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Abstract

Is it harder to solve many puzzles than it is to solve just one? This question has different
answers, depending on how you define puzzles. For the case of inverting one-way functions it
was shown by Yao that solving many independent instances simultaneously is indeed harder
than solving a single instance (cf. the transformation from weak to strong one-way functions).
The known proofs of that result, however, use in an essential way the fact that for one-way
functions, verifying candidate solutions to a given puzzle is easy. We extend this result to the
case where solutions are efficiently verifiable only by the party that generated the puzzle. We call
such puzzles weakly verifiable. That is, for weakly verifiable puzzles we show that if no efficient
algorithm can solve a single puzzle with probability more than ε, then no efficient algorithm can
solve n independent puzzles simultaneously with probability more than εn. We also demonstrate
that when the puzzles are not even weakly verifiable, solving many puzzles may be no harder
than solving a single one.

Hardness amplification of weakly verifiable puzzles turns out to be closely related to the
reduction of soundness error under parallel repetition in computationally sound arguments.
Indeed, the proof of Bellare, Impagliazzo and Naor that parallel repetition reduces soundness
error in three-round argument systems implies a result similar to our first result, albeit with
considerably worse parameters. Also, our second result is an adaptation of their proof that
parallel repetition of four-round systems may not reduce the soundness error.

Keywords: average-case hardness, CAPTCHAs, computationally-sound proofs, interactive proofs,
one-way functions, soundness error, weakly-verifiable puzzles.
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1 Introduction

This work is concerned with the fundamental question of hardness amplification via parallel repeti-
tion. Suppose we knew that no efficient device succeeds in some computational task with probability
much better than ε. Then what can we say about the success probability of efficient devices in
performing n such tasks in parallel? The answer clearly depends on the type of task at hand. For
the simple case where the task is inverting an efficiently computable function, the answer implicit in
the groundbreaking work of Yao [13] is that the success probability cannot be much more than εn.
A proof can be found in Goldreich’s book [6, Chapter 2.3]. However, this proof relies heavily on
the ability to efficiently verify the correctness of a candidate solution: That is, on input y in the
range of the function f and candidate x from its domain, it is possible to efficiently verify that
indeed y = f(x). A natural question is whether parallel repetition amplifies hardness also for other
types of puzzles, and in particular for the case where the entity posed with the puzzle cannot
efficiently verify on its own the correctness of candidate solutions. (Following [12, 8], we use the
term “puzzles” to denote somewhat-hard automatically-generated computational problems.)

We identify a more general class of puzzles for which parallel repetition indeed amplifies hard-
ness. Specifically, we show that the same hardness amplification result holds even in the case where
only the entity generating the puzzles can efficiently verify correctness of candidate solutions. More
precisely, we consider the case where puzzles are generated (by some efficient algorithm) together
with some “secret check information”. Efficient verification of correctness of candidate solutions
for a puzzle is guaranteed only if the corresponding secret check information is known. In particu-
lar, the entity posed with the puzzle may not be able to efficiently verify correctness of candidate
solutions. We call such puzzles weakly verifiable. We show that, even in this setting, if no efficient
algorithm can solve a single puzzle with probability much more than ε, then no efficient algorithm
can simultaneously solve n puzzles with probability much more than εn, which is essentially op-
timal.1 We also show that the weak verifiability property is essential for obtaining such a general
hardness amplification result: We exhibit an example of puzzles that are not even weakly verifiable,
and where the probability of solving multiple instances is the same as the probability of solving a
single instance.

One example of weakly verifiable puzzles is the notion of computer-generated inverse Turing
tests, or CAPTCHAs [11, 1]. These are distribution of puzzles that are easily solvable by humans,
but are assumed to be solvable by computers only with small (albeit noticeable) probability. Au-
tomatically verifying a solution to a given CAPTCHA is typically just as hard as solving it, since
the space of solutions is fairly small. Still, CAPTCHAs are weakly verifiable, as it is possible to
efficiently generate a CAPTCHA together with its unique solution. In the work of von-Ahn et
al. [1], they suggests sequential repetition as a method of hardness amplification for CAPTCHAs.
Our work indicates that parallel repetition can be used as well. We note that puzzles that are
only weakly verifiable can be constructed from one-way functions (e.g., the puzzle is f(x) and the
solution is a hard-core bit of x). On the other hand, our definition in Section 2 does not imply
one-way functions. See Section 2.2 for more discussion on the definition of puzzles and relations to
other notions of computational hardness.

1As usual, the analysis incurs slackness of negligible quantities. This in particular means that the amplification is
only meaningful when ε is not negligible.
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1.1 Soundness amplification of argument systems

Bellare, Impagliazzo, and Naor [2] investigated the problem of reducing the soundness error of
interactive argument systems (i.e., proof systems with computational soundness). They showed
that for three-round systems, n-fold parallel repetition reduces the soundness error exponentially
in n, whereas for four-round systems parallel repetition may not reduce the soundness error at
all. This problem turns out to be closely related to ours: For three-round systems, once the first
prover message is fixed, the remaining two messages can be regarded as a weakly verifiable puzzle
sent by the verifier to the prover, followed by a solution candidate sent by the prover. When
there are more than three rounds, this puzzle may not be even weakly verifiable without additional
communication. Indeed, the result in [2] for three-round argument systems implies that parallel
repetition of weakly verifiable puzzles reduces the success probability exponentially. Similarly, their
example of a four-round system whose soundness error is not reduced by parallel repetition can be
translated to a family of puzzles (that are not weakly verifiable) where parallel repetition does not
amplify hardness.

In terms of concrete parameters, however, the result in [2] is far from optimal. Specifically, they
show that if no algorithm can solve a single puzzle much better than ε, then no algorithm can solve n

independent puzzles simultaneously with probability much better than δn, where δ ≈ exp
(
−(1−ε)2

128

)
.

Note that δ is quite close to one: we always have δ > exp(−1/128) > 0.99, regardless of ε. In
particular, if ε is small (say, ε = 1/poly), then it may take many repetitions before any amplification
whatsoever is guaranteed. Hence, although the bound in [2] suffices for an asymptotic result, it is
not very useful for the case of amplifying hardness of moderately hard weakly verifiable puzzles.
We remark that our improved bounds apply also to the problem of parallel repetition of argument
systems. Also there, we obtain optimal bounds.

1.2 Our techniques

To show hardness amplification, we need to transform an algorithm A that solves n puzzles with
probability εn into another algorithm A′ that solves a single puzzle with probability ε. We consider
the following matrix M that represents n-vectors of puzzles: The columns are labeled by all the
possibilities for the first puzzle, and rows are labeled by all the possibilities for puzzles 2..n, so each
entry in the matrix corresponds to a particular n-vector of puzzles. Each entry consists of two bits,
where the first bit is 1 if the answer-vector that A returns for these n puzzles includes a correct
solution to the first puzzle, and the second bit is 1 if it includes correct solutions to all the puzzles
2..n.

We make the following combinatorial observation. Assume that the fraction of (1,1) entries in
M is at least some positive γ, and let α, β be positive numbers such that γ = α · β. Then, either
M has some column with α-fraction of entries of the form (?, 1), or else the conditional probability
of a (1,1) entry given that the entry is of the form (?, 1) is at least β.

We use this combinatorial observation with α = εn−1, β = ε and γ = α · β = εn, and indeed we
know that the fraction of (1, 1) entries in the matrix is at least εn. We thus conclude that either
there exists a particular puzzle x, such that when x is the first puzzle, A correctly solves all the
other puzzles with probability εn−1, or the conditional probability of a correct answer to the first
puzzle when the answers to all the others are correct is at least ε. In the former case we trivially
get an algorithm that solves n− 1 puzzles with probability εn−1 and we can continue by induction.
In the latter case we directly get an algorithm that solves a single puzzle with probability ε: Simply
choose many random (n − 1)-vectors of puzzles, insert the input puzzle at the beginning to form
an n-vector, and run A on the resulting vector. Repeat this process until we get correct answers to
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the last (n− 1) puzzles. Then we guess that we also have the right answer to the input puzzle and
output that answer. The heart of the analysis is proving that this strategy indeed yields success
probability (close to) ε.

Relations to xor-lemma proofs. We comment that there is some parallel between proofs of
hardness amplification and proofs of xor lemmas, and indeed our proof is reminiscent of the xor-
lemma proof of Myers [10]. In particular, he too has two asymmetric cases, where in one case we
only get dimension reduction by one but it is essentially “for free”, and in the other case we directly
go to dimension one but pay some polynomial factor in complexity.

2 Notations and definitions

Below we use the term efficient algorithms as a synonym to (probabilistic) polynomial-time Turing
machines. A function (from positive integers to positive real numbers) is negligible if it approaches
zero faster than any inverse polynomial. (Also, we informally say that something is noticeable
when it is larger than some inverse polynomial.) We use negl(·) to denote an unspecified negligible
function. We also use the notation Õ(x) as a shorthand for O(x logc x) for some constant c.

2.1 Puzzles

A system for weakly verifiable puzzles consists of algorithms for generating random puzzles and
for verifying solutions to these puzzles. Specifically, it consists of a pair of efficient algorithms
Z = (G, V ), such that

• The puzzle-generator algorithm G, on security parameter k, outputs a random puzzle p along
with some “check information” c, (p, c) $← G(1k).

• The “puzzle verifier” V is a deterministic efficient algorithm that on input a puzzle p, check-
information c, and answer a, outputs either zero or one, V (p, c, a) ∈ {0, 1}.

A solver for this puzzle system is an efficient algorithm S that gets a puzzle p as input and
outputs an answer a. The success probability of S is the probability that the answer is accepted by
the puzzle verifier,

succZ [S] def= Pr
G,S

[
(p, c) $← G(1k), a

$← S(p) : V (p, c, a) = 1
]

where the probability is taken over the randomness of G and S. (Note that succZ [S] is a function
of the security parameter k.) The hardness of the puzzle system Z is a bound on the success
probability of any efficient solver.

Definition 1 (Hardness of puzzles) Let ε : IN→ [0, 1] be an arbitrary function. A puzzle-system
Z is said to be (1− ε)-hard if for any efficient solver S, there is a negligible function negl such that
succZ [S] ≤ ε + negl.

Repetition. Let Z = (G, V ) be a puzzle system, and let n : IN→ IN be an arbitrary function. We
denote by Gn the algorithm that on security parameter k runs G(1k) for n(k) times and outputs

all the n puzzles with their check information, (〈p1, . . . , pn〉 , 〈c1, . . . , cn〉)
$← Gn(1k). Similarly,

we denote by V n the function that gets three n-vectors ~p,~c,~a and outputs one if and only if
V (pi, ci, ai) = 1 for all i ∈ {1, ..., n}. The n-fold repetition of Z is the puzzle system Zn = (Gn, V n).
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2.2 Discussion

We discuss some aspects of the definition of puzzles, and relate it to other notions of computational
hardness. First, note that our definition of weakly-verifiable puzzles allows the veracity of answer a
to puzzle p to depend on the check-information c. Namely, we allow the possibility of two outputs
(p, c), and (p, c′) in the support of G (with the same p but different c’s), such that for some
answer a it holds that V (p, c, a) = 1 but V (p, c′, a) = 0. This extra generality may seems somewhat
non-intuitive at first. In particular, it allows the hardness of solving the puzzle to be information-
theoretic. (For example, consider a system where the puzzle is always the all-zero string, the check
information is a random k-bit string, and an answer is accepted if it equals the check information.)
We chose this more general formulation since defining things this way is slightly simpler, and
because it captures also the soundness in proof systems where soundness is argued unconditionally.
Also, it makes our result a bit stronger (since it works even for this wider class of puzzles).

Still, the interesting cases for hardness amplification are usually the ones where the veracity of
the solution does not depend on the check information. Notice that in such systems the hardness can
only be computational. (Indeed, an infinitely powerful solver, on input puzzle p, can exhaustively
search for a pair (c, a) where (p, c) is in the support of G and V (p, c, a) = 1.) Below we therefore
call such systems weakly-verifiable computational puzzle systems. Formally, a weakly-verifiable
computational puzzle system is a weakly-verifiable puzzle system with the additional requierment
that for any strings p, c, c′, a such that both (p, c) and (p, c′) are in the support of G, it holds that
V (p, c, a) = V (p, c′, a).

It may be instructive to relate the notion of weakly-verifiable computational puzzles to the
notion of average-case hardness due to Levin [9]. Recall that according to Levin, a distributional
problem is a pair (P,D), where P is a (search or decision) problem and D is a distribution on the
instances of P. Hence, weakly-verifiable puzzles are a special case of distributional search problems.
Most of the literature concerning Levin’s theory is focused on the study of the case where P is an
NP-problem (either search or decision). From the perspective of the current work, this means that
candidate solutions are always efficiently verifiable. Hence the previous proofs of Yao’s theorem
can be used just as well to prove hardness amplification for all these prior notions.

In contrast, in this work we consider search problems that are not even in NP. When cast as
distributional search problems, a weakly-verifiable computational puzzle system is a distributional
search problem (P,D) where D is efficiently sampleable and the relation

RP = {(p, a) : a is a correct solution for p},

is not necessarily efficiently computable. (When viewed as a language, RP is itself in NP, with the
witness roughly being the check information c.)2 Hence, the class of distributional search prob-
lems that result from weakly-verifiable computational puzzle systems is a superset of the class
〈NP,P-sampleable〉 of Ben-David et al. [3], in which RP in an NP-relation (where pairs can be
recognized in polynomial time).

The class 〈NP,P-sampleable〉 is itself a superset of the class DistNP from Levin’s work [9], in
which the distribution D is P-computable. However, it was shown by Impagliazzo and Levin [7]
that if 〈NP,P-sampleable〉 contains hard problems, then so does DistNP. It is also easy to see
that a hard weakly-verifiable computational puzzle can be transformed into a hard problem in
〈NP,P-sampleable〉 (by changing the goal of the search problem from finding a to finding (a, c)).

2Technically, the witness has to be randomness of the generator when generating (p, c). The reason is that even
a computational puzzle system can have “invalid check information” c′ such that V (p, c′, a) = 1 for an incorrect
answer a, as long as the generator G has probability zero of outputting (p, c′).
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Hence, if any of these classes contains hard problems, then they all do. We finally comment that
the existence of hard problems in these classes is not known to imply the existence of one-way
functions.

3 Hardness amplification of puzzles

Theorem 1 Let ε : IN → [0, 1] be an efficiently computable function, let n : IN → IN be efficiently
computable and polynomially bounded, and let Z = (G, V ) be a weakly verifiable puzzle system. If
Z is (1− ε)-hard, then Zn, the n-fold repetition of Z, is (1− εn)-hard.

The core of the proof is a transformation that turns an algorithm A that solves (Gn, V n) with
probability δn (for some δ) into an algorithm A′ that solves (G, V ) with probability δ(1− 1

q ), where
q is some “slackness parameter”.3 The running time of A′ is polynomial in n, q, 1/δn, and the
running times of A, G, and V .

Lemma 1 Fix efficiently computable functions, n, q : IN→ IN, and δ : IN→ (0, 1). Also fix a puzzle
system Z = (G, V ), and denote the running times of G, V , by TG, TV , respectively. If there exists
a solver A for Zn with success probability δn and running time T , then there exists also a solver
A′ for Z with success probability δ(1− 1

q ) and running time T ′ = Õ
(

nq3

δ2n−1 (T + nTG + nTV )
)
.

3.1 The solver A′

Having input puzzle p the algorithm A′ consists of two phases. Roughly, in a pre-processing phase,
A′ tries to find a puzzle p∗1, such that when p∗1 is placed as the first puzzle in a vector, the algorithm A
correctly solves all the other puzzles with probability at least δn−1. This pre-processing is the most
time-consuming operation in the execution of A′. If such p∗1 is found, then A′ makes a “recursive
call to itself”, using as a solver for Zn−1 the algorithm A with p∗1 hard-wired as the first puzzle.

If A′ fails to find such puzzle p∗1, it moves to the on-line phase, where it actually tries to solve its
input puzzle p. This is done by repeatedly sampling (n−1)-vectors (~p,~c)← Gn−1(1k), and running
A on the n-vector (p, ~p), getting the n-vector of answers (a,~a) ← A(p, ~p). If the answers 2..n are
correct (i.e., V n−1(~p,~c,~a) = 1) then A′ “hopes that the solution to p is also valid”, and outputs the
first answer a. (If too many trials have passed without getting a correct answers for puzzles 2..n,
then A′ aborts.) A detailed description of A′ follows, and the code for A′ can be found in Figure 1.

Pre-processing phase: In the pre-processing phase, A′ tries to find a prefix of v ≤ n−1 puzzles
that has high probability of residual success. That is, conditioned on this prefix, A solves the suffix
of n − v puzzles with probability at least δn−v. The pre-processing phase consists of iterations,
where in the iteration i, A′ already has a prefix of i − 1 puzzles and it tries to add to it the i’th
puzzle. This is done in a straightforward manner: let prefix be the prefix of length i − 1 from the
previous iteration. A′ repeatedly chooses candidates to extend the prefix, and for each candidate
p∗ it estimates the residual-success probability of prefix ◦ p∗. (I.e., the probability that A, on input
(prefix, p∗, n − i random puzzles), solves correctly the last n − i puzzles.) If A′ finds a candidate
p∗ for which the estimated probability is at least δn−i, then it adds it to the prefix and continues
to the next iteration. We stress that since A′ generates these last “n− i random puzzles” by itself,
it also has the corresponding check information so it can verify the solutions to these puzzles.

3The parameter q is introduced in order to achieve an “optimal” hardness amplification result, from ε to εn. One
can instead set, say, q = 2, in which case you can only prove amplification from ε to (2ε)n.
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Solver A′(p): // Parameters: k, n, q, δ

Preprocessing phase:
0. initialize prefix← empty-vector
1. for i = 1 to n− 1
2. p∗ ← Extend-prefix(prefix, i)
3. if p∗ =⊥ then v ← i, goto Online phase
4. else prefix← prefix ◦ p∗

5. v ← n, goto Online phase

Online phase:
10. if v = n // Base case, prefix has n− 1 puzzles
11. ~a← A(prefix, p)
12. return an

13. else // prefix has v − 1 ≤ n− 2 puzzles
14. repeat

⌈
6q ln(6q)
δn−v+1

⌉
times:

15. (〈pv+1, . . . , pn〉 , 〈cv+1, . . . , cn〉)← Gn−v(1k)
16. ~a← A(prefix, r, pv+1, . . . , pn)
17. if V (pi, ci, ai) = 1 for all i ∈ {v + 1, . . . , n} then return av

18. if none of the repetitions succeeded then abort

Extend-prefix(prefix, i): // prefix has i− 1 puzzles
21. Ni ←

⌈
6q

δn−i+1 ln
(

18qn
δ

)⌉
21. repeat Ni times:
22. (p∗, c∗)← G(1k)
23. µ̄p∗ ← Estimate-res-succ-prob(prefix ◦ p∗, i)
24. if µ̄p∗ ≥ δn−i then return p∗

25. return ⊥ // No good extension found

Estimate-res-succ-prob(prefix, i): // prefix has i puzzles

30. Mi ←
⌈

84q2

δn−i ln
(

18qn·Ni

δ

)⌉
31. repeat Mi times:
32. (〈pi+1, . . . , pn〉 , 〈ci+1, . . . , cn〉)← Gn−i(1k)
33. ~a← A(prefix, pi+1, . . . , pn)
34. this sample is successful if V (pj , cj , aj) = 1 for all j ∈ {i + 1, . . . , n}.
35. return number-of-successes/Mi

Figure 1: The solver A′ for Z
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In iteration i, A′ tries at most Ni =
⌈

6q
δn−i+1 ln

(
18qn

δ

)⌉
candidates. If none of them yields

estimated probability of δn−i then A′ terminates the pre-processing and moves to the on-line phase.
For each candidate, A′ estimates the probability up to additive accuracy of δn−i/6q with confidence
of δ/18qnNi. Namely, Pr[|estimated − actual| > δn−i/6q] < 2δ/18qnNi. Using Chernoff bound,
one can see that it is sufficient to sample Mi = O( q2

δn−i ln( qn
δ )) points to get these accuracy and

confidence bounds.

On-line phase: Going into the on-line phase, A′ has an input puzzle p, and a prefix of v ≤ n− 1
puzzles, and we know the residual-success probability of that prefix was estimated to be at least
δn−v. Due to the accuracy and confidence bounds that were used in the estimation above, we can
assume that the actual probability is at least δn−v(1 − 1/6q) (and this assumption holds expect
with very small probability).

If the prefix is of length n − 1, then we know that A solves any single puzzle with probability
at least δ(1 − 1/6q), so A′ directly uses it to solve the input puzzle p. Otherwise, we know that
the last iteration of the pre-processing phase failed to find an extension to the prefix that has
estimated residual-success probability of δn−v. As we will show later, this means that with the
given prefix, the conditional probability that A solves the v’th puzzle given that it solves puzzles
v + 1, . . . , n is very close to δ. Thus, A′ samples many random vectors of n − v puzzles (with
their check information) and use A(prefix, p, random puzzles) to try and solve the random puzzles.
Since the overall residual-success probability with the given prefix is close to δn−v+1 we expect to
succeed after not much more than 1/δn−v+1 trials (but for technical reasons A′ tries as many as
6q ln(6q)/δn−v+1 times). Once A′ gets an answer vector ~a that contains correct solutions to the
random puzzles v + 1, . . . , n, it outputs the answer av (i.e., the one that corresponds to the input
puzzle). If all the trials fail, then A′ aborts.

3.2 Analysis of A′

In the analysis we refer directly to the code of A′ from Figure 1. We begin with the running
time of A′. The pre-processing phase consists of at most n − 1 calls to Extend-prefix, where
the i’th call makes at most Ni =

⌈
6q

δn−i+1 ln
(

18qn
δ

)⌉
calls to Estimate-res-succ-prob. The

routine Estimate-res-succ-prob (when called during the i’th iteration) goes through its loop for
Mi =

⌈
84q2

δn−i ln
(

18qnNi
δ

)⌉
times, and each loop makes one call to A and n− i < n calls to G and V .

Thus, the total time of the pre-processing phase is less than

n · 6q

δn
·O

(
ln(

qn

δ
)
)
· 84q2

δn−1
·O

(
ln(

qn

δ
)
)
· (T + nTG + nTV ) = Õ

(
nq3

δ2n−1
(T + nTG + nTV )

)

The on-line phase of A consists of at most 6q ln(6q)/δn−v+1 ≤ 6q ln(6q)/δn repetitions of a loop,
and each repetition makes one call to A and n− v < n calls to G and V , so the time of this phase
is O( q ln q

δn (T + nTG + nTV )). The total running time is therefore Õ
(

nq3

δ2n−1 (T + nTG + nTV )
)
, as

stated in Lemma 1.
Next we analyze the success probability, and we begin with a few notations. For a vector ~p with

i ≤ n− 1 puzzles, we denote the residual-success probability of ~p by

rspi[~p] def= Pr

[
(〈pi+1, . . . , pn〉 , 〈ci+1, . . . , cn〉)

$← Gn−i(1k),~a $← A(~p, pi+1, . . . , pn)
: V (pj , cj , aj) = 1 for all i + 1 ≤ j ≤ n

]
.
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(In this notation, it is assumed that the security parameter k is implicit in the puzzles in ~p.) For a
vector ~p with i− 1 ≤ n− 2 puzzles, we denote by Exti(~p) the set of “good extensions” of ~p, namely
those puzzles p∗ such that the residual-success probability of ~p ◦ p∗ is noticeably more than δn−i,

Exti(~p) def= { p∗ : rspi(~p ◦ p∗) ≥ δn−i(1 +
1
6q

) }

Next, we let prefixi be the random variable describing the prefix of length i after the i’th
iteration in the pre-processing phase, if there is one (otherwise we let prefixi =⊥). By convention,
prefix0 = Λ 6=⊥.

We say that iteration i in the pre-processing phase makes the wrong decision, either if it returns
an extension to prefixi−1 with residual-success probability that is too low, or if it fails to find an
extension even though many good extensions exist. Formally, the event Wrongi is defined when
prefixi−1 6=⊥, and one of the following holds:

(a) either prefixi 6=⊥ (i.e., the routine Extend-prefix(prefixi−1, i) returned some p∗ 6=⊥), but
rsp(prefixi) < δn−i(1− 1

6q ),

(b) or prefixi =⊥ (i.e., the routine Extend-prefix(prefixi−1, i) returned ⊥), but it holds that

Pr[(p, c) $← G(1k) : p ∈ Exti(prefixi−1)] ≥ δn−i+1

6q .

Claim 2 For all i ≤ n− 1, Pr[Wrongi] ≤ δ
6qn .

Proof This claim essentially follows from the Chernoff bound. Recall that the Chernoff bound
asserts that for any 0-1 random variable with mean µ, is we choose M independent samples of that
variable and let µ̄ be their average, then for any γ > 0 we have

Pr[µ− µ̄ > γ] < exp

(
−Mγ2

2µ(1− µ)

)
< exp

(
−Mγ2

2µ

)

(and the same expression also bounds Pr[µ̄ − µ > γ]). Fix some i and assume that prefixi−1 6=⊥,
which means that the pre-processing phase indeed calls Extend-prefix(prefixi−1, i). For any
possible value of prefixi−1, we now bound the probability of Wrongi conditioned on this value
of prefixi−1. For each puzzle p∗ that can be chosen by Extend-prefix in line 22, let µp∗ =
rspi(prefixi−1 ◦ p∗). Note that the estimation routine uses Mi =

⌈
84q2

δn−i ln
(

18qnNi
δ

)⌉
samples to

provide an estimate µ̄p∗ for µp∗ . Using the Chernoff bound, we have for any puzzle p∗ such that
µp∗ ≤ δn−i(1− 1

6q )

Pr
[
µ̄p∗ ≥ δn−i

]
≤ Pr

[
µ̄p∗ − µp∗ > δn−i/6q

]
< exp

(
−Mi ·

δ2(n−i)

72q2µp∗

)

< exp

(
−Mi ·

δn−i

72q2

)
< exp

(
− ln

(
18qnNi

δ

))
=

δ

18qnNi

and since the routine Extend-prefix examines at most Ni candidates p∗, the probability that it
gets an estimate µ̄p∗ ≥ δn−i for any candidate p∗ with µp∗ ≤ δn−i(1 − 1/6q) is at most δ/18qn.
Hence the probability of sub-case (a) is at most δ/18qn.
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Similarly, for a puzzle p∗ such that µp∗ exactly equals δn−i(1 + 1
6q ) we have

Pr
[
µ̄p∗ < δn−i

]
≤ Pr

[
µ̄p∗ − µp∗ < −δn−i/6q

]
< exp

(
−Mi ·

δ2(n−i)

72q2µp∗

)

< exp

(
−Mi ·

δn−i

72q2(1 + 1
6q )

)
< exp

(
−84

72(1 + 1
6q )

ln
(

18qnNi

δ

))
≤ δ

18qnNi

where the last inequality holds since 84
72(1+1/6q) ≥

84
72(1+1/6) = 1. Clearly, if µp∗ > δn−i(1 + 1/6q)

then the probability of µ̄p∗ < δn−i is even smaller. We see that when the routine Extend-prefix
picks any p∗ ∈ Ext(prefixi−1) in line 22, it returns that p∗ in line 24 with probability more than
1− δ

18qnNi
. On the other hand, if the probability weight of Exti(prefixi−1) is more than δn−i+1

6q , then
the probability that none of the Ni candidates that Extend-prefix picks belongs to Exti(prefixi−1)
is at most(

1− δn−i+1

6q

)Ni

=

(
1− δn−i+1

6q

) 6q

δn−i+1 ln(18qn/δ)

< exp(− ln(
18qn

δ
)) =

δ

18qn

We conclude that the probability of sub-case (b) is at most 2δ
18qn , and therefore the overall probability

of the event Wrongi is at most δ
18qn + 2δ

18qn = δ
6qn . 2

In the analysis below of the online phase, we therefore assume that the pre-processing phase never
makes the wrong decision, and this assumption effects the overall error probability of A′ by at most
(n− 1) δ

6qn < δ
6q .

3.2.1 The online phase of A′

Consider now the on-line phase of A′. Recall that this phase gets a prefix with v − 1 puzzles,
prefixv−1, and an input puzzle p, and that these two are independent (since the pre-processing
phase is independent of the input). Below we denote the input puzzle by p∗v, and we denote by c∗v
the corresponding check information (that A′ never actually sees, but may determines the veracity
of A′’s answer.) Assuming that the pre-processing phase did not make a wrong decision, we know
that

rsp(prefixv−1) ≥ δn−v+1(1− 1
6q

) (1)

(since iteration v − 1 of the pre-processing returned some pv−1 6=⊥). If v = n, this means that
rsp(prefixv−1) ≥ δ(1− 1/6q), so running A(prefixv−1, p

∗
v) and taking the last answer yields a correct

solution to p∗v with probability at least δ(1− 1/6q).
The more interesting case to analyze is when v < n, which means that iteration v in the pre-

processing phase failed to extend the prefix. Assuming again that this was not a wrong decision,
it means that

Pr[(p, c) $← G(1k) : p ∈ Extv(prefixv−1)] <
δn−v+1

6q
(2)

From now on, we fix some value for prefixv−1 for which Equations 1 and 2 hold. For convenience in
the discussion below, we let E be the set of pairs (p, c) such that p ∈ Extv(prefixv−1). Namely,

E
def= { (p, c) : rspv( ~prefixv−1 ◦ p) ≥ δn−v(1 +

1
6q

) }
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and from Equation 2 we know that

Pr[(p, c) $← G(1k) : (p, c) ∈ E] <
δn−v+1

6q
.

Consider the experiment where we choose at random a single vector of n − v + 1 puzzles,
(pj , cj) ← G(1k) for j = v, . . . , n, and then run A to get ~a ← A(prefixv−1, pv, . . . , pn). We are
interested in the “success” event where ~a contains the right answers to all the puzzles pv, . . . , pn,
and in the “almost success” event where we only know that the answers to pv+1, . . . , pn are right.
For any pair (pv, cv) we let w(pv, cv), s(pv, cv), a(pv, cv), respectively, be the probability weight of
that pair, and the probabilities of “success” and “almost success” conditioned on it.

w(pv, cv)
def= Pr[G(1k) = (pv, cv)]

s(pv, cv)
def= Pr

 (〈pv+1, . . . , pn〉 , 〈cv+1, . . . , cn〉)← Gn−v(1k),
~a← A(prefixv−1, pv, pv+1, . . . , pn)
: V (pj , cj , aj) = 1 for all j ∈ {v, . . . , n}


a(pv, cv)

def= Pr

 (〈pv+1, . . . , pn〉 , 〈cv+1, . . . , cn〉)← Gn−v(1k),
~a← A(prefixv−1, pv, pv+1, . . . , pn)
: V (pj , cj , aj) = 1 for all j ∈ {v + 1, . . . , n}


Clearly, the overall probability of “success” is exactly the residual-success probability of prefixv−1,
namely, ∑

(pv ,cv)

w(pv, cv)s(pv, cv) = rsp(prefixv−1) ≥ δn−v+1(1− 1
6q

). (3)

Also, from what we know about E

a(pv, cv) ≤ δn−v(1 +
1
6q

) for any (pv, cv) /∈ E, and
∑

(pv ,cv)∈E

w(pv, cv) ≤
δn−v+1

6q
(4)

Recall that A′, on input p∗v, chooses at random many continuations (pv+1, . . . , pn)(cv+1, . . . , cn)
until it finds an answer vector ~a that is an “almost success”. Then A′ outputs av, and this is correct
only if ~a is also a “success”. This means that conditioned on not aborting, the success probability
of A′ is exactly s(p∗v, c

∗
v)/a(p∗v, c

∗
v). That is, for any fixed pair (p∗v, c

∗
v) we have

Pr[V (p∗v, c
∗
v, A

′(p∗v)) = 1 | A′(p∗v) does not abort] = s(p∗v, c
∗
v)/a(p∗v, c

∗
v) (5)

Next, let B (for Bad) be the set of input puzzles (and their associated check information) on
which A′ is unlikely to succeed. More specifically,

B
def= {(pv, cv) : s(pv, cv) < δn−v+1/6q}. (6)

It is easy to see that when (p∗v, c
∗
v) /∈ B, then A(p∗v) almost never aborts. Indeed A′ aborts only if it

does not find puzzles pv+1, . . . , pn that A solves correctly after 6q ln(6q)
δn−v+1 trials. As each trial success

with probability a(p∗v, c
∗
v) ≥ s(p∗v, c

∗
v) ≥ δn−v+1

6q , the probability that they all fail is at most 1/6q,

Pr
A′

[A′(p∗v) aborts] ≤ 1
6q

, for all (p∗v, c
∗
v) /∈ B (7)
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The last crucial observation that we need is that the sets B and E together cannot contribute
too much to the probability of success. Namely,∑

(pv ,cv)∈B∪E

w(pv, cv)s(pv, cv) ≤
∑

(pv ,cv)∈B

w(pv, cv)s(pv, cv) +
∑

(pv ,cv)∈E

w(pv, cv)s(pv, cv)

≤
∑

(pv ,cv)∈B

w(pv, cv)δn−v+1/6q +
∑

(pv ,cv)∈E

w(pv, cv)

≤ δn−v+1

6q
+

δn−v+1

6q
=

δn−v+1

3q

and combined with Equation 3 we get

∑
(pv ,cv)/∈B∪E

w(pv, cv)s(pv, cv) ≥ δn−v+1(1− 1
6q

)− δn−v+1

3q
= δn−v+1(1− 1

2q
) (8)

Putting everything together, we have

Pr[A′ answers correctly] =
∑

(p∗v ,c∗v)

w(p∗v, c
∗
v) · Pr[V (p∗v, c

∗
v, A

′(p∗)) = 1]

≥
∑

(p∗v ,c∗v)/∈B∪E

w(p∗v, c
∗
v) · (1− Pr[A′(p∗v) aborts]) · Pr[V (p∗v, c

∗
v, A

′(p∗v)) = 1 | A′(p∗v) does not abort]

(a)

≥
∑

(p∗v ,c∗v)/∈B∪E

w(p∗v, c
∗
v) · (1−

1
6q

) · s(p
∗
v, c

∗
v)

a(p∗v, c∗v)

(b)

≥
∑

(p∗v ,c∗v)/∈B∪E

w(p∗v, c
∗
v) · (1−

1
6q

) · s(p∗v, c
∗
v)

δn−v(1 + 1/6q)

=
1− 1/6q

δn−v(1 + 1/6q)

∑
(p∗v ,c∗v)/∈B∪E

w(p∗v, c
∗
v)s(p

∗
v, c

∗
v)

(c)

≥ 1− 1/6q

δn−v(1 + 1/6q)
· δn−v+1(1− 1/2q) = δ · (1− 1/6q)(1− 1/2q)

1 + 1/6q
> δ(1− 5/6q)

where inequality (a) is due to Equations 5 and 7, inequality (b) is due to (the first part of)
Equation 4, and inequality (c) is due to Equation 8. We conclude that the probability of a wrong
decision in the preprocessing phase is at most δ/6q, and that if no wrong decisions were made then
the online phase of A′ solves the input puzzle with probability at least δ(1−5/6q), hence the overall
success probability of A′ is at least δ(1 − 5/6q) − δ/6q = δ(1 − 1/q). This completes the proof of
Lemma 1. 2

3.3 Proof of Theorem 1

All that is left now is to provide an asymptotic interpretation to the concrete bounds from Lemma 1.
Let Z be a (1− ε)-hard puzzle system, and assume toward contradiction that there exists a T -time
solver Sn that (for infinitely many k’s) solves (Gn, V n) with probability at least ε(k)n + 1/r(k),
where both T (·), r(·) are polynomials.

Let us denote q = 4nr, and let δ be the solution to δn = εn + 1/r. We note that since δn is
noticeably larger than εn, then also δ is noticeably larger than ε, specifically δ > ε + 1/2rn. To see
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this, denote γ = δ − ε, and assume toward contradiction that γ < 1/2rn < 1/n. Then we have

(ε + γ)n = εn +
n∑

t=1

(
n

t

)
εn−tγt = εn + γ

n∑
t=1

(
n

t

)
εn−tγt−1

< εn + γ
n∑

t=1

(
n

t

)
εn−t

nt−1
< εn + γ

n∑
t=1

nt

t!
· ε

n−t

nt−1

= εn + γn
n∑

t=1

εn−t/t! < εn + 2γn

Thus, εn + 2γn > (ε + γ)n = δn = εn + 1/r, and therefore γ > 1/2rn, contradiction.
Applying Lemma 1 with the given n, q, δ and T , we get an algorithm S for solving (G, V ), with

success probability

δ(1− 1/q) ≥ (ε + 1/2rn)(1− 1/4rn) > ε + 1/8rn,

which is noticeably larger than ε (since r, n are both polynomial in k). The running time of S is
polynomial in n, q, T, TG, TV and 1/δn, which are all polynomial in k. (Note that δn = εn + 1/r is
noticeable since r is polynomial in k.) This contradicts the (1 − ε) hardness of Z, concluding the
proof of Theorem 1. 2

4 The weak verification property (informal)

As discussed in the introduction, the proof of Theorem 1 relies on the fact that we have efficient
generation and verification algorithms, so that A′ can generate puzzles and recognize correct so-
lutions to these puzzles. We now show that without this property, hardness amplification is not
guaranteed. In particular, we describe a “puzzle system” where the verification algorithm is not
efficient, and show that solving a few puzzles in parallel is not any harder than solving just one.

The example is essentially the one that was used by Bellare, Impagliazzo and Naor, except that
we do not need the last two flows of their protocol. Assume that we have a non-interactive, perfectly-
binding commitment scheme for one bit, C(·), and fix some parameter n. The generator for the
puzzle system picks at random a bit b, and outputs as puzzle a random commitment c = C(b). A
potential solution to this puzzle is a vector of n − 1 commitments c′1, . . . , c

′
n−1 such that (i) each

c′i is indeed a valid commitment to some bit b′i, (ii) c′i 6= c for all i, and (iii) b ⊕ b′1 ⊕ · · · ⊕ b′n = 0.
(Note that the last condition is well defined since the commitment scheme is perfectly binding.)

It is easy to see that if C(·) is non-malleable [5], then no efficient solver can solve this system
with probability noticeably more than 1/2. Informally, since the solver cannot return c′i = c, then
the bits b′i must be almost independent of b, so their sum must also be almost independent of b,
and therefore Pr[b⊕ b′1 ⊕ · · · ⊕ b′n = 0] ≈ 1/2.

On the other hand, a solver that gets n random puzzles c1, . . . , cn can return as a solution to
puzzle ci all the other puzzles cj , j 6= i. To analyze the success probability of the solver, let bi

denote the committed bit defined by commitment ci. (bi is well defined since the commitment is
perfectly binding.) Then, with probability one half we have that b1⊕ · · ·⊕ bn = 0. In this case, the
solver has solved all the puzzles. (Indeed, the probability that any two of the ci’s are the same is
negligible.)

The only problem with this example is that there are no known provable constructions of
non-interactive, perfectly-binding, non-malleable commitment schemes in the “bare model”. Such
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schemes are only known to exist in the common-random-string model [4] (or the common-reference-
string model, or the random-oracle model, etc.) At the current state of affairs, this example
is therefore only valid with respect to one of these models. However, since we only need non
malleability with respect to one specific relation, it may be possible to devise such scheme in
the bare model. In particular, assuming that such scheme exist seems like a rather reasonable
assumption. (We comment that the negative result of Bellare, Impagliazzo, and Naor, for four-
round proofs also requires non-interactive, non-malleable commitment schemes.)
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A Results for Proof systems

A computationally-sound proof system for a language L ⊆ {0, 1}∗, is a pair P = (P, V ) of poly-
nomial time interactive Turing machines, who gets a common input string x, whose length is
considered the security parameter. (The honest prover may also get some additional input that the
verifier does not see.) Since we only care about soundness, then it is enough to consider only the
verifier V . The success probability of a “cheating prover” B on input x is the probability that V
accepts when interacting with B on common input x. The probability is taken over the randomness
of B and V .

Definition 2 (Soundness error) Fix a language L and a verifier V , and let ε : IN → (0, 1) be
some function. We say that V has soundness error at most ε if for any efficient prover B there is
a negligible function negl, such that for any x /∈ L, the success probability of (B, V )(x) is at most
ε(|x|) + negl(|x|).

We comment that to be of interest, the proof system also has to satisfy some completeness
property (say, for a prover that is given an NP witness for the membership of x in L). In this work,
however, we are only interested in soundness.

The n-fold parallel repetition of a proof system P = (P, V ) is defined in a straightforward
manner: there are n independent copies of the verifier (and the honest prover), all running in “lock
steps” in parallel on the same common input x. The n-fold parallel repetition of P is denoted
Pn = (Pn, V n).

A.1 Hardness amplification for three-round proof systems

A rather straightforward adaptation of our result from Section 3 yields:

Theorem 2 Let ε : IN → (0, 1), n : IN → IN be efficiently computable functions, where n is poly-
nomially bounded, and let P = (P, V ) be an interactive proof system with three flows (or less) and
soundness error at most ε. Then the proof system Pn has soundness error at most εn.

Proof (sketch) We again assume that there exists a cheating prover B such that for infinitely many
common inputs x /∈ L, the success probability of (B, V n)(x) is at least ε(|x|)n + 1/r(|x|) for some
polynomial r. We show a cheating prover B′ such that for those x’es, the success probability of
(B′, V )(x) is noticeably more than ε.

Assume w.l.o.g. that the proof system has exactly three flows of communication, which means
that the first flow is from the prover to the verifier. The prover B′ first samples (polynomially)
many first-flow messages of B, and for each one it estimates the success probability of (B, V n)(x)
conditioned on that message. B′ tries N = poly(r, n) candidate first messages, and for each candi-
date it estimates the conditional success probability with accuracy 1/4r and confidence 1/32rnN .
Since the overall success probability of P is at least εn +1/r, then P ′ can find a first-flow message ~y
with estimated conditional success probability of at least εn +3/4r after trying only N = poly(r, n)
candidates. With the given accuracy and confidence bounds, it follows that except with probability
1/32rn, P ′ indeed finds such first-flow message ~y, and the conditional success probability of ~y is at
least εn + 1/2r .
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Now P ′ consider the puzzle system with the generating algorithm defined by the verifier V n on
input x and ~y, and whose verifying function is the final verification procedure of V n. (This does
not quite satisfy our definition of the n-fold repetition of a puzzle system, since each copy now
has a different generating and verifying procedures, because of the different first-flow messages.
However, this difference does not change anything in the proof of Lemma 1.) P ′ applies the
transformation from Lemma 1 with δn = εn + 1/2r, and slackness q = 8rn, thus obtaining a
strategy that convinces V with probability at least ε + 1/16rn. Since we have an error probability
1/32rn for choosing ~y, then the overall success probability of (P ′, V )(x) is at least ε + 1/32rn,
which is noticeably more than ε. 2

A comment about the common-reference-string model Computationally-sound proofs
were define in the work of Bellare et al. [2] somewhat more generally than above: essentially
they defined proofs in the common-reference-string model. We note, however, that their “positive
result” (as well as ours) does not extend to this model. Indeed, they only show hardness amplifi-
cation when the common reference string is fixed (so the soundness error is defined with respect to
a fixed reference string, rather than with respect to a random choice of that string).

For example, one may think of a cheating prover B that on εn fraction of the reference strings
is able to convince the verifier with probability one, and on other strings it always fails. It is not
hard to see that no black-box reduction can transform this prover to one that succeeds in a single
proof with probability more than εn.
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