
An Access Control Scheme for

Partially Ordered Set Hierarchy

with Provable Security

Jiang Wu and Ruizhong Wei?

Department of Computer Science, Lakehead University

Thunder Bay, Ontario P7B 5E1, Canada

jwu1@lakeheadu.ca

wei@ccc.cs.lakeheadu.ca

Abstract. In a hierarchical structure, an entity has access to another

if and only if the former is a superior of the later. The access control

scheme for a hierarchy represented by a partially ordered set (poset) has

been researched intensively in the past years. In this paper, we propose

a new scheme that achieves the best performance of previous schemes

and is provably secure under a comprehensive security model.

1 Introduction

In many situations, the hierarchical systems can be represented by a partially

ordered set (poset). In such a hierarchy, all users are allocated into a number of

disjoint sets of security classes p1, p2, · · · , pn. A binary relation ≤ partially orders

the set P = {p1, p2, · · · , pn, }. The users in pj have access to the information

held by users in pi if and only if the relation pi ≤ pj held in the poset (P,≤).

If pi ≤ pj , pi is called a successor of pj , and pj is called a predecessor of pi. If

there is no pk such that pi ≤ pk ≤ pj , the pi is called an immediate successor of

pj , and pj is called an immediate predecessor of Ci.

A straightforward access control scheme for poset hierarchy is to assign each

class with a key, and let a class have the keys of all its successors. The information

belonging to a class is encrypted with the key assigned to that class, therefore the

predecessors have access to the information of their successors. This is awkward

because the classes in higher hierarchy have to store a large number of keys. In
? Research supported by NSERC grant 239135-01

the past two decades, many schemes based on cryptography have been proposed

to ease the key management in the hierarchy. Generally, these schemes are aimed

to fully or partly achieve the following goals:

– Support any arbitrary poset. It is desirable that any arbitrary poset is sup-

ported. Some schemes only support special cases of poset such as a tree.

Such schemes are considered restrictive in application.

– Be secure under attacks. The schemes are supposed to withstand attacks.

For example, a user may try to derive the key of a class that is not his/her

successor. The schemes should be secure under all possible attacks.

– Require small storage space. Any scheme needs a user in a class to store a

certain amount of secret or public parameters for key derivation. All the

schemes tried to reduce the amount of parameters stored.

– Support dynamic poset structures. The structure of a hierarchy may change.

Classes may be added to or deleted from the hierarchy. In these cases the

users in the classes (not only the ones added and deleted) need to update

the parameters they store. It is desirable that when a change takes place,

the number of classes involved in updating their parameters is as small as

possible.

Several hierarchical access control schemes have been proposed in the last two

decades. [1–3] are direct access schemes based on the RSA problem. In a direct

access scheme, a predecessor can derive the key of a successor directly from

the public parameters of that successor. These scheme are proven secure under

a general security model. The disadvantages of this group of schemes include

large storage spaces and lack of dynamics. [4–6] are indirect access schemes

based on one-way functions. In these schemes, to derive the key of a successor,

a predecessor has to derive the key of each class between them. The indirect

schemes achieve smaller storage spaces and better dynamics. However, [4] only

supports tree hierarchies. None of the indirect access schemes provided formal

security proof under a general secure model, except in [5] a sketch was given, but

[7] indicated that there are problems in real implementation of the scheme in

[5]. For these existing hierarchical access control schemes, to achieve the above

four requirements simultaneously is still a challenge.

In this paper, we propose a new scheme that is superior to the previous

schemes in that it provides both good performance and provable security, and

is easy to implement. When we talk about security of the hierarchical access

control scheme, we refer to the following security model:

Definition 1. A hierarchical access control scheme for poset hierarchy is secure

if for any group of classes in the poset, it is computationally infeasible to derive

the key of any class that is not a member of that group, nor a successor of any

member of that group.

Our scheme is an indirect access scheme, which has similar performance in stor-

age and dynamics to other indirect access schemes. The significant part of our

scheme is its formal security proof under this comprehensive security model,

which the previous indirect access schemes did not provide.

The rest of this paper is organized as follows: Section 2 presents the scheme,

Section 3 analyzes its security, Section 4 compares the performance of the schemes,

and Section 5 concludes this paper.

2 Proposed Scheme

2.1 Preliminary

Poset Representation For a given hierarchy structure, its corresponding poset

(P,≤) can be represented by a Hasse diagram, which is a graph whose nodes are

classes of P and the edges correspond to the ≤ relation (in the rest of the paper

we use “node” and “class” interchangeably). An edge from pj ∈ P to pi ∈ P
is present if pi < pj and there is no pk ∈ P such that pi < pk and pk < pj .

If pi < pj , then pj is drawn higher than pi. Because of that, the direction of

the edges is not indicated in a Hasse diagram. Fig. 1 shows an example of poset

represented as a Hasse diagram.

Auxiliary Function We introduce a function that will be used in our scheme

below. Let p = 2q + 1 where p, q are all odd primes. Let G be the subgroup of

Z∗
p of order q. We define a function f : G → [1, q] as follows:

f(x) =

x; x ≤ q

p− x; x > q
(1)

For any x ∈ Z∗
p, if x ∈ G, then −x /∈ G. So the above function is a bijection. If x

is a random variable uniformly distributed on G, f(x) is uniformly distributed

on [1, q].

1

2 3

4 5 6 7

8 9 10 11 12

Fig. 1. Example of a Hasse diagram

2.2 Key Management

The key management of the scheme consists of two procedures: the key genera-

tion and the key derivation.

Key Generation

1. The central authority (CA) chooses a group Z∗
p, where p = 2q + 1, p and q

are both large primes. G is the subgroup of Z∗
p of order q.

2. From the top-level classes, the CA traverses the Hasse diagram of the hi-

erarchy with width-first algorithm. For each node pi, run the following key

assignment algorithm to assign its public parameters gi, hi,j and a secret

key ki:

For example, the nodes in Fig. (1) will be assigned with the following secret key

and public parameters:

Algorithm 1 Key Assignment
set gi to be a unique generator of G
if pi does not have any immediate predecessor then

set ki to be a number chosen from [1, q] at random

else if pi has only one immediate predecessor pj then

ki = f(g
kj

i)

else

{comment: pi has more than one immediate predecessors}
let X be the set of keys of pi’s immediate predecessors

x =
∏

xi∈X xi

ki = f(gx
i)

for all xj ∈ X do

hi,j = g
x/xj

i

end for

end if

Node ID secret key public parameters

1 k1 -

2 k2 = f(gk1
2) g2

3 k3 = f(gk1
3) g3

4 k4 = f(gk2k3
4) h4,2 = gk3

4 , h4,3 = gk2
4

5 k5 = f(gk2
5) g5

6 k6 = f(gk3
6) g6

7 k7 = f(gk3
7) g7

8 k8 = f(gk4
8) g8

9 k9 = f(gk4k5
9) h9,4 = gk5

9 , h9,5 = gk4
9

10 k10 = f(gk3k4k5
10) h10,3 = gk4k5

10 , h10,4 = gk3k5
10 , h10,5 = gk3k4

10

11 k11 = f(gk6k7
11) h11,6 = gk7

11 , h11,7 = gk6
11

12 k12 = f(gk7
12) g12

Key Derivation When a node needs to compute the key of one successor, it

finds a path from itself to the successor in the Hasse diagram of the hierarchy.

Starting from its immediate successor in the path, the node go through the

path, and computes ki of every successor pi along the path with the following

algorithm:

Algorithm 2 Key Derivation
if pi has only one predecessor pj then

ki = f(g
kj

i)

else

{comment: pj is the predecessor of pi that is on the path}
ki = f(h

kj

i,j)

end if

For example, in Fig. 1, node 1 is to derive the key of node 10. It finds the

path 1 → 3 → 10, and does the following computations:

k3 = f(gk1
3)

k10 = f(hk3
10,3)

The correctness of the scheme is easy to be verified by reviewing the proce-

dures in key generation and key derivation.

3 Security Analysis

3.1 Preliminary

On the group G used in our scheme, two standard assumptions, the discrete

logarithm (DL) assumption and decisional Diffie-Hellman (DDH) assumption

are believed to hold [8]. Another assumption, named group decisional Diffie-

Hellman (GDDH) assumption is proven to hold based on DDH assumption on G
too [9, 10]. To be concrete, let g be a generater of G, a, b, c be random variables

uniform on [1, q], X be a set of random variables uniform on [1, q], l be the binary

length of q. Suppose |X | is polynomially bounded by l. Let
∏

(S) indicate the

product of all elements in the set S. For any probabilistic polynomial time (in l)

algorithms A, any polynomial Q, for l large enough, the three assumptions are

formally expressed as follows:

DL assumption:

Pr[A(g, ga) = a] <
1

Q(l)

DDH assumption:

|Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]| < 1
Q(l)

For convenience, we use the notation from [9] to simplify the expression. We

say that the probabilistic distributions (g, ga, gb, gab) and (g, ga, gb, gc) are

polynomially indistinguishable, and denote them as

(g, ga, gb, gab) ≈poly (g, ga, gb, gc)

GDDH assumption:

|Pr[A(g, g
∏

(X), g
∏

(S)|S ⊂ X) = 1]− Pr[A(g, gc, g
∏

(S)|S ⊂ X) = 1]| < 1
Q(l)

or denoted as

(g, g
∏

(X), g
∏

(S)|S ⊂ X) ≈poly (g, gc, g
∏

(S)|S ⊂ X)

3.2 Security Proof

The security of our scheme is based on the above three assumptions. In the

following parts, we prove the scheme is secure under Definition 1. We suppose

the number of nodes in P is polynomially bounded by l (the binary length of |G|),
and all the algorithms considered below are polynomial time (in l) algorithms.

We choose an arbitrary node pt ∈ P and suppose its secret key is kt. Let A
be the set of predecessors of pt. We need to prove that, even when all the nodes

in P −A−{pt} conspire, it is computationally intractable for them to derive kt.

We group the set P−A−{pt} into three subsets: B the set of nodes in P−A
which do not have predecessors in P−A, and which is not pt; D the set of nodes

that are immediate successors of pt; R = P −A− {pt} − B −D. The followings

relations between B, D and R are direct from their definitions:

– B ∪ D ∪R = P −A− {pt}
– B ∩ D = ∅, R∩ B = ∅ and R∩D = ∅
– the nodes in R are successors of the nodes in B, or D, or both

An example of the above partition is as follows: in Fig. 1, suppose node 4

is the one we choose as the node pt, then A = {1, 2, 3},B = {5, 6, 7},D =

{8, 9, 10},R = {11, 12}.
First we consider when all nodes in B conspire, what information about kt

they can learn. Suppose the generator assigned to node pt is gt, X is the set of

secret keys of the immediate predecessors of node pt. Let
∏

(S) be the product

of all elements in the set S. Let x =
∏

(X), then kt = gx
t . The public parameters

of pt are

{gt, g
∏

(S)
t |S ⊂ X and |S| = |X | − 1}

The nodes bi ∈ B with generators gbi
, i ∈ [1, n] may share the same predeces-

sors with node pt, thus may hold a subset of {g
∏

(S)
bi

|S ⊆ X} as their public

parameters or secret keys. We assume that

{gbi
, g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

is all the information possibly held by nodes in B that is related to kt. So the

public parameters of pt, plus the information pertaining to kt held by B is a

subset of

{gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

We have the following result showing that even all nodes in B conspire, with

the above information, they can not distinguish kt from a random number on

[1, q]. For convenient expression, the following theorem and its proof follow the

notation style similar to that in [9].

Theorem 1. Suppose DDH and GDDH assumptions hold on the group G. Let

c be a random variable uniform on [1, q]. The two distributions

Vbn
=

(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, {gbi

, g
∏

(S)
bi

|S ⊆ X , i ∈ [1, n]}
)

and

V ′
bn

=
(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, {gbi

, g
∏

(S)
bi

|S ⊆ X , i ∈ [1, n]}
)

are indistinguishable.

Proof. From GDDH assumption we have(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}

)
≈poly

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}

)
A polynomial time algorithm can choose z uniformly from [1, q] at random, and

reduce the above GDDH distribution pair to

Vb =
(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)x, {(gz

t)
∏

(S)|S ⊂ X}
)

V ′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c, {(gz

t)
∏

(S)|S ⊂ X}
)

respectively. It follows that

Vb ≈poly V ′
im. (2)

Let c1 be a random variable uniform on [1, q]. Since zc1 is independent of z and

c, from DDH, we have

(gt, g
z
t , gc

t , g
zc
t) ≈poly (gt, g

z
t , gc

t , g
zc1
t)

A polynomial time (in l) algorithm can choose X that is a set of random variables

uniform on [1, q], and whose order is polynomially bounded by l, and reduce the

above DDH distribution pair to

V ′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c, {(gz

t)
∏

(S)|S ⊂ X}
)

V ′′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c1 , {(gz

t)
∏

(S)|S ⊂ X}
)

respectively. It follows that

V ′
im ≈poly V ′′

im (3)

Similarly, by choosing z and c uniformly from [1, q] at random, a polynomial

time (in l) algorithm can reduce the GDDH distribution pair(
gc1

t , {gt, g
∏

(S)
t |S ⊂ X}

)
≈poly

(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}

)
.

to

V ′′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c1 , {(gz

t)
∏

(S)|S ⊂ X}
)

V ′
b =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)x, {(gz

t)
∏

(S)|S ⊂ X}
)

.

respectively. It follows that

V ′′
im ≈poly V ′

b (4)

From (2), (3) and (4), We conclude

Vb ≈poly V ′
b

i.e., (
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , {(gz
t)

∏
(S)|S ⊆ X}

)
≈poly

(
gc

t , {gt, g
∏

(S)
t |S ⊆ X}, gz

t , {(gz
t)

∏
(S)|S ⊆ X}

)
.

By choosing zi, i ∈ [1, n] uniformly from [1, q] at random, a polynomial time

algorithm can reduce Vb and V ′
b to(

gx
t , {gt, g

∏
(S)

t |S ⊂ X}, {gzzi
t , (gzzi

t)
∏

(S)|S ⊆ X , i ∈ [1, n]}
)

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X , {gzzi

t , (gzzi
t)

∏
(S)|S ⊆ X , i ∈ [1, n]}

)
It follows that

Vbn
≈poly V ′

bn
.

This completes our proof ut

Then we consider when the nodes in B and D conspire, what information about

kt they can learn. The nodes di ∈ D assigned with generator gdi
, i ∈ [1,m] may

hold a subset of the following information pertaining to kt:

{gdi
, gkt

di
|i ∈ [1,m]}.

The following theorem shows that even all nodes in B and D conspire, they can

not derive kt:

Theorem 2. It is intractable for any polynomial time (in l) algorithm to derive

gx
t from

I = {gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]} ∪ {gdi , g

f(gx
t)

di
|i ∈ [1,m]},

i.e., for any polynomial time (in l) algorithm A, any polynomial Q, if l is suffi-

ciently large, then

Pr [A (I) = f(gx
t)] <

1
Q(l)

.

Proof. For convenience, let

V = {gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi

, g
∏

(S)
bi

|S ⊆ X , i ∈ [1, n]}.

Step 1. Assume that there exist a polynomial time (in l) algorithm B, a

polynomial Q1 and a number L, for l > L

Pr[B(V, gd, g
f(gx

t)
d) = f(gx

t)] ≥ 1
Q1(l)

(5)

where gd is a generator of G.

Let c be a random variable uniform on [1, q], Q2(l) = 2Q1(l). Suppose l is

large enough. We consider the following two cases

Algorithm 3 C(gd, g
z
d)

choose a generator of G as gt

choose a set of n distinct generators of G as B
choose a set of random variables uniform on [1, q] as X
compute V with gt, B and X
return B(V, gd, gz

d)

– Case 1: Pr[B(V, gd, g
f(gc

t)
d) = f(gc

t)] ≥ 1
Q2(l)

Notice that c is a random variable independent of V. Let z ∈ [1, q], we define

the following algorithm C(gd, g
z
d):

The algorithm C is a polynomial time (in l) algorithm. Since z = f(gc
t) for

some c ∈ [1, q] (though we do not know c), we have

Pr[C(gb, g
z
b) = z] = Pr[B(V, gd, g

f(gc
t)

d) = f(gc
t)]

≥ 1
Q2(l)

.

This contradicts the DL assumption.

– Case 2: Pr[B(V, gd, g
f(gc

t)
d) = f(gc

t)] < 1
Q2(l)

From this inequality and (5), we have

Pr[B(V, gd, g
f(gx

t)
d) = f(gx

t)]− Pr[B(V, gd, g
f(gc

t)
d) = f(gc

t)]

≥ 1
Q1(l)

− 1
Q2(l)

=
1

Q2(l)
(6)

Let z ∈ G, we define the algorithm D(V, z) in Algorithm 4.

Algorithm 4 D(V, z)
choose a generator of G as gb

if B(V, gd, g
f(z)
d) = f(z) then

return 1

else

return 0

end if

D is a polynomial time (in l) algorithm. From (6), we have

Pr[D(V, gx
t) = 1]− Pr[D(V, gc

t) = 1]

= Pr[B(V, gd, g
f(gx

t)
d) = f(gx

t)]− Pr[B(V, gd, g
f(gc

t)
d) = f(gc

t)]

≥ 1
Q2(l)

.

That means D can distinguish the two distributions:

(V, gx
t) and (V, gc

t) .

This contradicts to Theorem 1.

Combining Case 1 and Case 2, we conclude that for any polynomial time (in l)

algorithm B, any polynomial Q, for sufficiently large l,

Pr

[
B(V, gd, g

f(gx
t)

d) = f(gx
t)

]
<

1
Q(l)

(7)

Step 2. Assume there exist a polynomial time (in l) algorithm A, a polyno-

mial Q and a number L such that for l > L,

Pr

[
A

(
V, {gdi

, g
f(gx

t)
di

|i ∈ [1,m]}
)

= f(gx
t)

]
≥ 1

Q(l)
.

Let B(V, gd, g
f(gx

t)
d) = A(V, {gzi

d , g
zif(gx

t)
d |i ∈ [1,m]}) where z1, · · · , zm are ran-

dom variables uniform on [1, q], and m is polynomially bounded by l. We have

Pr

[
B(V, gd, g

f(gx
t)

d) = f(gx
t)

]
= Pr

[
A(V, {gzi

d , (gzi

d)f(gx
t)|i ∈ [1,m]} = f(gx

t)
]

≥ 1
Q(l)

This contradicts (7). Therefore for any polynomial time (in l) algorithm A, any

polynomial Q, for sufficiently large l,

Pr

[
A

(
V, {gdi , g

f(gx
t)

di
|i ∈ [1,m]}

)
= f(gx

t)
]

<
1

Q(l)
,

i.e.,

Pr [A (I) = f(gx
t)] <

1
Q(l)

.

This completes our proof. ut

Finally, we consider when all the nodes in B, D, and R conspire, whether

they are able to derive kp. Since all the nodes in R are successors of B or D

or both, the information held by R can be derived by a polynomial time (in l)

algorithm from the information held by B and D. Thus if B ∪ D ∪R can derive

kp, then B ∪ D can derive kp. This contradicts to Theorem (2). Therefore we

conclude that the scheme is secure under the security model defined in Definition

(1).

4 Performance Analysis

4.1 Storage Requirement

Our scheme is an indirect access scheme, and has similar storage requirement

with other indirect schemes. In a hierarchy with N nodes where each node has

at most M predecessors, the storage space required for a single node is about M

for our scheme and other indirect schemes. For the direct schemes, to store the

public information of one node, the maximum storage is about N numbers, or

the product of the n numbers. In a real situation, N would be much greater than

M , and N will increase as the scale of the hierarchy increases, while M usually

keeps constant. So the indirect schemes achieves require less storage than the

direct schemes.

4.2 Dynamics

As an indirect hierarchical access scheme, the operation of adding, deleting a

node or link in our scheme is similar to other indirect access schemes. When

a node is added or deleted, or a link is added to or deleted from a node, only

the nodes that are successors of that node will be impacted, i.e., the secret key

and public parameters of those nodes need to be updated. The direct schemes

are quite different. In Akl-Taylor scheme, when a node is added or deleted,

all the nodes except for its successors have to update their secret keys and

public parameters. In Harn-Lin scheme, when a node is added or deleted, all its

predecessors will be impacted. In addition, for these two schemes, to prevent a

deleted node to access its former successors, the keys of these successors have to

be changed too. In a practical hierarchy, there are much more low level nodes

than high level nodes, and it is more likely that the low level nodes will change.

Therefore in an indirect scheme, less nodes are impacted than in a direct scheme

when the hierarchy structure changes. The indirect schemes are more suitable

than direct schemes for a dynamic hierarchy.

4.3 Performance Summary

In summary, in view of performance in storage and dynamics, although our

scheme does not improve previous indirect schemes, it inherits their perfor-

mances, which are better than those of the direct schemes.

5 Conclusion

In this paper we proposed a new access control scheme for poset hierarchy. This

scheme is concrete and practical for implementation. It supports any arbitrary

poset, achieves the best performance of previous schemes, and provides a for-

mal security proof under a comprehensive security model. None of the previous

schemes achieved the properties as fully as ours does. Our scheme provides a so-

lution with both practice and theoretical significance for the hierarchical access

control problem.

Acknowledgment

The authors are grateful to David Wagner and Kristian Gjøteen for their helpful

discussions on the security proof of the scheme.

References

1. Selim G. Akl, Peter D. Taylor, Cryptographic solution to a problem of access

control in a hierarchy, ACM Transactions on Computer Systems (TOCS) archive

Volume 1 , Issue 3 (August 1983)

2. Stephen J. MacKinnon , Peter D. Taylor , Henk Meijer , Selim G. Akl, An optimal

algorithm for assigning cryptographic keys to control access in a hierarchy, IEEE

Transactions on Computers, v.34 n.9, p.797-802, Sept. 1985

3. L. Harn , H.-Y. Lin, A cryptographic key generation scheme for multilevel data

security, Computers and Security, v.9 n.6, p.539-546, Oct. 1990

4. Ravinderpal S. Sandhu, Cryptographic implementation of a tree hierarchy for ac-

cess control, Information Processing Letters, v.27 n.2, p.95-98, February 29, 1988

5. Y. Zheng, T. Hardjono and J. Pieprzyk, The sibling intractable function family

(SIFF): notion, construction and applications, IEICE Transactions on Fundamen-

tals of Electronics, Communications and Computer Science, Vol. E76-A, No. 1, pp.

4-13, January 1993

6. Sheng Zhong, A practical key management scheme for access control in a user

hierarchy, Computers & Security, Volume 21, Issue 8, November 2002, Pages 750-

759

7. Narn-Yih-Lee, Tzonelih Hwang, A Pseudo-key scheme for dynamic access control

in a hierarchy, Journal of Inforamtion Science and Engineering, Vol.10 No.4, De-

cember 1994, pp.601-610

8. D. Boneh, The decision Diffie-Hellman problem. In Proceedings of the Third Al-

gorithmic Number Theory Symposium, Lecture Notes in Computer Science, Vol.

1423, Springer-Verlag, pp. 48–63, 1998.

9. Michael Steiner, Gene Tsudik, and Michael Waidner, Diffie-Hellman key distri-

bution extended to group communication, in ACM Conference on Computer and

Communications Security, 1996, pp. 31-37.

10. Emmanuel Bresson, Olivier Chevassut and David Pointcheval, The group Diffie-

Hellman problems, Proceedings of Selected Areas in Cryptography (SAC’02), St

John’s, Newfoundland, Canada, August 15 - 16, 2002

