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Abstract

López-Dahab coordinates are usually the system of choice for imple-
mentations of elliptic curves over binary fields. We give new formulas for
doubling which need one squaring less and one more addition. This leads
to a speed-up for binary fields in polynomial basis representation if the
parameters are not fixed.

1 Introduction

Elliptic curves are studied for cryptographic applications as a group in which
the discrete logarithm problem is believed to be hard. In a general cyclic group
G = 〈P 〉, for an element Q ∈ G this is the problem of finding an integer n
such that Q = [n]P , where [n]P denotes the result of P added to itself n times.
In protocols based on the discrete logarithm problem the most time consuming
operation is the computation of scalar multiples. This is done by a double-
and-add algorithm which may use some precomputations. Therefore, the most
important parameter for the speed of the system is the time needed for doublings
and additions. If windowing methods are applied the doubling is the much more
frequent operation. We like to point out already here that on elliptic curves the
negative of a point is easily determined, therefore, signed digit representations
can be used reducing the storage requirements.
The main reason for using elliptic curves over finite fields is that they have
shorter key sizes compared to RSA and discrete logarithms in finite fields. This
is mainly relevant for small embedded devices. Such systems often profit from
arithmetic in binary fields and furthermore, inversions are usually prohibitively
slow. Therefore, inversion-free coordinate systems have been introduced for
both even and odd characteristic. We give a new formula for doubling on elliptic
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curves in López-Dahab coordinates which needs 4 instead of 5 squarings. This
is of interest for practical applications as already before this system offered the
best performance.
While the formulas in [10] involve one multiplication by the curve parameter
a6, all multiplications in the new formulas involve variables. For fixed small
a6 like in the standards the old formulas are advantageous while for random
curves and an implementation which should accommodate different curves our
new formulas should be preferred.

We briefly recall the definitions of elliptic curves and López-Dahab coordinates.
For comparison we give the published algorithms for addition and doubling.
Then we present our doubling formulas and show their correctness. We finish
with a comparison between the different formulas and show drawbacks and
advantages of the new proposal.

2 Elliptic curves over finite fields

For much more material on elliptic curves we refer to [2, 6]. For background on
finite fields consider [8].
An elliptic curve E over a field IK denoted by E/IK is given by the Weierstraß
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

where the coefficients a1, a2, a3, a4, a6 ∈ IK are such that for each point (x1, y1)
with coordinates in IK satisfying (1), the partial derivatives 2y1 +a1x1 +a3 and
3x2

1 + 2a2x1 + a4 − a1y1 do not vanish simultaneously. The last condition says
that an elliptic curve is nonsingular. The negative of the point P = (x1, y1) is
given by −P = (x1,−y1 − a1x1 − a3). Using the projective closure, which in
the case of elliptic curves is simply given by

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

one sees that there is exactly one point P∞ on the line at infinity (Z = 0). It
has projective coordinates (0 : 1 : 0) and serves as the neutral element of the
group law which state now.
Addition and doubling can be defined geometrically by the chord and tangent
method which gives rise to the following formulas:

P ⊕Q = (λ2 + a1λ− a2 − x1 − x2, λ(x1 − x3)− y1 − a1x3 − a3), where

λ =


y2 − y1

x2 − x1
if P 6= ±Q,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if P = Q.

These formulas depend on the curve equation and it is obvious that to reach
fast formulas many zero coefficients ai are desirable.
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By a change of variables x 7→ u2x + r = x′ and y 7→ u3y + u2sx + t = y′ with
(u, r, s, t) ∈ IK∗ × IK3, the curve is transformed to an isomorphic one.
In this paper we are concerned with elliptic curves over binary fields IF2d . Su-
persingular curves over IF2d can be characterized by the fact that they have no
point of order 2 over the algebraic closure ĪF2 and these are exactly those curves
for which a1 = 0. Supersingular curves have been shown to lead to significantly
weaker DL systems [5, 11].
Hence, we concentrate on a1 6= 0. One can transform the curve using

y 7→ a3
1y +

a2
3 + a2

1a4

a3
1

, x 7→ a2
1x +

a3

a1

followed by a division by a6
1 to an isomorphic curve given by

y2 + xy = x3 + a′2x
2 + a′6,

which is nonsingular whenever a′6 6= 0.
This equation can be simplified even further if d is odd, which is the case in
most applications. Then we have Tr(1) = 1. We now use the additivity of the
trace Tr(a + b) = Tr(a) + Tr(b) and consider two cases:
If Tr(a′2) = 0 then w2 + w + a′2 has a solution a ∈ IF2d by additive Hilbert 90
theorem and thus the transformation y 7→ y + ax leads to y2 + xy = x3 + a′6.
Otherwise, w2+w+a′2+1 has a solution a ∈ IF2d by additive Hilbert 90 theorem
as Tr(a′2 + 1) = Tr(a′2) + Tr(1) = 0. In this case the transformation y 7→ y + ax
leads to y2 + xy = x3 + x2 + a′6.
For the operation count we will always assume that a2 ∈ {0, 1} but to allow
applicability of the formulas also for even d we use the general equation

y2 + xy = x3 + a2x
2 + a6, for a2 ∈ IF2d , a6 ∈ IF∗2d .

3 Coordinate systems

So far we have stated the curve in affine coordinates and briefly mentioned pro-
jective coordinates. As projective coordinates are unique up to multiplication by
scalars one easily sees that addition and doubling can be described without us-
ing inversions. As a drawback much more multiplications are introduced. This
effect punishes additions harder as there the coordinates need to be multiplied
with the respective other Z-coordinates to reach common denominators.
If the operations steam from a scalar multiplication and the input was in affine
coordinates, one can use the correspondence (x1, y1) ∼ (x1 : y1 : 1) assigning
projective coordinates to a point in affine ones. An operation involving two types
of input coordinates and also allowing a different type of output coordinates is
called a mixed operation. If one input is in affine coordinates, mixed additions
are usually much faster. This can be used in a left-to-right scalar multiplication
algorithm if also the precomputed points are given in affine coordinates.
Starting from the idea of projective coordinates other inversion-free systems were
introduced in which the correspondence to affine coordinates assigns weights to
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the coordinates. We concentrate on López-Dahab coordinates. Here for Z 6= 0
the point (X : Y : Z) corresponds to the affine point (X/Z, Y/Z2) and the
neutral element is given by (1 : 0 : 0). The points satisfy the equation

Y 2 + XY Z = X3Z + a2X
2Z2 + a6Z

4. (2)

Starting from the formulas given in [10] both addition and mixed addition were
improved.
Addition
We give the addition formulas as stated in [7]. Let P = (X1 : Y1 : Z1), Q =
(X2 : Y2 : Z2) such that P 6= ±Q then P ⊕Q = (X3 : Y3 : Z3) is given by

A1 = X1Z2, A2 = X2Z1, C = A1 + A2,

B1 = A2
1, B2 = A2

2, D = B1 + B2,

E1 = Y1Z
2
2 , E2 = Y2Z

2
1 , F = E1 + E2

G = CF, Z3 = Z1Z2D, X3 = A1(E2 + B2) + A2(E1 + B1)
Y3 = (A1G + E1D)D + (G + Z3)X3.

A general addition in this coordinate system takes 13M + 4S + 9A, where M
denotes a multiplication, S means a squaring and A an addition. In the original
formulas one more multiplication by a2 was used which could be neglected in
our case. The savings of [7] over [10] consist in 2 squarings less on the cost of
one addition, which is worthwhile in the setting we consider here.
Mixed addition
Mixed addition is much faster needing only 8M +5S+8A and one multiplication
by a2 as shown in [1].
Let P = (X1 : Y1 : 1), Q = (X2 : Y2 : Z2) such that P 6= ±Q then P ⊕ Q =
(X3 : Y3 : Z3) is given by

U = Z2
2Y1 + Y2, S = Z2X1 + X2, T = Z2S, Z3 = T 2,

V = Z3X1, C = X1 + Y1, X3 = U2 + T (U + S2 + a2T ),
Y3 = (V + X3)(TU + Z3) + Z2

3C.

Doubling
If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by

S = X2
1 , T = Z2

1 , Z3 = ST, T = a6T
2 (3)

X3 = S2 + T, Y3 = (Y 2
1 + a2Z3 + T )X3 + TZ3

requiring 4M + 5S + 4A and one multiplication by a2.

For fixed a2 and a6 it is also possible to use less additions if
√

a6 can be pre-
computed. E. g. for a2 = 1 one can use

S = X2
1 , T =

√
a6Z

2
1 , U = X1Z1, Z3 = U2, (4)

X3 = (S + T )2, Y3 = (US + (Y1 + T )(S + T ))2
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requiring 4M + 5S + 3A including one multiplication by
√

a6 [9].
For fixed a2 = 0 one uses

S = X2
1 , T =

√
a6Z

2
1 , S = S + T, U = X1Z1, Z3 = U2, (5)

X3 = S2, Y3 = (UT + (Y1 + T )S)2 (6)

which also requires 4M + 5S + 3A including one multiplication by
√

a6 [3].

4 Improved doubling formulas

Now we show how to save one squaring in the doubling step. We first state the
doubling formulas and then show their correctness by giving the relation to (3).
Doubling
If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by

S = X2
1 , U = S + Y1, T = X1Z1, Z3 = T 2, T = UT (7)

X3 = U2 + T + a2Z3, Y3 = (Z3 + T )X3 + S2Z3

requiring 4M + 4S + 5A and one multiplication by a2.
Proof.
We first expand the expressions in (3) and (7) and then show their equality.
For X3 we have by (3): X3 = X4

1 + a6Z
4
1 which should be equal to X3 =

(X2
1 + Y1)2 + (X2

1 + Y1)X1Z1 + a2X
2
1Z2

1 obtained by (7). In fact one has that

X3 = X4
1 + a6Z

4
1 = X4

1 + Y 2
1 + X3

1Z1 + X1Y1Z1 + a2X
2
1Z2

1

= (X2
1 + Y1)2 + (X2

1 + Y1)X1Z1 + a2X
2
1Z2

1 ,

where the second equality follows from the curve equation (2).
The expressions for Z3 = X2

1Z2
1 coincide obviously.

For Y3 we have from (3)

Y3 = a6Z
4
1Z3 + (Y 2

1 + a2Z3 + a6Z
4
1 )X3

= (X3 + X4
1 )Z3 + (Y 2

1 + a2Z3 + a6Z
4
1 )X3

= (Z3 + X3
1Z1 + X1Y1Z1)X3 + X4

1Z3

= (Z3 + (X2
1 + Y1)X1Z1)X3 + (X2

1 )2Z3

and the final equation equals the formula in (7).

5 Comparison

From the operation count we see that the number of multiplications remains un-
changed while the number of squarings is decreased by 1 and one more addition
is needed if one uses the new doubling formula. Furthermore, the coefficient a6

no longer appears in the formulas.
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If the field IF2d is represented with respect to a normal basis then a squaring is
less expensive than an addition, hence, the known formulas are more efficient
in this case.
The same conclusion is to be drawn for hardware implementations for which
the curve is fixed and thus multiplications by the constant coefficient a6 resp.√

a6 can be hard-coded in the design of the chip, as the new system has 4
general multiplications whereas the old system had one multiplication by a6 or
by

√
a6. Additionally for fixed curves the special formulas depending on a2 can

be applied saving one further addition.
The curves selected in the standards all use a small a6 such that multiplications
involving a6 are about as cheap as an addition. For them the usual doubling
formulas (3) are fastest as multiplications by a6 are cheaper as those by

√
a6.

Also precomputed tables facilitate the multiplication by curve constants.

In all other situations, i. e. in the usual polynomial basis representation and
for varying curves, the new doubling formulas are advantageous as one squar-
ing is more time consuming than an addition and

√
a6 cannot be assumed to

be precomputed. Namely, the squaring consists of the cheap step of squaring
the representing polynomial by inserting zeros in the representation and of the
reduction modulo the irreducible polynomial. As this polynomial is at least a
trinomial one needs at least 2 additions per squaring and more for less sparse
irreducible polynomials like pentanomials. In this context we would like to men-
tion the recent preprint [4] showing that one can use a redundant polynomial
representation by a trinomial of slightly larger degree if no irreducible trinomial
is available.

To sum up, depending on the application the new doubling formulas can offer
advantages over the standard ones. The distinction depends on whether multi-
plications by the constant a6 resp.

√
a6 are cheaper than a general multiplication

and also on whether
√

a6 is provided as a curve parameter. Our formulas (7)
are faster for general curves while (3) or the fixed formulas for a2 = 1 or a2 = 0
should be chosen for the standardized curves and likely also for fixed curves in
general.
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