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Abstract. The cost of the folklore algorithm for computing cube roots
in F3m in standard polynomial basis is less that one multiplication, but
still O(m2). Here we show that, if F3m is represented in trinomial basis
as F3[x]/(xm + axk + b) with a, b = ±1, the actual cost of computing
cube roots in F3m is only O(m).

1 Introduction

The fastest method known for computing the Tate pairing on supersingular el-
liptic curves over F3m is the Duursma-Lee algorithm [1], which involves the com-
putation of cube roots in that finite field. An efficient foklore algorithm for cube
root extraction in standard polynomial basis (described e.g. in [3, section 5.2],
whereby taking roots reduces to two multiplications by constant field elements.
Since the degree of one of the involved factors in each multiplication is at most
m/3, the overall cost of the “folklore” algorithm is actually about two thirds of
one F3m multiplication.

While this algorithm improves upon other methods like solving a linear equa-
tion, it still takes O(m2) operations. It turns out, however, that further improve-
ments are possible when F3m is represented as F3[x]/(xm + axk + b) with k ≡ m
(mod 3). Specifically, we will show that the other factors involved in the multi-
plications are a binomial and a trinomial, so that the incurred cost is only five
shifts. Better yet, the degrees and the shift amounts are such that no reduction
is needed (that is, all terms resulting from these operations have degrees smaller
than m).

A similar technique has been devised to take square roots in characteristic 2
by Fong et al. [2]. Clearly, it also generalizes to higher characteristic p, although
the number of relevant cases allowed by the condition k ≡ m (mod p) becomes
quite restricted.

2 The folklore algorithm

We assume throughout this note that m is prime and that F3m is represented
as F3[x]/(xm + axk + b), with a, b = ±1. As we will see, the folklore algorithm



involves multiplications by x1/3 and x2/3. The other factor in these products has
degree not exceeding m/3.

For any c ∈ F3m , we denote by c�n the value cxn, which is c left-shifted by
n positions and suitably reduced when necessary.
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r = c0 + x1/3 · c1 + x2/3 · c2.

2.2 Case m ≡ 2 (mod 3)

Let m = 3u + 2. The folklore algorithm reads:
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r = c0 + x1/3 · c1 + x2/3 · c2.

3 Exploiting trinomial representation

Using a trinomial representation is advantageous for implementing modular re-
duction. We now show that a careful trinomial choice is also advantageous for
taking cube roots when k ≡ m (mod 3). We consider separately the cases m ≡ 1
(mod 3) and m ≡ 2 (mod 3). Notice that in either case no modular reduction is
needed, since all terms are smaller than m.



3.1 Case m ≡ 1 (mod 3), k ≡ 1 (mod 3)

Let m = 3u + 1 and k = 3v + 1. We observe that x3u+1 + ax3v+1 + b = 0 =⇒
x2/3 = −bxu+1 − abxv+1 =⇒ x1/3 = x2u+1 − axu+v+1 + x2v+1.

Thus 3
√

r = c0 + x1/3 · c1 + x2/3 · c2 = c0 + c1(x2u+1 − axu+v+1 + x2v+1) −
c2(bxu+1 + abxv+1) = c0 + c�2u+1

1 − ac�u+v+1
1 + c�2v+1

1 − bc�u+1
2 − abc�v+1

2 .

3.2 Case m ≡ 2 (mod 3), k ≡ 2 (mod 3)

Let m = 3u + 2 and k = 3v + 2. We observe that x3u+2 + ax3v+2 + b = 0 =⇒
x1/3 = −bxu+1 − abxv+1 =⇒ x2/3 = x2u+2 − axu+v+2 + x2v+2.

Thus 3
√

r = c0 + x1/3 · c1 + x2/3 · c2 = c0 − c1(bxu+1 + abxv+1) + c2(x2u+2 −
axu+v+2 + x2v+2) = c0 − bc�u+1

1 − abc�v+1
1 + c�2u+2

2 − ac�u+v+2
2 + c�2v+2

2 .

4 Examples

Several fields of interest for pairing-based cryptosystems admit an irreducible
trinomial xm + axk + b with the optimal property k ≡ m (mod 3); in table 1 we
list a few with a = 1 and b = −1.

finite field irreducible trinomial

F397 x97 + x16 − 1

F3167 x167 + x92 − 1

F3193 x193 + x64 − 1

F3239 x239 + x26 − 1

Table 1. Trinomials xm + xk − 1 such that k ≡ m (mod 3).

Timings for the Duursma-Lee algorithm are given in table 2. These timings
refer to a C++ implementation running on an Athlon XP 2GHz; the pairing
algorithm itself was implemented according to the guidelines in [4]. We see that
the overall pairing time decreases by about 10% with the use of trinomials.

finite field plain trinomial

F397 4.828 4.328

F3167 27.047 24.625

F3193 33.922 31.062

F3239 63.562 57.344

Table 2. Timings of the Duursma-Lee (in ms).



5 Conclusion

We described an improvement for the folklore cube root algorithm in character-
istic 3, an important operation for the efficient computation of the Tate pairing
on supersingular elliptic curves. The complexity of our technique is only O(m)
rather than O(m2).
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