initialization
vector. Call the result TEMP.
5) Let P1, P2, …Pn, ICV be the n+1 blocks for which TEMP = P1 || P2|| …|| Pn || ICV.
6) If MSB64(SHA1(P1 || P2 || …|| Pn)) = ICV, then return P1, P2, …, Pn as the plaintext;
else, return “INVALID.”
Diagram:
The following is a diagram of the AKW1 unwrapping function; the verification of the
integrity check value is not illustrated.

 13

7 AKW2

C mode encryption followed by CBC-MAC authentication of the

he
.,

he formatting of the key data string into plaintext blocks, although mandated in the data

7.2 Data Requirements for AKW2
isfy 2 ≤ n ≤ 216.

ll be wrapped in the

 shall be chosen between 32 and 64 and fixed for any given key

 for formatting valid key data strings into plaintext shall be one-to-one,

ing conditions shall be met:

block of the header includes an explicit encoding of

⊕ IV

P1

⊕

P2

⊕

Pn …

REV
OCT

REV
OCT

REV
OCT

REV
OCT

⊕⊕⊕ ⊕

⊕

ICV

REV
OCT

⊕

Cn+1CnC2 …C1 Cn+2

Const

TDEAK
-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1

⊕ IV

P1

⊕

P2

⊕

Pn …

REV
OCT

REV
OCT

REV
OCT

REV
OCT

⊕⊕⊕ ⊕

⊕

ICV

REV
OCT

⊕

Cn+1CnC2 …C1 Cn+2

Const

TDEAK
-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1

7.1 Overview
AKW2 is essentially CB
header and ciphertext, where the two keys are related to the key protection key, and
hence to each other, by a constant exclusive-OR difference. The data requirements, t
wrapping function, and the unwrapping function for AKW2 are specified in Sections 7.2
7.3, and 7.4, respectively.

T
requirements and verified within the unwrapping function, is not explicitly specified.

1) The number of plaintext blocks, n, shall sat
2) For any given key protection key, no more than 232 inputs sha
lifetime of the key.
3) The parameter Tlen
protection key.
4) The function
i.e., unambiguously parsible.
5) One (or more) of the follow
 a) The parameter Tlen is 32.

b) The formatting of the first
the length of the string H1 || H2 || ... || Hj || C1 || C2 || ... || Cn || T.
c) The length of the plaintext is fixed for any given header.

 14

7.3 AKW2 Wrapping
Prerequisites:
— K, key protection key, established among all the parties to the data;

r parameter;

s;
2, …P : formatted plaintext, a sequence of 64 bit blocks.

Tlen.

 K', by exclusive-ORing each octet
ncluding parity bits) with 0x45. Similarly, derive the TDEA authentication

key,

AC:

(B).

Steps:
ntiality subkey, denoted K', by exclusive-ORing each octet

ncluding parity bits) with 0x45. Similarly, derive the TDEA authentication

key,

AC:

(B).

—Tlen, an intege
—plaintext formatting function.
Input:
—H1, H2, ... , Hj: j header block
— P1, P n
Output:
—C1, C2, …Cn: the ciphertext, a sequence of 64 bit blocks;
—T, message authentication code of bit length
Steps:
1) Derive the TDEA confidentiality subkey, denoted
of K, (i
subkey, denoted K'', by exclusive-ORing each octet of K with 0x4D.
2) Encrypt the plaintext using the CBC mode of TDEA with the confidentiality sub
K', and initialization vector H1 to produce C1, C2, …Cn, the ciphertext.
3) Apply the CBC-MAC mode of TDEA with the authentication subkey, K'', to the
header blocks concatenated with the ciphertext blocks to produce the M
 a) Let A0 = 064.

b) For i = 1 to j, let Ai = TDEAK''(Hi ⊕ Ai-1).
c) Let B0 = Aj.
d) For i = 1 to n, let Bi = TDEA K''(Ci ⊕ Bi-1).
e) Let T = MSBTlen n

4) Return C1, C2, ..., Cn, T.

1) Derive the TDEA confide
of K, (i
subkey, denoted K'', by exclusive-ORing each octet of K with 0x4D.
2) Encrypt the plaintext using the CBC mode of TDEA with the confidentiality sub
K', and initialization vector H1 to produce C1, C2, …Cn, the ciphertext.
3) Apply the CBC-MAC mode of TDEA with the authentication subkey, K'', to the
header blocks concatenated with the ciphertext blocks to produce the M
 a) Let A0 = 064.

b) For i = 1 to j, let Ai = TDEAK''(Hi ⊕ Ai-1).
c) Let B0 = Aj.
d) For i = 1 to n, let Bi = TDEA K''(Ci ⊕ Bi-1).
e) Let T = MSBTlen n

4) Return C1, C2, ..., Cn, T.

 15

Diagram:

TDEAK''

TDEAK'

⊕

C1

⊕

C2

⊕

Cn…

TDEAK' TDEAK'

P1 P2 PnHjH1 …

TDEAK''

⊕ ⊕ ⊕

TDEAK'' TDEAK''TDEAK''

⊕

…

T

TDEAK''

TDEAK'

⊕

C1

⊕

C2

⊕

Cn…

TDEAK' TDEAK'

P1 P2 PnHjH1 …

TDEAK''

⊕ ⊕ ⊕

TDEAK'' TDEAK''TDEAK''

⊕

…

T

7.4 AKW2 Unwrapping
Prerequisites:
—K, key protection key, established among all the parties to the data;
—Tlen, an integer parameter;
—a plaintext formatting function.
Input:
—H1, H2, ... , Hj: j header blocks;
—C1, C2, …Cn: ciphertext, n 64 bit blocks;
—T', the purported message authentication code of bit length Tlen.
Output:
—either “INVALID” or KeyData, the key data string.
Steps:
1) Derive the TDEA confidentiality subkey, denoted K', by exclusive-ORing each octet
of K, (including parity bits) with 0x45. Similarly, derive the TDEA authentication
subkey, denoted K'', by exclusive-ORing each octet of K with 0x4D.
2) Apply the CBC-MAC mode of TDEA with the authentication subkey to the header
blocks concatenated with the ciphertext blocks to produce the MAC:
 a) Let A0 = 064.

b) For i = 1 to j, let Ai = TDEAK'' (Hi ⊕ Ai-1).
c) Let B0 = Aj.

 d) For i = 1 to n, let Bi = TDEA K'' (Ci ⊕ Bi-1).
e) Let T = Bn.

3) Compare the purported MAC to the MAC that was produced in Step 2: if T = T', then
continue to Step 4; else return “INVALID.”
4) Decrypt C1, C2, …Cn using the CBC mode of TDEA with the confidentiality subkey
K' and initialization vector H1 to produce P1, P2, ..., Pn.

 16

5) Verify the formatting of the plaintext with respect to the header, including the
applicable element of Data Requirement 5 in Section 7.2. If the plaintext is validly
formatted, return P1, P2, ..., Pn; else return “INVALID.”
Diagram:

TDEAK'
-1

⊕

C1

⊕

C2

⊕

Cn…

TDEAK'
-1 TDEAK'

-1

P1 P2 Pn

HjH2H1

…

TDEAK''

⊕ ⊕ ⊕

TDEAK'' TDEAK''TDEAK''

⊕

TDEAK''

⊕

TDEAK''

… T

(T ')

=?

TDEAK'
-1

⊕

C1

⊕

C2

⊕

Cn…

TDEAK'
-1 TDEAK'

-1

P1 P2 Pn

HjH2H1

…

TDEAK''

⊕ ⊕ ⊕

TDEAK'' TDEAK''TDEAK''

⊕

TDEAK''

⊕

TDEAK''

… T

(T ')

=?

 17

	Accredited Standards Committee X9, Incorporated
	Request for Review of Key Wrap Algorithms
	1 Introduction
	2 Security Models
	2.1 Overview
	2.2 Security Models for AESKW, TDKW, AKW1
	2.3 Background on the Design Considerations for AKW2
	2.4 Security Models for AKW2

	3 Notation
	4 AESKW
	4.1 Overview
	4.2 Data Requirements for AESKW
	4.3 AESKW Plaintext Formatting Function
	4.4 AESKW Integrity Check Function
	4.5 AESKW Wrapping
	4.6 AESKW Unwrapping

	5 TDKW
	5.1 Overview
	5.2 Data Requirements for TDKW
	5.3 TDKW Plaintext Formatting Function
	5.4 TDKW Integrity Check Function
	5.5 TDKW Wrapping
	5.6 TDKW Unwrapping

	6 AKW1
	6.1 Overview
	6.2 Data Requirements for AKW1
	6.3 AKW1 Wrapping
	6.4 AKW1 Unwrapping

	7 AKW2
	7.1 Overview
	7.2 Data Requirements for AKW2
	7.3 AKW2 Wrapping
	7.4 AKW2 Unwrapping

