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Abstract. With physical attacks threatening the security of current
cryptographic schemes, no security policy can be developed without tak-
ing into account the physical nature of computation.
In this article we first introduce the notion of Cryptographic Key Fail-
ure Tolerance, then we offer a framework for the determination of upper
bounds to the key lifetimes for any cryptographic scheme used in the
presence of faults, given a desired (negligible) error-bound to the risk
of key exposure. Finally we emphasize the importance of choosing keys
and designing schemes with good values of failure tolerance, and recom-
mend minimal values for this metric. In fact, in standard environmental
conditions, cryptographic keys that are especially susceptible to erro-
neous computations (e.g., RSA keys used with CRT-based implementa-
tions) are exposed with a probability greater than a standard error-bound
(e.g., 2−40) after operational times shorter than one year, if the failure-
rate of the cryptographic infrastructure is greater than 1.04× 10−16 fail-
ures/hours.
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1 Introduction

The manifestation of faults at the user interface of a cryptographic module may
jeopardize security by enabling an opponent to expose the secret key material
[5–12]. In fact, by failing to take into account the physical nature of computa-
tion, the current mathematical models of cryptography are unable to protect
against physical attacks that exploit in a clever way the peculiarities inherent
the physical execution of any algorithm [1, 18].
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Consequently, one should not rely on the services delivered by today’s crypto-
graphic modules, if specific dependability guarantees are not satisfied. However,
the possession of dependability attributes should be interpreted in a relative,
probabilistic, sense [24, 23]. Due to the unavoidable occurrence of transient faults
or the presence of dormant faults, there will be always a non-zero probability
that the system will fail, sooner or later.
In order to keep the risk of key exposure below a desired boundary ε, the use of
error detection techniques in fault-tolerant cryptographic modules is necessary
but not sufficient [3, 4, 19–21, 25]. In fact, for standard error-bounds (2−40, or also
lower values), with typical fault rates, in standard environmental conditions, and
using fault-tolerant systems with high levels of coverage, the probability of a key
exposure may exceed the desired error bound within very short mission times,
depending on the number of incorrect cryptographic values necessary to perform
the fault attack against a specific cryptographic scheme. For instance, as will be
shown in Sect. 3, cryptographic modules, that implement cryptographic schemes
especially susceptible to erroneous computations (e.g., RSA based on the residue
number system [9, 13]), will expose the key material with a probability greater
than ε by exceeding the required reliability goal after operational times so short,
that the number of scenarios where these schemes finds application in the pres-
ence of faults results to be remarkably limited. Trying to increase further the
coverage of fault-tolerant systems is not the most viable solution, since it would
raise the costs of cryptography modules, by requiring a larger number of hours
during the design and assessment phases.
Hence, it is of primary importance to choose key lifetimes so that the key mate-
rial will no longer be used after that the effective reliability of the system falls
below the required goal, necessary to guarantee the desired negligible risk of key
exposure.
In this article we first introduce the notion of Cryptographic Key Failure Toler-
ance, then we offer a framework that enables to limit the risk of key exposure
to a desired error-bound in the presence of faults, by modeling the reliabil-
ity of typical cryptographic infrastructures and relating their failure rates, the
failure tolerance of the cryptographic keys and the mission duration for the re-
quired reliability goals, to the lifetime of keys. Using this framework, we provide
guidelines either for the determination of upper bounds to key lifetimes for any
cryptographic scheme implemented in generic cryptographic devices, or for the
selection of cryptographic infrastructures that can provide the required levels
of reliability, whereas specific lifetimes and schemes are desired. As long as the
mathematical models of cryptography are not extended to the physical setting,
reliability and security will remain strictly related. Consequently, security poli-
cies will have to be developed by carefully taking into account the peculiarities
inherent in the physical execution of any algorithm.

Our framework is intended to be used together with the existing guidelines
to the selection of cryptographic key sizes [2, 14–17], assuming one agrees with
the formulated hypotheses of the prior works or with the explicit assumptions
on which our recommendations are based. The existing guidelines should be con-
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sidered complementary to the proposed framework, as based on the analysis of
the computational effort required to break cryptographic schemes by exaustive
search.
The major advantage of this approach, besides its simplicity, is that it allows
to keep the risk of key exposure below a desired error-bound using one or more
cryptographic modules characterized by different failure rates.

The paper is organized as follows. We describe the model and introduce the
notion of Cryptographic Key Failure Tolerance in Sect. 2. In Sect. 3 we offer a
first framework to model the risk of key exposure in the presence of faults and
to derive upper bounds to the lifetime of keys, by incrementally modeling the
reliability of the following two cryptographic infrastructures: 1) single systems
implementing cryptographic schemes tolerating a generic number of erroneous
computations, 2) highly available cryptographic infrastructures characterized by
a pool of independent systems providing service concurrently using a generic
cryptographic scheme with a common credential. Sect. 4 will be devoted to pro-
vide examples of how to use the proposed framework. We discuss the practical
consequences of our estimates and emphasize the importance of choosing cryp-
tographic keys and designing cryptographic schemes with good levels of failure
tolerance in Sect. 5. Concluding remarks are given in Sect. 6.

2 The Model

The model consist of a cryptographic module containing some cryptographic
secret. The interaction with the outside work follows a cryptographic protocol.
On some rare occasions, the module is assumed to be affected by faults causing
it to output incorrect values [8].

2.1 Key Points

In the presence of faults, the choice of cryptographic key lifetimes depends pri-
marily on the following points:

I. environmental conditions;
II. the failure tolerance of cryptographic keys (defined in Sect. 2.3) - 1st security
parameter;
III. desired (negligible) risk of key exposure: the security margin - 2nd security
parameter;
IV. failure rates: the rate of occurrence for incorrect values at the cryptographic
module user interface - 3rd security parameter;

2.2 Environmental Conditions and Passive Fault Attacks

We limit our analysis to the black-box scenario characterized by the occurrence
and activation of faults in standard environmental conditions.
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Assumption 1. Our main assumption is that the security of cryptographic
modules cannot be compromised by any deliberate or accidental excursions out-
side their normal operating ranges of environmental conditions. For instance, a
cryptographic module has been designed according to today’s security standards
[22] to operate, or to respond, in a safe way also with widely varying environ-
mental conditions. Or, the computing device can be simply kept in a controlled
environment (e.g., a network-attached HSM working in a controlled data center).

As the attacker does only observes failures as they are occurring and does not
deliberately induce faults, we call this kind of attack Passive Fault Attack. All
the estimates offered in this paper would be drastically modified if a modifi-
cation of the environmental conditions can augment the occurrences of failures
(i.e., inducing faults).

2.3 Cryptographic Key Failure Tolerance

Definition 1. Let B be a black-box implementing a cryptographic scheme S
and containing a secret key K that is inaccessible to the outside world, and with
the set of security parameter(s) P . The Cryptographic Key Failure Tolerance,
CKFTm

K(S,P )
, is defined to be the maximum number of incorrect values, occurring

according to the fault model m, that B can output through its cryptographic
protocol before K gets exposed by a fault-attack.

Remark 1. In the presence of fault-attacks, the Cryptographic Key Failure Tol-
erance (CKFT) is a security parameter. As the value assumed by this metric
increases, the probability of succeeding in a fault-attack within time T decreases.
A quantitative estimate of this probability is provided in Sect. 3.

In Table 1 the failure tolerance of some cryptographic schemes is provided. For
example, an AES-128 key can be exposed by 49+1 faulty ciphertexts while con-
sidering the fault model assumed in the first Differential Fault Attack presented
in [10]. It should be noted how several cryptographic keys may be character-
ized by a common value of this metric. We denote the set of all cryptographic
keys with failure tolerance n under the fault model m, Cm

n . Obviously, new fault
attacks or improvements to already existing attacks can determine new failure
tolerance values for a given set of keys. For instance, a beautiful refinement
by Lenstra [9] to the first fault-attack on RSA used with Chinese Remainder
Theorem (CRT) [6–8] caused the shifting of all RSA private keys used with the
CRT from C1bit

1 to C1bit
0 , where 1bit denotes the fault-model considering faults

affecting one bit at a time. So, we will refer in a generic way to the CKFT
values.

2.4 Desired Error-Bound to the Risk of Key Exposure

This is the 2nd security parameter. It can assume every desired value in the
interval (0, 1). Typical values are 2−40 or lower.
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Table 1. The Cryptographic Failure Tolerance of some cryptographic schemes

Crypto Scheme + Sec. Parameter(s) Fault Model CKFT Author(s) Year

Fiat-Shamir Id. Scheme (t = n) ∼1bit O(n) Boneh, et al. [8] 1996
RSA (1024 bit) 1bit O(n) Boneh, et al. [8] 1996
Schnorr’s Id. Protocol (p = a, q = n) 1bit n · log 4n Boneh, et al. [8] 1996
RSA+CRT 1bit 0 Lenstra [9] 1997
AES (n=128) 1bit 49 Giraud [10] 2003
AES (n=128) 1byte 249 Giraud [10] 2003

2.5 Failure Rates

Throughout the rest of the paper, unless specified differently, we will refer to the
failure rate as the rate of occurrence of incorrect values at the user interface of
a given cryptographic module, considering the fault model m. This value should
not be confused with the generic failure rate of the computing device.
The failure rate is a security parameter. In fact, as will be shown in Sect. 3, as
the failure rate increases the mean time to failure (MTTF) decreases, and con-
sequently the probability of succeeding in a fault-attack within time T increases.
In Sect. 3, we calculate the failure rates of cryptographic infrastructures com-
posed by multiple independent subsystems1 providing service concurrently and
characterized by different failure rates. Since failure rates of each component are
strongly depended on the implementation details of cryptographic modules, we
leave them as parameters. Therefore, the estimates are provided for a represen-
tative sample of failure rates in the range [1×10−15, 1×10−9], in failures/hours.

3 Upper Bounds for the Selection of Cryptographic Key
Lifetimes

3.1 Estimation Methodology

In order to limit the risk of key exposure, it is necessary to limit the lifetime of
keys so that the key material will no longer be used when the reliability of the
computing system falls below the required goal.

Given the desired error-bound ε, and the failure tolerance value that charac-
terize a generic key CKFTm

K(S,P )
, we first determine the reliability goal R(tR)

necessary to enforce the security margin. Then, by modeling the reliability of
specific infrastructures, we determine the final failure rate µm

Infr.. The resulting
value is used to derive reliable life of the infrastructure tR, or the mission dura-
tion for the required reliability goal. This is the upper bound to the lifetime of
the key K(S,P ).

1 We consider two subsystems to be independent if electrically isolated from each other,
using separate power supplies and located in separate chassis. The subsystems can
share common data objects and cryptographic keys.
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3.2 Single Cryptographic Modules Implementing a Generic
Cryptographic Scheme

Let T be a random variable representing the time of occurrence of incorrect val-
ues at the user interface of the computing system. Let F (T ) be the distribution
of T . Typically, computing systems are assumed to fail according to the expo-
nential distribution. This distribution, being characterized by constant failure
rates, is consistent with the Assumption 1.

In particular, we use the two-parameter exponential distribution. Its probability
density function (pdf) is given by,

f(T ) = µe−µ(T−γ), f(T ) ≥ 0, µ ≥ 0, T ≥ 0 or γ (1)

The location parameter γ, enables the modeling of those systems that can man-
ifest incorrect values at their user interface only after γ time units (e.g., hours)
of operation.

From (1) follows that the two-parameter exponential cumulative density function
(cdf) and the exponential reliability function are respectively:

Q(T ) = 1− e−µ(T−γ) (2)

R(T ) = 1−Q(T ) = e−µ(T−γ), 0 ≤ R(T ) ≤ 1 (3)

Equations (2) and (3) give respectively the probability of failure, and the relia-
bility of the system.

The system is considered to be functioning as long as the key material has
not been exposed (i.e., as long as the number of failures is less than or equal
to CKFTm

K(S,P )
) with a probability greater than ε. The system can be viewed

as a pool of CKFTm
K(S,P )

+ 1 of identical, independent and non-repairable sub-
systems each characterized by a generic failure rate µ, under the fault model m.
The components of the pool provide service concurrently. As soon as a failure
occurs the number of sub-system decreases by one unit. The system fails when
no sub-systems remains in service. Given the desired risk of key exposure ε, and
n = CKFTm

K(S,P )
:

R(T ) = 1−
n+1∏
i=1

Qi(T ) ≥ 1− ε (4)

The subsystems are identical, hence:

R(T ) = e−µ(T−γ) ≥ 1− n+1
√

ε (5)

Therefore, the key lifetime for KS,P , L(KS,P ), must be:

L(KS,P ) ≤ tR = γ − ln(1− n+1
√

ε)
µ

(6)
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Table 2. Upper Bounds to Key Lifetimes for typical failure rates, with a desired error-
bound ε = 2−40 and γ = 0. Failure rates are expressed in failures/hours; upper bounds
to key lifetimes are expressed in hours.

Cm
n µm

0 µm
1 µm

2 µm
3 µm

4 µm
5 µm

6

↓ 1× 10−15 1× 10−14 1× 10−13 1× 10−12 1× 10−11 1× 10−10 1× 10−9

n=0 9.09× 102 9.09× 101 9.09× 100 9.09× 10−1 9.09× 10−2 9.09× 10−3 9.09× 10−4

n=1 9.54× 108 9.54× 107 9.54× 106 9.54× 105 9.54× 104 9.54× 103 9.54× 102

n=2 9.69× 1010 9.69× 109 9.69× 108 9.69× 107 9.69× 106 9.69× 105 9.69e× 104

n=3 9.77× 1011 9.77× 1010 9.77× 109 9.77× 108 9.77× 107 9.77× 106 9.77× 105

n=4 3.91× 1012 3.91× 1011 3.91× 1010 3.91× 109 3.91× 108 3.91× 107 3.91× 106

n=5 9.89× 1012 9.89× 1011 9.89× 1010 9.89× 109 9.89× 108 9.89× 107 9.89× 106

n=6 1.92× 1013 1.92× 1012 1.92× 1011 1.92× 1010 1.92× 109 1.92× 108 1.92× 107

n=7 3.17× 1013 3.17× 1012 3.17× 1011 3.17× 1010 3.17× 109 3.17× 108 3.17× 107

n=8 4.70× 1013 4.70× 1012 4.70× 1011 4.70× 1010 4.70× 109 4.70× 108 4.70× 107

n=9 6.45× 1013 6.45× 1012 6.45× 1011 6.45× 1010 6.45× 109 6.45× 108 6.45× 107

n=10 8.38× 1013 8.38× 1012 8.38× 1011 8.38× 1010 8.38× 109 8.38× 108 8.38× 107

n=11 1.04× 1014 1.04× 1013 1.04× 1012 1.04× 1011 1.04× 1010 1.04× 109 1.04× 108

Table 2 provides upper bounds to key lifetimes for a number of representative
failure rates affecting systems using keys characterized by a CKFT value in the
interval (0, 11), ε = 2−40, and γ = 0. Failure rates are expressed in failures/hours,
whereas upper bounds to key lifetimes are in hours.

3.3 Highly Available Cryptographic Infrastructures

In this section we extend the modeling of the risk of key exposure to highly
available cryptographic infrastructures. In particular, we consider a pool of l
heterogeneous independent cryptographic modules (i.e., failing independently),
each characterized by its own failure rate µm

l , that provides service using a com-
mon generic key characterized by a failure tolerance of CKFTm

K(S,P )
. For example

the key material may be stored in a shared secure device, or replicated among
the l modules. Moreover we assume the following:

Assumption 2. All cryptographic module present in the pool start to pro-
vide service simultaneously (i.e., γ1 ≈ γ2 ≈ . . . ≈ γl).

Similarly to single cryptographic modules, the infrastructure is considered to
be functioning as long as the cryptographic key has not been exposed (i.e., as
long as the number of failures is less than or equal to CKFTm

K(S,P )
) with a prob-

ability greater than ε. It should be noted that in this scenario the failures of
each module should be considered to be cumulative. In fact, by affecting a com-
mon resource (i.e., the cryptographic key), each failure affects also the residual
service-time of the other components in the pool. For example, assuming that
the infrastructure is using a cryptographic key that does not tolerate any failure,
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it is sufficient a single failure to compromise the service provided by the entire
infrastructure. Hence, the pool of cryptographic modules should be modeled as
a series of systems.

RHA(T ) =
l∏

i=1

Ri(T ) = e−
∑l

i=1
µm

i (T−γ) (7)

Equation (7) gives the reliability of the series of cryptographic modules present in
the pool. This is equivalent to reliability of a system with failure rate µHA =

∑l
i=1 µm

i .
Using (6) is possible to compute the reliable life of the key K(S,P ) used by the
considered high-availability cryptographic infrastructure:

L(KS,P ) ≤ tR = γ − ln(1− n+1
√

ε)∑l
i=1 µm

i

(8)

Remark 2. Scaling-Out may be a Hazard
Obviously, the number l of cryptographic modules present in this typical high-
availability configuration (i.e., active-active model) affects one of the security
parameters, by increasing the exposure of cryptographic credentials. In fact,
as the final failure rate increases, the MTTF decreases; hence, decreasing the
reliable life of the system. Consequently, the use of cryptographic modules with
very low failure rates becomes especially critical when its necessary to design
highly available cryptographic infrastructures. In Fig.1 the required reliability
goals necessary to limit the risk of key exposure to ε = 2−40 are shown for either a
single cryptographic module with µm

single = 1×10−15 failures/hours, or a pool of
10 independent and identical cryptographic modules with µm

HA =
∑10

i=1 µm
single,

providing service concurrently using a common cryptographic credential with a
CKFT value in the interval (0, 9).

4 Using this Framework

4.1 Estimating Upper Bounds for Cryptographic Key Lifetimes

Suppose one needs to select the lifetime of a cryptographic key that belongs to
Cm

1 (i.e., has cryptographic failure tolerance 1). Suppose also that is necessary
to guarantee a risk of key exposure less than or equal to ε = 2−40 using a
cryptographic infrastructure with failure rate µm

Infr = 1× 10−11 failures/hours.
Using (8), or looking at the row of a precomputed table (e.g., Table 2) for the
failure tolerance 1, one finds that the key lifetime should not exceed 10 years.
This is only the upper bound. Additional considerations, related to the specific
cryptographic scheme and to the application context, may obviously decrease
the effective lifetime.

4.2 Selecting Dependable Cryptographic Infrastructures

It is straightforward to use Table 2 (or equation (7)) also to look up the fail-
ure rate that is necessary to guarantee the desired negligible risk of key expo-
sure, given a required key lifetime and cryptographic scheme. Suppose one needs
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Fig. 1. Reliability goals for CKFT values in the internal (0,9), with Pr. Key Exposure
ε = 2−40. Mission times are expressed in hours.
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to choose a cryptographic infrastructure among a number of alternatives, each
characterized by different costs. The entire system must be able to use a crypto-
graphic key with failure tolerance 9 and a lifetime of 4 years, while keeping the
risk of key exposure below 2−128. Expressing the failure rate as a function of the
reliable life from equation (7) one finds that is sufficient to select an infrastruc-
ture characterized by a failure rate not greater than 4× 10−9 failures/hours.

4.3 Scaling-Out Cryptographic Infrastructures

Suppose now that one wants to provide a cryptographic service with an infras-
tructure characterized at the initial stage by a pool of l cryptographic devices
and needs to scale up it, without changing the key material and guaranteeing a
risk of key exposure not greater than 2−40.
If the number h of additional sub-system that will be added in the future, and
the respective failure rates µm

h , are known a priori, and there is a required
lifetime, it is possible to use Table 2 to look up the column with failure rate∑l

i=1 µm
i +

∑h
j=1 µm

h to find the first level of failure tolerance nmin, character-
ized by an error bound greater than or equal to the desired one. In this scenario,
the cryptographic key must be characterized by a level of failure tolerance greater
than or equal to nmin. It is worth to note that these are conservative estimates,
since all the l + h components are assumed to start their operation simultane-
ously.
If the failure rates of the additional sub-system is not known a priori and it is

necessary to use a cryptographic scheme with failure tolerance n, it is possible to
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Table 3. Effective risk of key exposure for credentials in Cm
0 . The estimates are com-

puted for a number of typical lifetimes (in years) and failure rates (failures/hours). The
exponents are rounded up to the nearest integer.

T µm
0 µm

1 µm
2 µm

3 µm
4 µm

5 µm
6

↓ 1× 10−15 1× 10−14 1× 10−13 1× 10−12 1× 10−11 1× 10−10 1× 10−9

1 2−36 2−33 2−30 2−26 2−23 2−20 2−16

2 2−35 2−32 2−29 2−25 2−22 2−19 2−15

3 2−35 2−31 2−28 2−25 2−21 2−18 2−15

4 2−34 2−31 2−28 2−24 2−21 2−18 2−14

5 2−34 2−31 2−27 2−24 2−21 2−17 2−14

10 2−33 2−30 2−26 2−23 2−20 2−16 2−13

20 2−32 2−29 2−25 2−22 2−19 2−15 2−12

lookup the row n of Table 2, to find the first failure rate µm
max, characterized by

an error bound greater than or equal to the desired lifetime of keys. In this sec-
ond scenario, the final failure rate of the cryptographic infrastructure

∑l+h
i=1 µm

i

must be less then or equal to µm
max. Hence, the sum of the failure rates of the

additional sub-systems needs to be:
∑h

j=1 µm
j ≤ µm

max −
∑l

i=1 µm
i .

5 Practical Consequences of the Presented Estimates

According to equation (8), in order to achieve a reliable life long at least one
year, while requiring ε = 2−40, cryptographic keys that do not tolerate any er-
roneous computation (i.e., Cm

0 ) must be used on a cryptographic infrastructure
that fail with a rate lower than µm = 1.04× 10−16 failures/hours. The required
rates decreases further when lower error-bounds are desired.
These are certainly very low rates. Although it is possible to design highly re-
liable cryptographic modules, the costs necessary during the design and assess-
ment phases and the still low reliable life strongly limits the number of scenarios
where keys especially susceptible to erroneous computation may find applica-
tion. Unfortunately, this is the case of RSA keys used with CRT-based imple-
mentations [9, 8]. The same considerations applies for keys in Cm

1 at failure rates
beyond 9.54× 10−5 failures/hours.
In today’s cryptographic applications (e.g., e-commerce and bank secure web
servers, smart IC cards) it is common to find RSA keys used with CRT-based im-
plementation characterized by lifetimes long months, or years. These lifetimes are
selected without modeling the risk of key exposure in the presence of faults. Table
3 provides estimates of this risk for cryptographic credentials with CKFT = 0.
The probabilities are furnished for typical lifetimes and failure rates, using (6)
and (8). The exponents are rounded up to the nearest integer. The estimates
shows hazard rates likely beyond those initially predicted, without considering
dependability metrics.
In the next section we emphasize the importance of choosing keys with a good
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Table 4. Minimal CKFT required to enable the selection of key lifetimes long up to
Tmax = 200 years, for a number of ε and µ. γ = 0.

ε µm
0 µm

1 µm
2 µm

3 µm
4 µm

5 µm
6

↓ 1× 10−15 1× 10−14 1× 10−13 1× 10−12 1× 10−11 1× 10−10 1× 10−9

2−40 1 1 1 2 2 3 4
2−64 2 2 2 3 4 5 6
2−80 2 3 3 4 5 6 8
2−128 4 4 5 6 8 10 13
2−256 8 9 11 13 16 20 27

CKFT values, by offering estimates of minimal values of this metric necessary to
enable the selection of key lifetimes long enough for any real application scenario.

5.1 On the Importance of Good CKFT Values

Let Tmax a maximum desirable key lifetime (i.e., the maximum lifetime of a
key for any real application scenario). From (6) and (8) follows that the min-
imum value of CKFT required to guarantee a desired ε using a cryptographic
infrastructure with failure rate µm, is given by:

CKFTm
min = dlnQ(Tmax−γ) ε− 1e (9)

In Table 4 we provide the minimal CKFT values for a number of error-bounds
and failure rates, and with Tmax = 200 years.

6 Conclusions

As long as the mathematical models of cryptography are not extended to the
physical setting [1, 18], reliability and security will remain strictly related. Con-
sequently, security policies will have to be developed by carefully taking into
account the peculiarities inherent the physical execution of any algorithm. In
this paper we have offered a first framework that enables to bound the risk of
key exposure in the presence of faults, by modeling the reliability of typical cryp-
tographic infrastructures and relating their failure rates, the failure tolerance of
the cryptographic keys, and the desired (negligible) error-bound, to the lifetime
of keys.
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