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1 Introduction  
American Standards Committee X9, Financial Services, Inc., Subcommittee F, Working 
Group 1 (X9F1) requests a cryptographic review of the four key wrap algorithms in the 
draft key wrap standard,  ANS X9.102.  This request for review outlines the security goals 
and the specifications of the four algorithms.  Comments on the security of the algorithms 
should be submitted to the editor of ANS X9.102, the National Institute of Standards and 
Technology (NIST), at dworkin@nist.gov.  Comments will be accepted until May 21, 
2005. 
 
The four key wrap algorithms are intended to provide privacy and integrity protection for 
specialized data such as cryptographic keys, called the key data string, without the use of 
nonces.  In addition, for three of the algorithms, integrity protection optionally may be 
provided for cleartext associated data, called the header, which will typically contain 
control information about the wrapped key.   
 
The four algorithms that are currently proposed in Draft ANS X9.102 are named 
AESKW, TDKW, AKW1, and AKW2.  The essential specification of AESKW has been 
available on the NIST key management web page since 2002.  The underlying block 
cipher for AESKW is the Advanced Encryption Standard (AES) algorithm; TDKW is the 
analogue of AESKW for the Triple Data Encryption Algorithm (TDEA).   
 
TDEA is also the underlying block cipher for the two alternative key wraps, AKW1 and 
AKW2.  AKW1 is essentially the algorithm proposed in the Internet Engineering Task 
Force (IETF) Request for Comment (RFC) 3217.  AKW2 is the algorithm that is 
implicitly defined in a “key block” specification that has been developed for use in 
constrained legacy systems in the financial services industry. 

2 Security Models 

2.1 Overview  
The analysis of the privacy or integrity that is provided by an algorithm is typically 
undertaken in the context of a security model:  a specific security property/goal with 
respect to a specific attack model.  In Section 2.2., security models with respect to both 
privacy and integrity are discussed for AESKW, TDKW, and AKW1.  For AKW2, 
Section 2.3 contains background on the design considerations, and Section 2.4 discusses 
security models.   

2.2 Security Models for AESKW, TDKW, AKW1  
With respect to privacy, for AESKW, TDKW, and AKW1, the X9F1 working group 
proposes the goal of indistinguishability of ciphertexts under adaptive chosen ciphertext 
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attacks1.  For this model, the adversary chooses two distinct “target” inputs to the 
wrapping function that are not distinguishable by their length.  The wrapping function is 
then applied to one of the two targets, chosen uniformly at random, under a secret key 
protection key, also chosen uniformly at random, and the result is returned to the 
adversary.   The adversary breaches the goal if he can distinguish with probability greater 
than 0.5 which of the two target strings was wrapped.   
 
In an adaptive chosen ciphertext attack, the adversary has access to oracles for both the 
wrapping and unwrapping functions of the key wrap, under the same key protection key2.  
The oracles may be queried adaptively, i.e., taking into account the results of previous 
queries, both before and after the adversary chooses the target strings and receives the 
target ciphertext.  Of course, the adversary may not query 1) the wrapping oracle on 
either of the target strings or 2) the unwrapping oracle on the target ciphertext.  For 
queries to the wrapping oracle for AKW1, which incorporates random bits into the input, 
the bits are selected uniformly at random, out of the adversary's control.   
     
The queries to the wrapping oracles are limited to 248 for AESKW and 232 for TDKW and 
AKW1, consistent with the data requirements of the specifications.  Moreover, the 
adversary's computing operations/time in the adaptive chosen ciphertext attack model are 
assumed to be less than what would be required to break the underlying block cipher by a 
brute force search of the key space, where the key size for TDEA is interpreted as the 
associated “security level,” i.e., 112 bits for three-key TDEA, and 80 bits for two-key 
TDEA. 
 
With respect to data integrity, the attack model is the same, and the security goal is 
unforgeability.  In particular, it should not be feasible for an adversary to produce a valid 
ciphertext that is new, i.e., different than the result of any query to the wrapping oracle3.  
Feasibility here is assessed in relation to the number of bits of redundancy in the 
specification of the algorithm: at least 63 in AESKWand TDKW, and at least 64 in 
AKW1.  A forgery is considered feasible if the probability of producing such a ciphertext 
is greater than could be achieved by random guessing.   
 
The above security models are presented for convenience; however, the X9F1 working 
group will also consider attacks with a different privacy or integrity goal, or a different 
attack model, such as, for example, attacks based on related keys or weak keys. 

                                                 
1 This model is essentially the symmetric key analogue of IND-CCA2 privacy discussed in M. Bellare, A. 
Desai, D. Pointcheval, and P. Rogaway, Relations among Notions of Security for Public-Key Encryption 
Schemes Advances in Cryptology—CRYPTO 1998,  Lecture Notes in Computer Science, vol. 1462, Hugo 
Krawczyk, ed., Springer-Verlag, 1998.. 
2 For a well-designed key wrap, however, each output of the unwrapping oracle is likely to be “invalid.” 
3 This captures the usual definition of data integrity, because  the introduction of bit errors into a valid 
ciphertext, either unintentionally or intentionally, is equivalent to an adversary flipping the corresponding 
bits of a corresponding oracle output.  If the result is a valid ciphertext with sufficiently high probability, 
then forgery is feasible, contrary to the definition of unforgeability. 
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2.3 Background on the Design Considerations for AKW2   
Unlike AESKW and TDKW, the AKW2 method was developed for a specific 
environment, the ATM/POS network.  This network has evolved over 20 years, so it 
contains a large number of legacy, computationally limited devices.  Many of the devices 
were originally deployed to implement only 56-bit DEA, and are being retrofitted to 
support TDEA.  The original DEA-based network encrypted DEA keys with ECB.  This 
approach was reasonable given that DEA keys fit within a single block.  As TDEA was 
gradually added to the network, these keys continued to be either ECB encrypted, or CBC 
encrypted with a zero IV (no MAC).   The risks of such an approach are obvious to the 
cryptographic community. 
 
AKW2 was designed to run on computationally limited devices.  As a result, the AKW2 
method just employs a TDEA crypto-primitive since these devices often lack sufficient 
memory and computational power to support other algorithms.  The design was created 
with the realization that every additional TDEA block operation in AKW2 increases the 
probability that these devices will continue to be operated with ECB-based key 
management.  The method is very specific to the threat model for this network.  Other 
systems must examine the security assumptions very carefully if they are considering 
using AKW2. 
 
A complete description of the ATM/POS threat model is beyond the scope of this 
document.  However, to help the reader understand the environment, the list below 
groups the major vulnerabilities that affect key management with symmetric keys into 
four categories.  For more information, consult ANS X9.24 part 1. 
 
1) Failures of procedure – This class of vulnerabilities includes most of the security 

vulnerabilities that have been exploited in actual networks.  It includes bad practices 
such as the use of test keys in production environments, failures in the enforcement of 
dual control, and even e-mailing keys to vendors for debugging purposes.  Protection 
from this type of vulnerability is largely a matter for auditors to enforce. 

 
2) Bad random number generation – This class of vulnerabilities is not limited to the 

financial networks and is included here only for completeness.  Techniques for 
generating good random numbers are beyond the scope of the key wrapping standard. 

 
3) Exhaustive search of 56-bit DEA keys – This class of vulnerabilities is divided into 

two parts.  There are a number of 56-bit DEA keys still in use in the financial 
networks.  The vulnerability of such keys can only be fixed by upgrading the 
cryptography to TDEA.  There is an additional class of attacks that may be performed 
on TDEA keys wrapped using techniques that do not ensure integrity of the key block 
that allows an attacker to manipulate encrypted keys to reduce the security of the 
system to 56-bit keys. 

 
4) Manipulation of Key Usage – This class of vulnerabilities is primarily exploitable at 

the server, within a data center or switch.  At the server, key wrapping and other 
cryptographic operations are performed within hardware cryptographic modules.  The 
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modules are designed to prevent exposure of cleartext keys to the calling application 
or any single user.  However, if the usage of the keys is not cryptographically 
enforced within the module, a single user may be able to manipulate the interface to 
expose keys.  These attacks have been well known for years and every vendor 
includes protection against such attacks.  Unfortunately, different vendors use 
different methods, and these methods are not interoperable.  Thus, part of the process 
of deploying systems that must work in a multi-vendor environment is often a 
deliberate re-introduction of these vulnerabilities. 

 
The goal of AKW2 is to reduce the threat of attacks based on the third and fourth types of 
vulnerability. 
    
Threat Model Characteristics: 
1) As in the other TDEA-based wrapping schemes, we consider that an oracle attack is 

impractical if it requires more than 232 queries of the hardware. 
2) Financial institutions have controls that make it impractical for an attacker to create a 

related key by XORing the wrapping key with the constant 0x4545454545454545, 
0x4D4D4D4D4D4D4D4D, or 0x0808080808080808. 

3) Finally, we consider that leakage about plaintext key information tends to happen in 
an “all-or-nothing” manner.  Procedural failures that leak key information tend to 
reveal the entire key.  This does not mean that power analysis or other side-channel 
type of attacks are not capable of leaking partial information about a key, merely that 
in the financial network the most convenient attack does not involve attacking the 
wrapped key. 

 
Note that one of the significant security features of the method is not included in the 
specification of AKW2 in this request for review.  The X9F6 working group has created a 
Technical Report, TR-31, to define a set of headers for common types of keys that will 
allow keys to be labeled consistently for transport between two vendors.  This definition 
will eliminate many of the O(1) attacks that are currently possible for insiders using 
multi-vendor solutions.4
 
Balancing the constraints of the legacy network and the security goals led to the 
following choices for AKW2: 
 
1) Key derivation is performed by a simple XOR, rather than a one-way key derivation 

function. In order to prevent catastrophic failure if a procedural error results in the 
misuse of a key-wrapping key in both ECB wrapping schemes and AKW2,the key-
wrapping key is not used directly for encryption.5

2) The CBC encryption scheme allows the use of a non-random IV. 
a) Using a non-random IV allows an attacker to identify when the first block of two 

wrapped keys are equal.  Note that valid keys on a database or in transit are 
random values.  The X9F6 working group assumes that the system will not wrap 
232 key values under the same wrapping key. 

                                                 
4 Attacks against key usage can be performed independent of the key length. 
5 Note that the assumption about related keys is vitally important to the security of this approach. 
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b) When the IV is non-random, the IV is derived from the header to separate 
different types of keys under different IVs.  This helps reduce the number of keys 
under a particular IV.6

3) The MAC algorithm in AKW2 is based on Algorithm 1 of ISO 9797-1. 
a) Algorithms 2 and 3 are clearly inappropriate with keys derived by XOR. 
b) Algorithm 1 is vulnerable to simple concatenation attacks.  The requirements in 

Section 7.2, Item 5 provide protection against these attacks. 

2.4 Security Models for AKW2 
With respect to data integrity, the security model for AKW2 is the same as described in 
Section 2.2 for the other proposed key wraps: unforgeability under adaptive chosen 
ciphertext attacks.  The number of bits of redundancy is a parameter (the MAC length) of 
AKW2 between 32 and 64.   
 
However, AKW2 cannot satisfy the same privacy goal as the other three key wrap 
algorithms.  In particular, because the encryption mechanism in AKW2 is the cipher 
block chaining (CBC) mode of TDEA with a predictable initialization vector (IV), it is 
straightforward for an adversary to distinguish ciphertexts under adaptive chosen 
ciphertext attacks.  The X9F1 working group suggests the following two alternative 
models for AKW2.       
 

• Known Plaintext Security.  The privacy model in Section 2.2 is weakened in two 
ways:  1)  the two target plaintexts are generated uniformly at random, i.e., not by 
the adversary; and 2) the adversary may not query the wrapping oracle after 
receiving the target plaintexts.  The adversary may still adaptively query the 
oracles prior to receiving the target plaintexts and ciphertext, in order to try to 
learn about the encryption function.  The goal is still to determine which of the 
target plaintexts was encrypted to produce the target ciphertext.   

 
• Ciphertext Only Security.  The adversary is given the ciphertexts, i.e. the wrapped 

forms, of a set of target plaintexts that are generated uniformly at random.  The 
adversary breaches the privacy goal if he can guess any bit of any target plaintext 
with probability greater than 0.5.  As in the known plaintext model, the adversary 
may adaptively query the oracles prior to receiving the target plaintexts and 
ciphertext, in order to try to learn about the encryption function.   

 
As with the other key wrap algorithms, analysts are free to devise other models, keeping 
in mind the threat model characteristics in Section 2.3.  Note that AKW2 is designed for a 
system that provides protection against the use of related keys; however, this protection is 
independent of the important question of whether the simple relationship between the two 
subkeys introduces vulnerabilities into AKW2. 

                                                 
6 In addition, this usage provides some very weak protection against another common procedural 
vulnerability.  There are protocols that require the use of a single key for multiple purposes despite the 
inherent risk.  The header IV hides such deliberate re-use from the casual observer.  Note that it does not 
provide any security against knowledgeable insiders. 
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3 Notation 
The following notational conventions apply to the specifications below: 

• Variables are italicized:  a single, lower case letter represents an integer; other 
variables, possibly with subscripts or superscripts, represent strings. 

• MSBx(٠) and LSBx(٠) are the functions for the most and least significant x bits. 
• AESK(٠) and TDEAK(٠) are the (forward) AES and TDEA algorithms under 

the key K; AESK
-1(٠) and TDEAK

-1(٠) are the inverse algorithms. 
• The concatenation operation is denoted ||. 
• The bit length of a string X is denoted |X|. 
• The bit string consisting of x ‘0’ bits is denoted 0x. 
• Given a nonnegative integer x and a positive integer y such that x < 2y, the 

representation of x as a binary string of y bits is denoted [x]y. 

4 AESKW     

4.1  Overview 
A link to the original specification of AESKW is available at the NIST key management 
home page <http://csrc.nist.gov/CryptoToolkit/kms/>.  The specification proposed for 
ANS X9.102 extends the original specification, mainly in the following two ways: 
  

1) A formatting function including a padding scheme is specified for encoding the 
key data string into a sequence of blocks, i.e., the plaintext; thus, AESKW applies 
to key data strings of arbitrary length (up to the specified maximum).   

2) A cleartext header may be authenticated, essentially by duplicating the header 
within the formatting of the key data string into the plaintext.  The header is 
verified within the integrity check function that corresponds to the formatting 
function.   

 
In practice, the header may be a representative, or message digest, of some other, larger 
string.  In this case, of course, the scope of the integrity assurance extends to the message 
digest, but not necessarily to the larger string.  
 
Below are specifications of the elements of AESKW:  the data requirements, the plaintext 
formatting function, the integrity check function, the wrapping function, and the 
unwrapping function. 

4.2 Data Requirements for AESKW 
1)  The header, H, shall be an octet string whose octet length is less than 256.    
2)  The number of plaintext blocks, n, shall satisfy 2 ≤ n ≤ 232.  Consequently, at least one 
of the two input strings to the formatting function, H and KeyData, shall be nonempty. 
3)  For any given key protection key, no more than 248 inputs shall be wrapped in the 
lifetime of the key. 

4.3 AESKW Plaintext Formatting Function  
Prerequisites: 
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—ICV, integrity check value of 48 bits. 
Inputs:    
—H, header string; 
—KeyData, key data string. 
Outputs:   
—P1, P2, …Pn: plaintext, n 64 bit semiblocks.  
Steps: 
1)  Let s = (64- (|H| + |KeyData|)) mod 64. 
2)  Let PadLen= [s]8, e.g., if s = 13 then Padlen = 00001101. 
3)  Let Hlen be the binary representation of the octet length of H as a string of 8 bits. 
4)  Let P1, P2, …Pn be the sequence of semiblocks such that  

P1 || P2 || … || Pn =  ICV || PadLen || Hlen || H || KeyData || 0s. 

4.4 AESKW  Integrity Check Function 
Prerequisites: 
—ICV, integrity check value of 48 bits. 
Inputs:    
—H, header string; 
—P1, P2, …Pn: purported plaintext, sequence of 64 bit semiblocks. 
Outputs: 
—either “INVALID” or KeyData, a key data string.  
Steps: 
1)  Verify the header length:  

If H is not an octet string of octet length LSB8(P1), then return “INVALID.”   
2)  Verify the header:   

If H is not a prefix of P2 || P3 || … || Pn, then return “INVALID.”   
3)  Verify the integrity check value: 
 If MSB48(P1) ≠ ICV, then return “INVALID.” 
4)  Verify the padding:   

Let r be the integer whose binary representation is LSB8(MSB56(P1)). 
If r > 63 or LSBr(Pn) ≠ 0r, then return “INVALID”;  else, return the unique string 
KeyData such that H || KeyData || 0r = P2 || P3 || … || Pn. 

4.5 AESKW Wrapping  
Prerequisites: 
—K: key protection key, established among all the parties to the data; 
—ICV, integrity check value of 48 bits. 
Inputs:    
—H, header string; 
—KeyData, key data string. 
Outputs:   
—C1, C2, …Cn,: ciphertext, n 64 bit semiblocks. 
Steps: 
1)  Format the plaintext:   

Apply the plaintext formatting function (Section 4.3) to H and KeyData to 
produce P1, P2, … Pn, a sequence of n 64 bit semiblocks for some n. 
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2)  Initialize variables: 
 Let A0 = P1. 
 For i  = 2, …, n, 
  Ri

0 = Pi. 
3)  Calculate intermediate values: 
 For t = 1, …, s,  where s = 6(n-1):  
  At = MSB64(AESK(At-1 || R2

t-1)) ⊕ [t]64; 
  For i = 2, …, n-1, 
   Ri

t = Ri+1
t-1; 

  Rn
t = LSB64(AESK(At-1 || R2

t-1)). 
4)  Output the results: 

Let C1 = As. 
For i = 2, …, n, 

  Ci = Ri
s. 

Diagram: 
The following diagram illustrates the motion of the AESKW wrapping function.  The 
variable that indexes the iterations, t, increases from 1 to 6(n-1).  The plaintext formatting 
function is not illustrated. 
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4.6 AESKW Unwrapping 
Prerequisites 
—K: key protection key, established among all the parties to the data; 
—ICV, integrity check value of 48 bits. 
Inputs:   
—H, header string; 
—C1, C2, …Cn: the ciphertext, n 64 bit semiblocks. 
Outputs:   

 —either “INVALID” or KeyData, a key data string. 
Steps: 
1)  Initialize variables: 
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Set As = C1,  where s = 6(n-1). 
For i = 2, …, n, 

Ri
s = Ci.   

2)  Calculate the intermediate values: 
For t = s, s-1, …, 1: 
 At-1 = MSB64(AES-1

K((At ⊕ [t]64) || Rn
t)); 

R2
t-1 = LSB64(AES-1

K((At ⊕ [t]64) || Rn
t));  

For i = 3, …, n, 
  Ri

t-1 = Ri-1
t. 

3)  Define the purported plaintext: 
 Let P1 =A0.

 For i = 2, ..., n, 
  Pi = Ri

0. 
4)  Verify the purported plaintext: 

Apply the integrity check function (Section 4.4) to H and P1, P2, …Pn and return 
the result. 

Diagram: 
The following diagram illustrates the motion of the AESKW unwrapping function.  The 
variable that indexes the iterations, t, decreases from 6(n-1) to 1.  The integrity check 
function is not illustrated. 
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5 TDKW 

5.1  Overview 
TDKW is the analogue of AESKW with TDEA as the underlying block cipher.  Thus, a 
semiblock now consists of 32 bits, and two semiblocks are essentially devoted to integrity 
protection. 
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Below are specifications of the elements of TDKW: the data requirements, the formatting 
function, the integrity check function, the wrapping function, and the unwrapping 
function.     

5.2 Data Requirements for TDKW 
1)  The header, H, shall be an octet string whose octet length is less than 256.    
2)  The number of plaintext blocks, n, shall satisfy 2 ≤ n ≤ 216.   
3)  For any given key protection key, no more than 232 inputs shall be wrapped in the 
lifetime of the key.  

5.3 TDKW  Plaintext Formatting Function  
Prerequisites: 
—ICV, integrity check value of 48 bits. 
Inputs:    
—H, header string; 
—KeyData, key data string. 
Outputs:   
—P1, P2, …Pn: plaintext, n 32 bit semiblocks.  
Steps: 
1)  Let s = (32-(|H| + |KeyData|)) mod 32. 
2)  Let PadLen = [s]8, e.g., if s = 13 then Padlen = 00001101. 
3)  Let Hlen be the binary representation of the octet length of H as a string of 8 bits. 
4)  Let P1, P2, …Pn be the sequence of semiblocks such that 

P1 || P2 || … || Pn = ICV || PadLen || Hlen || H || KeyData || 0s. 

5.4 TDKW  Integrity Check Function 
Prerequisites: 
—ICV, integrity check value of 51 bits. 
Inputs:    
—H, header string; 
—P1, P2, …Pn: purported plaintext, sequence of 32 bit semiblocks. 
Outputs: 
—either “INVALID” or KeyData, a key data string.  
Steps: 
1)  Verify the header length:  

If H is not an octet string of octet length LSB8(P2), then return “INVALID.” 
2)  Verify the header:   

If H is not a prefix of P3 || P4 || … || Pn, then return “INVALID.”   
3)  Verify the integrity check value: 
 If MSB48(P1 || P2) ≠ ICV, then return “INVALID.” 
4)  Verify the padding:   

Let r be the integer whose binary representation is LSB8(MSB24(P2)). 
If r > 31 or LSBr(Pn) ≠ 0r, then return “INVALID”;  else, return the unique string 
KeyData such that H || KeyData || 0r = P3 || P4 || … || Pn. 
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5.5 TDKW Wrapping  
Prerequisites: 
—K: key protection key, established among all the parties to the data;  
—ICV, integrity check value of 48 bits. 
Inputs:    
—H, header string; 
—KeyData, key data string. 
Outputs:   
—C1, C2, …Cn,: ciphertext, n 32 bit semiblocks. 
Steps: 
1)  Format the key data and header into plaintext: 

Apply the plaintext formatting function (Section 5.3) to H and KeyData to 
produce P1, P2, …Pn, a sequence of n 32 bit semiblocks for some n. 

2)  Initialize variables: 
 Let A0 = P1. 
 For i  = 2, …, n, 
  Ri

0 = Pi. 
2)  Calculate intermediate values: 
 For t = 1, …, s,  where s = 6(n-1):  
  At = MSB32(TDEAK(At-1 || R2

t-1)) ⊕ [t]32; 
  For i = 2, …, n-1, 
   Ri

t = Ri+1
t-1; 

  Rn
t = LSB32(TDEAK(At-1 || R2

t-1)). 
3)  Output the results: 

Let C1 = As. 
For i = 2, …, n, 

  Ci = Ri
s. 

Diagram: 
See the analogous diagram for the AESKW wrapping function in Section 4.5. 

5.6 TDKW Unwrapping 
Prerequisites 
—K: key protection key, established among all the parties to the data; 
—ICV, integrity check value of 51 bits. 
Inputs:   
—H, header string; 
—C1, C2, …Cn: the ciphertext, n 32 bit semiblocks. 
Outputs:   

 —either “INVALID” or KeyData, a key data string. 
Steps: 
1)  Initialize variables: 

Set As = C1,  where s = 6(n-1). 
For i = 2, …, n, 

Ri
s = Ci.   

2)  Calculate the intermediate values: 
For t = s, s-1, …, 1: 
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 At-1 = MSB32(TDEA-1
K((At ⊕ [t]32) || Rn

t)); 
R2

t-1 = LSB32(TDEA-1
K((At ⊕ [t]32) || Rn

t));  
For i = 3, …, n, 

  Ri
t-1 = Ri-1

t. 
3)  Define the purported plaintext: 
 Let P1 =A0.

 For i = 2, ..., n, 
  Pi = Ri

0. 
4)  Verify the purported plaintext: 

Apply the integrity check function (Section 5.4) to H and P1, P2, …Pn and return 
the result. 

Diagram: 
See the analogous diagram for the AESKW unwrapping function in Section 4.6. 

6 AKW1 

6.1 Overview 
AKW2 essentially employs two passes of CBC encryption: the first pass over the 
plaintext and a hash-based integrity check value, the second pass in reverse order over the 
results of the first pass.  The elements of AKW1 are specified below:  the data 
requirements, the wrapping function, and the unwrapping function.  The formatting of 
key data into plaintext is not explicitly specified. 

6.2 Data Requirements for AKW1 
1)  The number of plaintext blocks, n, shall satisfy 1 ≤ n ≤ 216. 
2)  For any given key protection key, no more than 232 inputs shall be wrapped in the 
lifetime of the key.  

6.3 AKW1  Wrapping  
Prerequisites 
—K: key protection key, established among all the parties to the data; 
Inputs:   
— P1, P2, …Pn: the plaintext, n 64 bit blocks. 
Outputs:   
— C1, C2, …Cn+1, Cn+2: the ciphertext, n+2 64 bit blocks. 
Steps:   
1)  Use an approved random bit generator to generate a random block of 64 bits.  Call the 
result IV. 
2)  Let ICV = MSB64(SHA1(P1 || P2 || …|| Pn)). 
3)  Encrypt P1 || P2|| …|| Pn || ICV, using TDEA in CBC mode under K, with IV as the 
initialization vector.  Call the resulting ciphertext TEMP1. 
4)  Set TEMP2 = IV || TEMP1. 
5)  Reverse the order of the octets in TEMP2.  That is, the most significant (first) octet is 
swapped with the least significant (last) octet, and so on.  Call the result TEMP3. 
6)  Encrypt TEMP3 using TDEA in CBC mode under K, with the hexadecimal string 
0x4adda22c79e82105 as the initialization vector.  Return the result as the ciphertext. 

 12



Diagram: 
 
 

TDEA K 

⊕ IV 

P 1 

⊕ 

P2

⊕ 

Pn…

TDEAK TDEAK

REV  
OCT 

REV 
OCT

REV 
OCT

REV  
OCT 

⊕ ⊕ ⊕ ⊕ 

⊕ 

ICV 

TDEA K 

REV  
OCT 

⊕ 

C n +1 Cn C2… C 1 C n +2 

Const

TDEA K TDEAK TDEAK TDEA K TDEA K 

TDEA K 

⊕ IV 

P 1 

⊕ 

P2

⊕ 

Pn…

TDEAK TDEAK

REV  
OCT 

REV 
OCT

REV 
OCT

REV  
OCT 

⊕ ⊕ ⊕ ⊕ 

⊕ 

ICV 

TDEA K 

REV  
OCT 

⊕ 

C n +1 Cn C2… C 1 C n +2 

Const

TDEA K TDEAK TDEAK TDEA K TDEA K 

 

6.4 AKW1 Unwrapping 
Prerequisites 
—K: key protection key, established among all the parties to the data. 
Inputs:   
—C1, C2, … Cn+1, Cn+2: the ciphertext, n+2 64 bit blocks. 
Outputs:   
—either “INVALID” or P1, P2, …Pn: the plaintext sequence of n 64 bit blocks. 
Steps:   
1)  Decrypt the ciphertext using TDEA in CBC mode under K, with the hexadecimal 
string 0x4adda22c79e82105 as the initialization vector.  Call the result TEMP3.   
2)  Reverse the order of the octets in TEMP3.  That is, the most significant (first) octet is 
swapped with the least significant (last) octet, and so on.  Call the result TEMP2. 
3)  Let IV be the single block and TEMP1 the concatenation of n+1 blocks such that 
TEMP2 = IV || TEMP1. 
4)  Decrypt TEMP1 using TDEA in CBC mode under K, with IV as the initialization 
vector.  Call the result TEMP. 
5)  Let P1, P2, …Pn, ICV be the n+1 blocks for which TEMP = P1 || P2|| …|| Pn || ICV. 
6)  If MSB64(SHA1(P1 || P2 || …|| Pn)) = ICV, then return P1, P2, …, Pn  as the plaintext; 
else, return “INVALID.” 
Diagram: 
The following is a diagram of the AKW1 unwrapping function; the verification of the 
integrity check value is not illustrated. 
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7 AKW2 

C mode encryption followed by CBC-MAC authentication of the 

he 
., 

he formatting of the key data string into plaintext blocks, although mandated in the data 

7.2 Data Requirements for AKW2 
isfy 2 ≤ n ≤ 216.   

ll be wrapped in the 

 shall be chosen between 32 and 64 and fixed for any given key 

 for formatting valid key data strings into plaintext shall be one-to-one, 

ing conditions shall be met: 

block of the header includes an explicit encoding of 
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⊕

P2

⊕

Pn …

REV 
OCT
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OCT

REV 
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REV 
OCT

⊕⊕⊕ ⊕

⊕
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⊕

Cn+1CnC2 …C1 Cn+2

Const
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-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1

⊕ IV

P1

⊕

P2

⊕

Pn …

REV 
OCT

REV 
OCT

REV 
OCT

REV 
OCT

⊕⊕⊕ ⊕

⊕

ICV

REV 
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⊕

Cn+1CnC2 …C1 Cn+2
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TDEAK
-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1 TDEAK

-1 TDEAK
-1 TDEAK

-1

TDEAK
-1

7.1 Overview 
AKW2 is essentially CB
header and ciphertext, where the two keys are related to the key protection key, and 
hence to each other, by a constant exclusive-OR difference.  The data requirements, t
wrapping function, and the unwrapping function for AKW2 are specified in Sections 7.2
7.3, and 7.4, respectively.   
 
T
requirements and verified within the unwrapping function, is not explicitly specified.      

1)  The number of plaintext blocks, n, shall sat
2)  For any given key protection key, no more than 232 inputs sha
lifetime of the key.    
3)  The parameter Tlen
protection key. 
4)  The function
i.e., unambiguously parsible. 
5)  One (or more) of the follow
 a)  The parameter Tlen is 32. 

b)  The formatting of the first 
the length of the string H1 || H2 || ... || Hj || C1 || C2 || ... || Cn || T.   
c)  The length of the plaintext is fixed for any given header. 
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7.3 AKW2 Wrapping 
Prerequisites:   
— K, key protection key, established among all the parties to the data; 

r parameter; 

s;  
2, …P : formatted plaintext, a sequence of 64 bit blocks. 

Tlen. 

 K', by exclusive-ORing each octet 
ncluding parity bits) with 0x45.  Similarly, derive the TDEA authentication 

key, 
 

AC: 

  
(B ). 

Steps: 
ntiality subkey, denoted K', by exclusive-ORing each octet 

ncluding parity bits) with 0x45.  Similarly, derive the TDEA authentication 

key, 
 

AC: 

  
(B ). 

—Tlen, an intege
—plaintext formatting function. 
Input: 
—H1, H2,  ... , Hj:  j header block
— P1, P n
Output: 
—C1, C2, …Cn: the ciphertext, a sequence of 64 bit blocks; 
—T, message authentication code of bit length 
Steps: 
1)  Derive the TDEA confidentiality subkey, denoted
of K, (i
subkey, denoted K'', by exclusive-ORing each octet of K with 0x4D.   
2)  Encrypt the plaintext using the CBC mode of TDEA with the confidentiality sub
K', and initialization vector H1 to produce C1, C2, …Cn, the ciphertext.
3)  Apply the CBC-MAC mode of TDEA with the authentication subkey, K'', to the 
header blocks concatenated with the ciphertext blocks to produce the M
    a)  Let A0 = 064.

b)  For i = 1 to j, let Ai = TDEAK''(Hi ⊕ Ai-1). 
c)  Let B0 = Aj. 
d)  For i = 1 to n, let Bi = TDEA K''(Ci ⊕ Bi-1).
e)  Let T = MSBTlen n

4)  Return C1, C2, ..., Cn, T. 

1)  Derive the TDEA confide
of K, (i
subkey, denoted K'', by exclusive-ORing each octet of K with 0x4D.   
2)  Encrypt the plaintext using the CBC mode of TDEA with the confidentiality sub
K', and initialization vector H1 to produce C1, C2, …Cn, the ciphertext.
3)  Apply the CBC-MAC mode of TDEA with the authentication subkey, K'', to the 
header blocks concatenated with the ciphertext blocks to produce the M
    a)  Let A0 = 064.

b)  For i = 1 to j, let Ai = TDEAK''(Hi ⊕ Ai-1). 
c)  Let B0 = Aj. 
d)  For i = 1 to n, let Bi = TDEA K''(Ci ⊕ Bi-1).
e)  Let T = MSBTlen n

4)  Return C1, C2, ..., Cn, T. 
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Diagram: 
 

TDEAK''

TDEAK'

⊕

C1

⊕

C2

⊕

Cn…

TDEAK' TDEAK'

P1 P2 PnHjH1 …

TDEAK''

⊕ ⊕ ⊕

TDEAK'' TDEAK''TDEAK''

⊕

…

T

TDEAK''

TDEAK'

⊕

C1

⊕

C2

⊕

Cn…

TDEAK' TDEAK'

P1 P2 PnHjH1 …

TDEAK''

⊕ ⊕ ⊕

TDEAK'' TDEAK''TDEAK''

⊕

…

T

 

7.4 AKW2 Unwrapping  
Prerequisites:   
—K, key protection key, established among all the parties to the data; 
—Tlen, an integer parameter; 
—a plaintext formatting function. 
Input: 
—H1, H2,  ... , Hj:  j header blocks;  
—C1, C2, …Cn:  ciphertext,  n 64 bit blocks; 
—T', the purported message authentication code of bit length Tlen. 
Output: 
—either “INVALID” or KeyData, the key data string. 
Steps: 
1)  Derive the TDEA confidentiality subkey, denoted K', by exclusive-ORing each octet 
of K, (including parity bits) with 0x45.  Similarly, derive the TDEA authentication 
subkey, denoted K'', by exclusive-ORing each octet of K with 0x4D. 
2)  Apply the CBC-MAC mode of TDEA with the authentication subkey to the header 
blocks concatenated with the ciphertext blocks to produce the MAC: 
    a)  Let A0 = 064.

b)  For i = 1 to j, let Ai = TDEAK'' (Hi ⊕ Ai-1). 
c)  Let B0 = Aj. 

 d)  For i = 1 to n, let Bi = TDEA K'' (Ci ⊕ Bi-1). 
e)  Let T = Bn. 

3)  Compare the purported MAC to the MAC that was produced in Step 2: if T = T', then 
continue to Step 4; else return “INVALID.”  
4)  Decrypt C1, C2, …Cn using the CBC mode of TDEA with the confidentiality subkey 
K' and initialization vector H1 to produce P1, P2, ..., Pn. 
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5)  Verify the formatting of the plaintext with respect to the header, including the 
applicable element of Data Requirement 5 in Section 7.2.  If the plaintext is validly 
formatted, return P1, P2, ..., Pn; else return “INVALID.” 
Diagram: 
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⊕
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⊕

TDEAK''

… T

(T ')

=?

TDEAK'
-1

⊕

C1

⊕

C2

⊕

Cn…
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