
The Rabbit Stream Cipher - Design and Security Analysis

Martin Boesgaard, Thomas Pedersen, Mette Vesterager, and Erik Zenner

CRYPTICO A/S
Fruebjergvej 3

2100 Copenhagen
Denmark

info@cryptico.com

Abstract. The stream cipher Rabbit was first presented at FSE 2003 [6]. In the paper at hand,
a full security analysis of Rabbit is given, focusing on algebraic attacks, approximations and
differential analysis. We determine the algebraic normal form of the main nonlinear parts of
the cipher as part of a comprehensive algebraic analysis. In addition, both linear and nonlinear
approximations of the next-state function are presented, as well as a differential analysis of the
IV-setup function. None of the investigations have revealed any exploitable weaknesses. Rabbit
is characterized by high performance in software with a measured encryption/decryption speed
of 3.7 clock cycles per byte on a Pentium III processor.
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1 Introduction

Rabbit was first presented at the Fast Software Encryption workshop in 2003 [6]. Since then,
an IV-setup function has been designed, and additional security analysis has been completed.
The main results are presented in this paper.

The Rabbit algorithm can briefly be described as follows. It takes a 128-bit secret key
and a 64-bit IV (if desired) as input and generates for each iteration an output block of
128 pseudo-random bits from a combination of the internal state bits. Encryption/decryption
is done by XOR’ing the pseudo-random data with the plaintext/ciphertext. The size of the
internal state is 513 bits divided between eight 32-bit state variables, eight 32-bit counters
and one counter carry bit. The eight state variables are updated by eight coupled non-linear
functions. The counters ensure a lower bound on the period length for the state variables.

Rabbit was designed to be faster than commonly used ciphers and to justify a key size of
128 bits for encrypting up to 264 bytes of plaintext. This means that for an attacker who does
not know the key, it should not be possible to distinguish up to 264 bytes of cipher output
from the output of a truly random generator, using less steps than would be required for an
exhaustive key search over 2128 keys.

1.1 Organization and Notation

In section two, we describe the design of Rabbit in detail. We discuss the cryptanalysis of
Rabbit in section three, and in section four the performance results are presented. We conclude
and summarize in section five. Appendix A contains the ANSI C code for Rabbit. Note that
the description below and the source code are specified for little-endian processors (e.g. most
Intel processors). Appendix B contains test vectors.

We use the following notation: ⊕ denotes logical XOR, � and � denote left and right
logical bit-wise shift, ≪ and ≫ denote left and right bit-wise rotation, and � denotes con-
catenation of two bit sequences. A[g..h] means bit number g through h of variable A. When



numbering bits of variables, the least significant bit is denoted by 0. Hexadecimal numbers
are prefixed by ”0x”. Finally, we use integer notation for all variables and constants.

2 The Rabbit Stream Cipher

The internal state of the stream cipher consists of 513 bits. 512 bits are divided between eight
32-bit state variables xj,i and eight 32-bit counter variables cj,i, where xj,i is the state variable
of subsystem j at iteration i, and cj,i denotes the corresponding counter variable. There is
one counter carry bit, φ7,i, which needs to be stored between iterations. This counter carry
bit is initialized to zero. The eight state variables and the eight counters are derived from the
key at initialization.

2.1 Key Setup Scheme

The algorithm is initialized by expanding the 128-bit key into both the eight state variables
and the eight counters such that there is a one-to-one correspondence between the key and
the initial state variables, xj,0, and the initial counters, cj,0.

The key, K [127..0], is divided into eight subkeys: k0 = K [15..0], k1 = K [31..16], ... , k7 =
K [127..112]. The state and counter variables are initialized from the subkeys as follows:

xj,0 =

{

k(j+1 mod 8) � kj for j even

k(j+5 mod 8) � k(j+4 mod 8) for j odd
(1)

and

cj,0 =

{

k(j+4 mod 8) � k(j+5 mod 8) for j even

kj � k(j+1 mod 8) for j odd.
(2)

The system is iterated four times, according to the next-state function defined in section
2.3, to diminish correlations between bits in the key and bits in the internal state variables.
Finally, the counter variables are modified according to:

cj,4 = cj,4 ⊕ x(j+4 mod 8),4 (3)

for all j, to prevent recovery of the key by inversion of the counter system.

2.2 IV Setup Scheme

Let the internal state after the key setup scheme be denoted the master state, and let a copy
of this master state be modified according to the IV scheme. The IV setup scheme works by
modifying the counter state as function of the IV. This is done by XORing the 64-bit IV on
all the 256 bits of the counter state. The 64 bits of the IV are denoted IV [63..0]. The counters
are modified as:

c0,4 = c0,4 ⊕ IV [31..0] c1,4 = c1,4 ⊕ (IV [63..48] � IV [31..16])

c2,4 = c2,4 ⊕ IV [63..32] c3,4 = c3,4 ⊕ (IV [47..32] � IV [15..0])

c4,4 = c4,4 ⊕ IV [31..0] c5,4 = c5,4 ⊕ (IV [63..48] � IV [31..16]) (4)

c6,4 = c6,4 ⊕ IV [63..32] c7,4 = c7,4 ⊕ (IV [47..32] � IV [15..0]).

The system is then iterated four times to make all state bits non-linearly dependent on all IV
bits. The modification of the counter by the IV guarantees that all 264 different IVs will lead
to unique keystreams.



2.3 Next-state Function

The core of the Rabbit algorithm is the iteration of the system defined by the following
equations:

xj,i+1 =

{

gj,i + (gj−1 mod 8,i ≪ 16) + (gj−2 mod 8,i ≪ 16) for j even

gj,i + (gj−1 mod 8,i ≪ 8) + gj−2 mod 8,i for j odd
(5)

gj,i =
(

(xj,i + cj,i)
2 ⊕ ((xj,i + cj,i)

2 � 32)
)

mod 232, (6)

where all additions are modulo 232. Before an iteration the counters are incremented as
described below.

2.4 Counter System

The dynamics of the counters is defined as follows:

c0,i+1 =

{

c0,i + a0 + φ7,i mod 232 for j = 0

cj,i + aj + φj−1,i+1 mod 232 for j > 0,
(7)

where the carry φj,i+1 is given by

φj,i+1 =











1 if c0,i + a0 + φ7,i ≥ 232 ∧ j = 0

1 if cj,i + aj + φj−1,i+1 ≥ 232 ∧ j > 0

0 otherwise,

(8)

Furthermore, the aj constants are defined as:

a0 = a3 = a6 = 0x4D34D34D,

a1 = a4 = a7 = 0xD34D34D3, (9)

a2 = a5 = 0x34D34D34.

2.5 Extraction Scheme

After each iteration, four 32-bit words of pseudo-random data are generated as follows:

s
[15..0]
j,i = x

[15..0]
2j,i ⊕ x

[31..16]
2j+5 mod 8,i, (10)

s
[31..16]
j,i = x

[31..16]
2j,i ⊕ x

[15..0]
2j+3 mod 8,i.

where sj,i is word j at iteration i. The four pseudorandom words are then XOR’ed with the
plaintext/ciphertext to encrypt/decrypt.

3 Security Analysis

In this section we first discuss the key setup function, IV setup function, and periodic prop-
erties. We then present an algebraic analysis of the cipher, approximations of the next-state
function, differential analysis, and the statistical properties.



3.1 Key Setup Properties

In this section we describe specific properties of the key setup scheme. The setup can be
divided into three stages: Key expansion, system iteration, and counter modification.

In the key expansion stage, we ensure two properties. The first one is a one-to-one corre-
spondence between the key, the state and the counter, which prevents key redundancy. The
other property is that after one iteration of the next-state function, each key bit has affected
all eight state variables. More precisely, for a given key bit there exists a j such that this key
bit affects the output of gj,0, g(j+1 mod 8),0, g(j+4 mod 8),0 and g(j+5 mod 8),0. In each of the
eight next-state subfunctions, at least one of those g-functions enter.

The key expansion scheme ensures that after two iterations of the next-state function, all
state bits are affected by all key bits with a measured probability of 0.5. A safety margin is
provided by iterating the system four times.

Even if the counters are be presumed known to the attacker, the counter modification
makes it hard to recover the key by inverting the counter system, as this would require addi-
tional knowledge of the state variables. Due to the counter modification we cannot guarantee
that every key results in unique counter values. However, we do not believe this to cause a
problem as will be discussed later on.

Attacks on the Key Setup Function
Due to the four iterations after key expansion and the final counter modification, both the
counter bits and the state bits depend strongly and highly non-linearly on the key bits. This
makes attacks based on guessing parts of the key difficult. Furthermore, even if the counter
bits were known after the counter modification, it is still hard to recover the key. Of course,
knowing the counters makes other types of attacks easier.

As the non-linear map in Rabbit is many-to-one, different keys could potentially result in
the same keystream. This concern can basically be reduced to the question whether different
keys result in the same counter values, since different counter values will almost certainly lead
to different keystreams. The reason is that when the periodic part of the functional graph has
been reached, the next-state function, including the counter system, is one-to-one on the set
of points in the period. The key expansion scheme was designed such that each key leads to
unique counter values. However, the counter modification might result in equal counter values
for two different keys. Assuming that the output after the four initial iterations is essentially
random and not correlated with the counter system, the probability for counter collisions
is essentially given by the birthday paradox, i.e. for all 2128 keys, one collision is expected
in the 256-bit counter state. Thus, we do not believe counter collisions to cause a problem.
Another possibility for related key attacks is to exploit the symmetries of the next-state and
key setup functions. For instance, consider two keys, K and K̃ related by K [i] = K̃ [i+32] for
all i. This leads to the relation, xj,0 = x̃j+2,0 and cj,0 = c̃j+2,0. If the aj constants were related
in the same way, the next-state function would preserve this property. In the same way this
symmetry could lead to a set of bad keys, i.e. if K [i] = K [i+32] for all i, then xj,0 = xj+2,0

and cj,0 = cj+2,0. However, the next-state function does not preserve this property due to the
counter system as aj 6= aj+2.

3.2 IV setup Properties

This IV expansion is chosen in order to take the specific rotation scheme of the g-functions
into account. Note that each IV bit will affect four different g-functions in the first iteration,



which is the maximal possible influence when the IV is 64 bit. Also, this scheme insures that
all eight state variables are potentially affected after one iteration.

The system is then iterated four times1 in order to make all state bits non-linearly depen-
dent on all IV bits. The counter modification by the IV is chosen since this implies that all
264 possible different IVs will lead to unique keystreams.

General Security Goals and Arguments
The security goal of the IV Scheme of Rabbit is that it should justify an IV length of 64 bits
for encrypting up to 264 plaintexts with the same 128-bit key, e.g. by requesting up to 264 IV
setups, no distinguishing from random should be possible.

There are several qualitative reason why we expect the IV-setup scheme of Rabbit to fulfill
the above security goals. It was shown in [6] that the next-state function has good diffusion
properties. For instance, after just two iterations every state bit depends on each key bit with
a measured probability of one half. Furthermore, it was shown that each output byte (or bit)
depends virtually on all input bytes (or bits). It was also demonstrated that the next-state
function of Rabbit is highly non-linear. Due to the good diffusion and non-linearity properties
and since the 64 IV bits are mixed into all the 256 state bits after the four IV setup iterations,
we expect that differential attacks are impossible within the security goals.

In section 3.7, we provide some quantitative security arguments. In particular, we analyze
the differential properties of this scheme. This is done in a way very similar to the usual
differential cryptanalysis of block ciphers (see e.g. [11], chapter 5) but with emphasis on
distinguishability properties and the uniqueness of keystreams for different IVs.

3.3 Period Length

The most important feature of counter assisted stream ciphers [21] is that strict lower bounds
on the period lengths can be provided. The adopted counter system in Rabbit has a period
length of 2256 − 1 [6]. Since it can be shown that the input to the g-functions has at least the
same period, a very pessimistic lower bound on the period of the state variables, Nx > 2215,
can be guaranteed [19].

3.4 Algebraic Analysis

Guess-and-Verify Attack
This type of attack is feasible if only a part of the state needs to be known in order to
predict a significant fraction of the output bits. An attacker will guess a part of the state,
predict the output bits and compare them with actually observed output bits. Our strategy
is to accurately predict one extracted output byte based on guessing as few input bytes as
possible.

In [6], we found that the attacker must guess 2 ·12 input bytes for the different g-functions.
Thus, 192 bits in total must be guessed. Furthermore, we have verified that calculating less
extracted bits than a byte still results in more work than exhaustive key search. Finally,
when replacing all additions by XORs, all byte-wise combinations of the extracted output
still depend on at least four different g-functions, see section 3.6. To conclude, it seems to be

1 In principle, this amounts to five times before the extraction of the pseudorandom data, since the next-state
function is applied once more after the IV setup has been completed as a part of the usual encryption
scheme.



impossible to verify a guess on fewer bits than the key size.

Guess-and-Determine Attack
The strategy for this attack is to guess a few of the unknown variables of the cipher and from
those deduce the remaining unknowns. For simplicity, we assume that the counters are static.

A simple attack of this type consists of guessing the remaining 128 bits of the internal
state from the extracted 128 bits for each of two consecutive iterations. This amounts to
guessing the remaining 128 + 128 bits and derive the counter values. Each of the resulting
systems must then be iterated a couple of times to verify the output.

However, in the above attack it is assumed that no advantage is gained by dividing the
counters and state variables into smaller blocks. An attack exploiting this possibility can
be formulated as follows. Divide the 32-bit state variables and counters into 8-bit variables.
Construct an equation system consisting of the 8 ·4 8-bit subsystems for N iterations together
with the corresponding (N + 1) · 8 extraction functions which are split into (N + 1) · 16 8-
bit functions. In order to obtain a closed system of equations, output from 4 · 8 extraction
functions is needed, i.e. N = 3. Thus, the equation system consists of 160 coupled equations
with 8 · 4 unknown counter bytes and (3 + 1) · 8 · 4 unknown state bytes, i.e. a total of 160
unknowns.

A strategy for solving this equation system must be found by guessing as few input bytes
as possible and determining the remaining unknown bytes. The efficiency of such a strategy
depends on the amount of variables that must be guessed before the determining process can
begin. This amount is given by the 8-bit subsystem with the fewest number of input variables.
Neglecting the counters, the results of section 3.4 illustrate that each byte of the next-state
function depends on 12 input bytes. When the counters are included, each output byte of a
subsystem depends on 24 input bytes. Consequently, the attacker must guess more than 128
bits before the determining process can begin, thus, making the attack infeasible. Dividing
the system into smaller blocks than bytes results in the same conclusion.

The Algebraic Normal Form (ANF) of Boolean Functions
In this section, we describe the algebraic normal form of Boolean functions. Moreover, we
discuss some properties of the algebraic normal form of random Boolean functions.

A convenient way of representing Boolean functions is through its algebraic normal form.
Let a Boolean function f ≡ f(x0, x1, ..., xn−1) from {0, 1}n to {0, 1} be given, then its algebraic
normal form is given by

f(x0, x1, ..., xn−1) =
∑

u∈{0,1}n

au

n−1
∏

i=0

xui

i , (11)

where u ≡ (u0, u1, ..., ui, ..., un−1) ∈ {0, 1}n, and au ∈ {0, 1} is given by the Möbius transform
of f :

au =
∑

{x:x∧u=0}

f(x) (12)

where x∧u means the component-wise logical AND operation between x and the complement
of u.

We say that the monomial
∏n

i=0 xui

i of degree H(u) selected by u is in the ANF for f if
au = 1. Here H(u) denotes the Hamming weight of u. We can say that the ANF representation
for f is simply f written as a multivariate polynomial over GF (2).



The algebraic normal form of a Boolean function can be relatively easily constructed based
on their respective truth table, by a method analogous to the Walsh-Hadamard Transform.

For a random Boolean function of n variables, the number of monomials of degree k is
normally distributed with mean value and variance given by:

E[nk] =
1

2

(

n

k

)

and V [nk] =
1

4

(

n

k

)

. (13)

The mean number nxi

k of monomials of degree k containing a given variable, xi, and the
corresponding variance is given by:

E[nxi

k ] =
1

2

(

n − 1

k − 1

)

and V [nxi

k ] =
1

4

(

n − 1

k − 1

)

. (14)

Furthermore, we notice that the probability for a given monomial to be present in a random
Boolean function is 1/2. Thus, for a random function mapping from {0, 1}32 to {0, 1}, the
average total number of monomials is 231, obtained by summing eq. (13). The average number
of monomials including a given variable is 230, obtained by summing eq. (14). If we consider
32 random functions, then the average number of monomials that are not present in any of
the 32 functions is 1 and the corresponding variance is also 1.

In the following we investigate the non-linear functions in Rabbit in detail. We do this
by constructing the algebraic normal form of the output bits of the g-function as well as
for a scaled-down version of the full cipher. We then compare them with results for random
Boolean functions (In [13] the author also investigates random properties for various ciphers,
however, here it is done in a different context.). In particular, we investigate properties that
we believe to be relevant for an algebraic attack.

We have determined the ANF for the 32 Boolean functions of the g-function. All 32
Boolean functions have an algebraic degree of at least 30. The number of monomials in the
functions range from 224.5 to 230.9, where for a random function it should be 231 with a
standard deviation of 215.
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Fig. 1. The number of monomials of each degree in each of the 32 Boolean functions of the g-function. The
thick solid line and the two dashed lines denote the average and variance for an ideal random function.

The distribution of monomials as function of degree is presented in Fig. 1. Ideally the
bulk of the distribution should be within the dashed lines that illustrate the variance for ideal



random functions. Some of the Boolean functions deviate significantly from the random case,
however, they all have a large number of monomials of high degree.

Furthermore, we investigated the overlap between the 32 Boolean functions that constitute
the g-function. The total number of monomials that only occur once in the g-function is 226.03,
whereas the number of monomials that do not occur at all is 226.2. This should be compared
to the random result which has a mean value of one and a variance of one.

To conclude, we can say all the results for the g-function were easily distinguishable from
random, but are still very acceptable, i.e. the monomials are of high degree and their number
is large. Furthermore, no obvious exploitable structure seems present. In the above analysis,
we did not investigate properties of implicit equations (i.e. equations containing monomials
consisting of both input and output variables). This will be briefly discussed later.

It is clearly not feasible to calculate the full ANF of the output bits for the complete
cipher. But reducing the word size from 32 bits to 8 bits makes it possible to study the 32
output Boolean functions as function of the 32-bit key.

For this scaled-down version of Rabbit, we investigated the setup function for different
numbers of iterations. In the setup of Rabbit four iterations of next-state are applied, plus
one extra before extraction. We have determined the ANFs after 0+1, 1+1, 2+1, 3+1 and
4+1 iterations, where the +1 denotes the iteration in the extraction.

The results were much closer to random than in the case of the g-function. For 0+1
iterations, we found that the number of monomials is very close to 231 as expected for a
random function. Already after two iterations the result seems to stabilize, i.e. the amount of
fluctuations around 231 does not change when increasing the number of iterations. We also
made an investigation of the number of missing monomials for all 32 output bits. It turned
out that for the 0+1, 1+1, 2+1, 3+1 and 4+1 iterations, the numbers were 0, 1, 2, 3 and
1, respectively. This seems in accordance with the mean value of 1 and variance of 1 for a
random function. So after a few iterations, basically all possible monomials are present in the
full cipher output functions.

In conclusion, we can see that the analysis showed that the properties of the ANFs for
the output bits of the g-function were highly complex, i.e. larger than 224 terms per output
bit, and with an algebraic degree of at least 30. For the down-scaled version of the full cipher,
the results were even better and no non-random properties were identified. For full details of
the analysis, including statistical data, the reader may refer to [3].

3.5 Algebraic Attacks against Rabbit

In this section we will discuss whether it is possible to set up solvable equation systems both
in the state variables as well as in the key. As illustrated both in section 2 and in the ANF
analysis of the 8-bit version, each output depends on all its possible input, so a combination
of guessing and analytical elimination of variables seems infeasible. Consequently, below we
shall only consider algebraic attacks without combining with the guessing of some variables.

Known Algebraic Attacks
The known attacks on stream ciphers are mostly on ciphers based on linear feedback with
more or less memoryless non-linear combiners/filters. Rabbit is based on iteration of non-linear
functions so ”everything is memorized” (disregarding the counter bits). One could argue that
the counter system is (almost) linear (over GF(232)), but it only constitutes half of the 513
bits.



In what sense can we generalize or use the concepts and ideas from the attacks described
in [2, 8, 9, 7, 10]? First, we must understand how their attacks basically work. If the non-
linear combiner is essentially memoryless and if it has low degree, we can capture enough
output bits in order to get an overdefined equation system in the key bits. We can then
linearize it, i.e. replace every monomial by a new variable and solve it using methods for
linear equation systems. This can be done because we know how the binary equations look
like as a function of the key bits, i.e. their degree is preserved over all iterations as the combiner
is memoryless. This strategy can be refined. For instance, even though the combiner function
should have large degree, it might be possible, by multiplying with another function, to obtain
new equations with lower degree [10]. This is often possible, since the combiner function is
simple, e.g. containing few monomials. Furthermore, if not too many, memory bits can also
be handled (e.g. by elimination [2]).

How would this procedure work for Rabbit? Intuitively, overdefined equation systems can
be found but will probably be very large when linearized as the g-function is 32-bit, i.e. the
number of monomials is very large. Furthermore, the non-linear equations change for each
iteration as function of the key, i.e. all the state bits are memory bits. Below, we will argue
in some detail why we believe the above intuition to be true.

Overdefined Equation Systems in the State
This discussion will primarily be inspired by the algebraic analysis of Rijndael and Serpent
performed by Courtois and Pieprzyk [10].

For simplicity we ignore the counters. Furthermore, we will replace all arithmetical ad-
ditions by XOR and omit the rotations. The use of XOR is a severe simplification as this
will guarantee that the algebraic degree of the complete cipher will never exceed 32 for one
iteration (but, of course, grow for more iterations).

According to the above ANF analysis of the 8-bit version, it seems that the Boolean
functions for the complete cipher behave very close to random. The Boolean functions for the
g-function seem to behave less randomly. We will in this subsection investigate whether this
can be exploited.

Since everything is linear except the g-functions, we can easily calculate the number of
monomials when expressing the output as a function of the state bits. With the inner state
consisting of 256 bit, we need the output of at least two (ideally consecutive) iterations, giving
us a non-linear system of 256 equations in 256 variables.

Note that the output of the first iteration can be modelled as a linear function in the inner
state, according to equation (10). Thus, we obtain 128 very simple linear equations, containing
all 256 monomials of degree 1. In order to generate the output of the next iteration, however,
the inner state bits are run through the g-functions. Note that each output bit for the second
iteration depends on six output bits of the g-functions. Also remember from the last section
that for each g-function, there are 32 output bits, and that the ANFs for these output bits
contain almost all possible monomials of degree ≤ 32. Thus, we have 232 − 226.2 ≈ 231.97

monomials that are contributed by one g-function, and approximately 8 · 231.97 = 234.97

monomials overall.
In particular, this means that the non-linear system of equations is neither sparse, nor is

it of low degree. Thus, it seems hopeless to try and solve it directly. Instead, we could try
to linearize the monomials, which increases the number of variables to about 235. Assuming
that we had enough equations for all those variables, the solving complexity would be about
(235)3 = 2105 (using Strassen’s algorithm). So in order to be able to solve the system with this



complexity we need to find some 235 − 28 extra equations describing the next-state function
or use an XL algorithm [20] when fewer equations are available.

We do not believe that it is possible to find that many extra equations. The reason is the
following. As illustrated in [10], there exist implicit representations of the S-boxes in Rijndael
and Serpent [12, 1] for different reasons. In Serpent they exist because of the small S-box size
and in Rijndael because of a special property of its S-boxes. We have tried for low resolution
g-functions to see whether there were any obvious implicit relations, but we did not find
anything useable. For small size g-functions (e.g. eight bit) it might be possible to perform
a systematic search for implicit equations which hold with probability one2. However, we do
not believe that there is any easy way to determine whether there exist any useful implicit
equations of the 32-bit g-function. Moreover, even in the unlikely event that such equations
could be found, the non-linear arithmetic additions and the rotations will most likely destroy
the usefulness of such equations.

Furthermore, it does not really help to use output for more iterations. The reason is that
even though we gain 128 extra equations for each new extraction, the number of monomials
grows much more3.

Overdefined Equation Systems in the Key
In this section we will investigate whether it is possible to construct overdefined equation
systems in the key bits. The above approach (much like the analysis performed on block
ciphers [10]) where it was tried to construct overdefined equation systems in the state variables,
seemed non-promising. Basically, the reason for this is the high complexity of the involved
Boolean functions; no simple description of those seems possible. In the case of overdefined
equations systems in the key, non-linear memory effects will be difficult to handle. In the case
of the simplified Rabbit as treated here, all state bits are non-linearly updated and therefore
new monomials are generated for each iteration (See also footnote 3).

So the interesting question is whether we can use the specific equations in the 128-bit key.
Since five iterations are performed before any bit is extracted, we now have to investigate
Boolean functions of the complete cipher and not just those of the g-function (so now the
counter system, the arithmetic additions as well as the rotations, are included again). It is
currently impossible to directly construct the corresponding ANFs. However, the investiga-
tions done for the 8-bit version of the cipher clearly show that the relative complexity of the
corresponding Boolean functions is greater than for the g-function, i.e. they look much more
random. So we expect that the number of monomials after a few iterations4 will be on the

2 Suggested to us by Vincent Rijmen. A preliminary investigation showed that there are no second order
implicit equations that hold with probability one.

3 Note that, even if we had a linear updating of the state and the g-functions just served as non-linear filters
(i.e. no memory) then the total number of possible monomials would be:

N
max

m =
32�

i=0

�
256

i � ≈ 2135
, (15)

which rules out such an attack even on a memoryless type of cipher using the g-functions as non-linear
filters.

4 We believe that after about four iterations, the number of monomials will be very large since after two
iterations an input bit will have influenced all output bits.



order of:

Nmax
m =

128
∑

i=0

(

128

i

)

= 2128, (16)

Therefore, we do not expect that it is possible to construct a solvable overdefined equation
system.

To sum up, the analysis performed above clearly indicates that algebraic attacks on Rabbit
are infeasible. The reasons for this are the large non-linearly updated state and the complexity
of the g-function, i.e. the number of monomials, their distribution and so on. Furthermore, the
other non-linear ingredient of Rabbit, namely the arithmetic additions, strongly increases the
complexity and makes the number of monomials, their distribution and so on of the complete
cipher very complex and random-like.

3.6 Approximations of Rabbit

Linear Approximations
In [6], we made a thorough investigation of linear approximations by use of the Walsh-
Hadamard Transform (WHT) [18, 11]. The best linear approximation between bits in the
input to the next-state function and the extracted output found in this investigation had a
correlation coefficient of 2−57.8, see [6] for more details.

In case of a distinguishing attack, the attacker tries to distinguish a sequence generated
by the cipher from a sequence of truly random numbers. A distinguishing attack using less
than 264 bytes of output cannot be applied using only the best linear approximation because
the corresponding correlation coefficient is 2−57.8. This implies that in order to observe this
particular correlation, output from 2114 iterations must be generated [15].

The independent counters have very simple and almost linear dynamics. Therefore, large
correlations to the counter bits may cause a possibility for a correlation attack (see e.g. [16])
for recovering the counters. It is not feasible to exploit only the best linear approximation
in order to recover a counter value. However, more correlations to the counters could be ex-
ploited. As this requires that there exist many such large and useable correlations, we do not
believe such an attack to be feasible. Knowing the values of the counters may significantly
improve both the Guess-and-Determine attack, the Guess-and-Verify attack as well as a Dis-
tinguishing attack even though obtaining the key from the counter values is prevented by the
counter modification in the setup function.

Second Order Approximations
We discovered that truncating the ANFs of the g-functions after second order terms, proposes
relatively good approximations under the right circumstances.

We denote by f [j] the functions that contain the terms of first and second order of the
ANF of g(y)[j]. Then, it can be shown that these approximations can be written as

f [j] = y[j/2] ⊕ y[j/2+16] ⊕
15

⊕

i=0

y[j/2+i]y[j/2−1−i] (17)

for even bit-positions, where + and − are modulus 32, and
⊕

denotes the XOR sum. For
odd bit-positions and j 6= 1

f [j] = y[(j−1)/2]y[(j−1)/2−1] ⊕ y[(j−1)/2+16]y[(j−1)/2+15] ⊕
14

⊕

i=0

y[(j+1)/2+i]y[(j+1)/2−2−i] (18)



For j = 1,

f [1] = y[16]y[15] ⊕
14

⊕

i=0

y[1+i]y[31−i]. (19)

By measurements we can determine the probability,

P (f [j] = g[j]) =
1

2
+ ε, (20)

and define the correlation coefficient to be |2ε|.
Measurements of the correlation between the approximation f [j] and the actual function

g[j] gave rather poor correlation coefficients compared to the corresponding linear approxima-
tions. However, the XOR sum of two neighbor bits, i.e. g[j]⊕g[j+1] was found to be correlated
with f [j] ⊕ f [j+1] with a much higher correlation coefficient. Approximations of single bits
have correlation coefficients less than 2−9.5, whereas approximations of the XOR sums have
correlation coefficients as large as 2−2.72. This could indicate that some terms of higher degree
vanish when two neighbor bits are XOR’ed.

These results can be applied to construct second order approximations of the cipher.
By using linear approximations of the additions of the g-function, the best second order
approximation is:

s
[26]
0 ⊕ s

[25]
0 ≈ f

[26]
0 ⊕f

[25]
0 ⊕f

[10]
1 ⊕f

[9]
1 ⊕f

[2]
2 ⊕f

[1]
2 ⊕f

[10]
3 ⊕f

[9]
3 ⊕f

[10]
6 ⊕f

[9]
6 ⊕f

[10]
7 ⊕f

[9]
7 , (21)

where the functions f [j] are given by eqs. 17, 18 and 19. The approximation is correlated to
the real function with a correlation coefficient of 2−26.4.

A number of approximations can be constructed in this way with correlation coefficients
of similar size. We made preliminary investigations with other XOR sums. In general, sums
of two bits can be approximated significantly better than single bits. The sum of neighbor
bits does, however, seem to be the best approximations. Preliminary investigations show that
approximations of sums of more than two bits have relatively small correlation coefficients.

For comparison, the best linear approximation we have found has a correlation coefficient
of 2−57.8. This correlation was also between the input to the next-state and the output.

It is not trivial to use second-order relations in linear cryptanalysis, and even the improved
correlation values are not high enough for an attack as we know it. In an attack it would be
necessary to include the counter, and set up relations between two consecutive outputs. We
expect this to seriously complicate such an attack and make it infeasible.

3.7 Differential Analysis

In this analysis we have used two difference schemes which are defined as follows: Take two
inputs, x′ and x′′, and their corresponding outputs y′ and y′′, then the subtraction modulus
input and output differences are defined by, ∆x = x′−x′′ mod 2n and ∆y = y′−y′′ mod 2n,
respectively. The word length of the input and output variables is denoted by n. The XOR
difference scheme is defined by ∆x = x′⊕x′′ and ∆y = y′⊕y′′. Since the subtraction modulus
scheme causes the counters to be linear, we shall in many cases refer to that. XOR difference
is also discussed in certain cases. We have not found any other difference schemes to be better.



Differentials of the g-function
Differentials of the g-function are investigated in [4], but we give a short description of the
findings here.

In principle, it would be necessary to calculate the probabilities of all 264 differentials.
However, in terms of XOR as difference operator, the investigation of smaller word length
g-functions has revealed that the structure of the differentials with the largest probabilities
remain equivalent for the different word lengths. We have determined the probabilities for all
differentials in 8-, 10-, 12-, 14-, 16- and 18-bit g-functions. The structure is characterized by a
block of ones of size of approximately 3

4 of the word length. Furthermore, the block starts at
bit position one. For larger word lengths, i.e. 14-, 16- and 18-bit, all entries in the top 32 list
have input differences build by one block of consecutive ones, but of various size and starting
at different bit positions. Finding an analytical explanation of these properties remains an
open research problem.

We make the reasonable assumption that these properties will be maintained in the 32-
bit g-function, and investigate all input differences constituted by single blocks of ones. The
largest probability, and most likely the largest of all, found in this investigation was 2−11.57

for the differential (0x007FFFFE, 0xFF001FFF).

The g-function is non-injective, which means that there are input differences besides 0
that map to an output difference of 0. The input difference resulting in an output difference
of 0 with the largest probability is 0xFFFFFFFF, i.e. it corresponds to flipping all bits in
the input to the function. For the smaller word length g-functions it is also this type of input
difference, i.e. flipping all bits, that results in an output difference of zero with the largest
probability. The probability for this in the 32-bit g-function is 2−14.41.

For the subtraction modulus difference we have determined the probabilities for all differ-
entials in 8-, 10-, 12-, 14-, 16- and 18-bit g-functions.

No clear structures are observed, so the differentials with the largest probabilities cannot
be determined for the 32-bit g-function. The probabilities scale nicely with word length.
Assuming that this scaling continues to 32-bit, the differential with the largest probability is
expected to be of the order 2−17. The probabilities are significantly lower compared to the
case with XOR as differential operator.

We have also briefly investigated higher order differentials, but due to the huge complex-
ity, only g-functions with very small word length have been examined. This revealed that to
obtain a differential with probability 1, the differential has to be of order equal to the word
length, meaning that the non-linear order of the g-function is maximal, for the small word
length g-functions examined.

Differentials of Rabbit
The differentials are extensively investigated in [5], and here we will only present the results.

The largest probability ratios for the g-function were found to be at least 2−11.57 for XOR
differences and probably around 2−17 for subtraction modulus differences. For first order
differentials it was illustrated that any characteristic will involve at least 8 g-functions5.

From analyzing the transition matrices for smaller word length g-functions it was found
that after about four iterations of those, there resulted a steady state distribution of matrix
elements close to uniform for both the XOR and subtraction modulus difference schemes. Us-

5 probably it can be shown that 16 g-functions are the true minimum.



ing this and that the probability for the best characteristic, Pmax, satisfies Pmax < 2−11.57·8 �
2−64, we do not expect any exploitable differential.

For a very simplified version of Rabbit, without rotations and with the XOR operation
in the g-function replaced by an addition mod 232, higher order differentials can be used to
break the IV setup scheme even for a relatively large number of iterations. If we consider
another simplified version, with rotations, third order differential still has a high probability
for one round. However, for more iterations, the security increases very quickly. Finally, using
the XOR in the g-function completely destroys the applicability of higher order differentials
based on modular subtraction and XOR.

In conclusion, we have not found any differential weaknesses of the IV-setup scheme of
Rabbit.

3.8 Statistical Tests

The statistical tests on Rabbit were performed using the NIST Test Suite [17], the DIEHARD
battery of tests [14] and the ENT test [22]. Tests were performed on the internal state as well
as on the extracted output. Furthermore, we also conducted various statistical tests on the
key setup function. Finally, we performed the same tests on a version of Rabbit where each
state variable and counter variable was reduced to 8 bit. No weaknesses were found in any of
these cases.

4 Performance

In this section we provide performance results from implementations of Rabbit on 32-bit
processors and discuss 8-bit implementation aspects.

4.1 32-bit Processors

Encryption speeds for the specific processors were obtained by encrypting 8 kilobytes of data
stored in RAM and measuring the number of clock cycles passed. For convenience, all 513 bits
of the internal state are stored in an instance structure, occupying a total of 68 bytes. The
presented memory requirements show the amount of memory allocated on the stack related
to the calling convention (function arguments, return address and saved registers) and for
temporary data. Memory for storing the key, instance, ciphertext and plaintext has not been
included. All performance results, code size and memory requirements are listed in Table 1
below.

Intel Pentium III Architecture
The performance was measured on a 1000 MHz Pentium III processor. The speed-optimized
version of Rabbit was programmed in assembly language (using MMX instructions) inlined
in C and compiled using the Intel C++ 7.1 compiler. A memory-optimized version (where
calling conventions are ignored) can eliminate the need for memory, including the instance
structure, since the entire instance structure and temporary data can fit into the CPU regis-
ters.

ARM7 Architecture
A speed optimized ARM implementation was compiled and tested using ARM Developer



Suite version 1.2 for ARM7TDMI. Performance was measured using the integrated ARMula-
tor.

MIPS 4Kc Architecture
An assembly language version of Rabbit has been written for the MIPS 4Kc processor6. De-
velopment was done using The Embedded Linux Development Kit (ELDK), which includes
GNU cross-development tools. Performance was measured on a 150 MHz processor running
a Linux operating system.

Processor Performance Code size Memory

Pentium III 3.7/278/253 440/617/720 36/32/40
ARM7 9.6/610/624 368/436/408 48/80/80
MIPS 4Kc 10.9/749/749 892/856/816 40/32/32

Table 1. Performance (in clock cycles or clock cycles per byte), code size and memory requirements (in bytes)
for encryption / key setup / IV setup.

4.2 8-bit Processors

The simplicity and small size of Rabbit makes it suitable for implementations on processors
with limited resources such as 8-bit microcontrollers. Multiplying 32-bit integers is rather
resource demanding using plain 32-bit arithmetics. However, squaring involves only ten 8-bit
multiplications which reduces the workload by approximately a factor of two. Finally, the
rotations in the algorithm have been chosen to correspond to simple byte-swapping.

5 Conclusion

In this paper, we described the stream cipher Rabbit previously presented at the Fast Software
Encryption workshop in 2003. In this version, we also included a specification of an IV-
setup function. We performed a comprehensive algebraic analysis of the cipher, described the
best approximations of the next-state function found and performed a thorough differential
analysis. None of the investigations have revealed any weaknesses.

The measured encryption/decryption performance was 3.7 clock cycles per byte on a
Pentium III processor, 9.6 clock cycles per byte on an ARM7 processor, and 10.9 clock cycles
per byte on a MIPS 4Kc processor.
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A ANSI C Source Code

This appendix presents the ANSI C source code for Rabbit.

rabbit.h
Below the rabbit.h header file is listed:

/******************************************************************************/

/* File name: rabbit.h */

/*----------------------------------------------------------------------------*/

/* Header file for reference C version of the Rabbit stream cipher. */

/*----------------------------------------------------------------------------*/

/* Copyright (C) Cryptico A/S. All rights reserved. */

/* */

/* YOU SHOULD CAREFULLY READ THIS LEGAL NOTICE BEFORE USING THIS SOFTWARE. */

/* */

/* This software is developed by Cryptico A/S and/or its suppliers. */

/* All title and intellectual property rights in and to the software, */

/* including but not limited to patent rights and copyrights, are owned by */

/* Cryptico A/S and/or its suppliers. */

/* */

/* The software may be used solely for non-commercial purposes */

/* without the prior written consent of Cryptico A/S. For further */

/* information on licensing terms and conditions please contact Cryptico A/S */

/* at info@cryptico.com */

/* */

/* Cryptico, CryptiCore, the Cryptico logo and "Re-thinking encryption" are */

/* either trademarks or registered trademarks of Cryptico A/S. */

/* */

/* Cryptico A/S shall not in any way be liable for any use of this software. */

/* The software is provided "as is" without any express or implied warranty. */

/* */

/******************************************************************************/

#ifndef _RABBIT_H

#define _RABBIT_H

#include <stddef.h>

// Type declarations of 32-bit and 8-bit unsigned integers

typedef unsigned int rabbit_uint32;

typedef unsigned char rabbit_byte;

// Structure to store the instance data (internal state)

typedef struct

{

rabbit_uint32 x[8];

rabbit_uint32 c[8];

rabbit_uint32 carry;

} rabbit_instance;

#ifdef __cplusplus

extern "C" {

#endif



// All function calls returns zero on success

int rabbit_key_setup(rabbit_instance *p_instance, const rabbit_byte *p_key, size_t key_size);

int rabbit_iv_setup(const rabbit_instance *p_master_instance,

rabbit_instance *p_instance, const rabbit_byte *p_iv, size_t iv_size);

int rabbit_cipher(rabbit_instance *p_instance, const rabbit_byte *p_src,

rabbit_byte *p_dest, size_t data_size);

#ifdef __cplusplus

}

#endif

#endif

rabbit.c
Below the rabbit.c file is listed:

/******************************************************************************/

/* File name: rabbit.c */

/*----------------------------------------------------------------------------*/

/* Source file for reference C version of the Rabbit stream cipher */

/*----------------------------------------------------------------------------*/

/* Copyright (C) Cryptico A/S. All rights reserved. */

/* */

/* YOU SHOULD CAREFULLY READ THIS LEGAL NOTICE BEFORE USING THIS SOFTWARE. */

/* */

/* This software is developed by Cryptico A/S and/or its suppliers. */

/* All title and intellectual property rights in and to the software, */

/* including but not limited to patent rights and copyrights, are owned by */

/* Cryptico A/S and/or its suppliers. */

/* */

/* The software may be used solely for non-commercial purposes */

/* without the prior written consent of Cryptico A/S. For further */

/* information on licensing terms and conditions please contact Cryptico A/S */

/* at info@cryptico.com */

/* */

/* Cryptico, CryptiCore, the Cryptico logo and "Re-thinking encryption" are */

/* either trademarks or registered trademarks of Cryptico A/S. */

/* */

/* Cryptico A/S shall not in any way be liable for any use of this software. */

/* The software is provided "as is" without any express or implied warranty. */

/* */

/******************************************************************************/

#include "rabbit.h"

// Left rotation of a 32-bit unsigned integer

static rabbit_uint32 rabbit_rotl(rabbit_uint32 x, int rot)

{

return (x<<rot) | (x>>(32-rot));

}



// Square a 32-bit unsigned integer to obtain the 64-bit result and return

// the 32 high bits XOR the 32 low bits

static rabbit_uint32 rabbit_g_func(rabbit_uint32 x)

{

// Construct high and low argument for squaring

rabbit_uint32 a = x&0xFFFF;

rabbit_uint32 b = x>>16;

// Calculate high and low result of squaring

rabbit_uint32 h = ((((a*a)>>17) + (a*b))>>15) + b*b;

rabbit_uint32 l = x*x;

// Return high XOR low

return h^l;

}

// Calculate the next internal state

static void rabbit_next_state(rabbit_instance *p_instance)

{

// Temporary data

rabbit_uint32 g[8], c_old[8], i;

// Save old counter values

for (i=0; i<8; i++)

c_old[i] = p_instance->c[i];

// Calculate new counter values

p_instance->c[0] += 0x4D34D34D + p_instance->carry;

p_instance->c[1] += 0xD34D34D3 + (p_instance->c[0] < c_old[0]);

p_instance->c[2] += 0x34D34D34 + (p_instance->c[1] < c_old[1]);

p_instance->c[3] += 0x4D34D34D + (p_instance->c[2] < c_old[2]);

p_instance->c[4] += 0xD34D34D3 + (p_instance->c[3] < c_old[3]);

p_instance->c[5] += 0x34D34D34 + (p_instance->c[4] < c_old[4]);

p_instance->c[6] += 0x4D34D34D + (p_instance->c[5] < c_old[5]);

p_instance->c[7] += 0xD34D34D3 + (p_instance->c[6] < c_old[6]);

p_instance->carry = (p_instance->c[7] < c_old[7]);

// Calculate the g-functions

for (i=0;i<8;i++)

g[i] = rabbit_g_func(p_instance->x[i] + p_instance->c[i]);

// Calculate new state values

p_instance->x[0] = g[0] + rabbit_rotl(g[7],16) + rabbit_rotl(g[6], 16);

p_instance->x[1] = g[1] + rabbit_rotl(g[0], 8) + g[7];

p_instance->x[2] = g[2] + rabbit_rotl(g[1],16) + rabbit_rotl(g[0], 16);

p_instance->x[3] = g[3] + rabbit_rotl(g[2], 8) + g[1];

p_instance->x[4] = g[4] + rabbit_rotl(g[3],16) + rabbit_rotl(g[2], 16);

p_instance->x[5] = g[5] + rabbit_rotl(g[4], 8) + g[3];

p_instance->x[6] = g[6] + rabbit_rotl(g[5],16) + rabbit_rotl(g[4], 16);

p_instance->x[7] = g[7] + rabbit_rotl(g[6], 8) + g[5];

}



// Initialize the cipher instance (*p_instance) as function of the key (*p_key)

int rabbit_key_setup(rabbit_instance *p_instance, const rabbit_byte *p_key, size_t key_size)

{

// Temporary data

rabbit_uint32 k0, k1, k2, k3, i;

// Return error if the key size is not 16 bytes

if (key_size != 16)

return -1;

// Generate four subkeys

k0 = *(rabbit_uint32*)(p_key+ 0);

k1 = *(rabbit_uint32*)(p_key+ 4);

k2 = *(rabbit_uint32*)(p_key+ 8);

k3 = *(rabbit_uint32*)(p_key+12);

// Generate initial state variables

p_instance->x[0] = k0;

p_instance->x[2] = k1;

p_instance->x[4] = k2;

p_instance->x[6] = k3;

p_instance->x[1] = (k3<<16) | (k2>>16);

p_instance->x[3] = (k0<<16) | (k3>>16);

p_instance->x[5] = (k1<<16) | (k0>>16);

p_instance->x[7] = (k2<<16) | (k1>>16);

// Generate initial counter values

p_instance->c[0] = rabbit_rotl(k2, 16);

p_instance->c[2] = rabbit_rotl(k3, 16);

p_instance->c[4] = rabbit_rotl(k0, 16);

p_instance->c[6] = rabbit_rotl(k1, 16);

p_instance->c[1] = (k0&0xFFFF0000) | (k1&0xFFFF);

p_instance->c[3] = (k1&0xFFFF0000) | (k2&0xFFFF);

p_instance->c[5] = (k2&0xFFFF0000) | (k3&0xFFFF);

p_instance->c[7] = (k3&0xFFFF0000) | (k0&0xFFFF);

// Reset carry bit

p_instance->carry = 0;

// Iterate the system four times

for (i=0; i<4; i++)

rabbit_next_state(p_instance);

// Modify the counters

for (i=0; i<8; i++)

p_instance->c[(i+4)&0x7] ^= p_instance->x[i];

// Return success

return 0;

}



// Initialize the cipher instance (*p_instance) as function of the IV (*p_iv)

// and the master instance (*p_master_instance)

int rabbit_iv_setup(const rabbit_instance *p_master_instance,

rabbit_instance *p_instance, const rabbit_byte *p_iv, size_t iv_size)

{

// Temporary data

rabbit_uint32 i0, i1, i2, i3, i;

// Return error if the IV size is not 8 bytes

if (iv_size != 8)

return -1;

// Generate four subvectors

i0 = *(rabbit_uint32*)(p_iv+0);

i2 = *(rabbit_uint32*)(p_iv+4);

i1 = (i0>>16) | (i2&0xFFFF0000);

i3 = (i2<<16) | (i0&0x0000FFFF);

// Modify counter values

p_instance->c[0] = p_master_instance->c[0] ^ i0;

p_instance->c[1] = p_master_instance->c[1] ^ i1;

p_instance->c[2] = p_master_instance->c[2] ^ i2;

p_instance->c[3] = p_master_instance->c[3] ^ i3;

p_instance->c[4] = p_master_instance->c[4] ^ i0;

p_instance->c[5] = p_master_instance->c[5] ^ i1;

p_instance->c[6] = p_master_instance->c[6] ^ i2;

p_instance->c[7] = p_master_instance->c[7] ^ i3;

// Copy internal state values

for (i=0; i<8; i++)

p_instance->x[i] = p_master_instance->x[i];

p_instance->carry = p_master_instance->carry;

// Iterate the system four times

for (i=0; i<4; i++)

rabbit_next_state(p_instance);

// Return success

return 0;

}



// Encrypt or decrypt a block of data

int rabbit_cipher(rabbit_instance *p_instance, const rabbit_byte *p_src,

rabbit_byte *p_dest, size_t data_size)

{

// Temporary data

rabbit_uint32 i;

// Return error if the size of the data to encrypt is

// not a multiple of 16

if (data_size%16)

return -1;

for (i=0; i<data_size; i+=16)

{

// Iterate the system

rabbit_next_state(p_instance);

// Encrypt 16 bytes of data

*(rabbit_uint32*)(p_dest+ 0) = *(rabbit_uint32*)(p_src+ 0) ^ p_instance->x[0] ^

(p_instance->x[5]>>16) ^ (p_instance->x[3]<<16);

*(rabbit_uint32*)(p_dest+ 4) = *(rabbit_uint32*)(p_src+ 4) ^ p_instance->x[2] ^

(p_instance->x[7]>>16) ^ (p_instance->x[5]<<16);

*(rabbit_uint32*)(p_dest+ 8) = *(rabbit_uint32*)(p_src+ 8) ^ p_instance->x[4] ^

(p_instance->x[1]>>16) ^ (p_instance->x[7]<<16);

*(rabbit_uint32*)(p_dest+12) = *(rabbit_uint32*)(p_src+12) ^ p_instance->x[6] ^

(p_instance->x[3]>>16) ^ (p_instance->x[1]<<16);

// Increment pointers to source and destination data

p_src += 16;

p_dest += 16;

}

// Return success

return 0;

}



B Testing

Below some test vectors are presented. A program testing the keys, IV’s and the corresponding
output is included in the zip-file. The keys and outputs are presented byte-wise. The leftmost
byte of key is K [7..0].

B.1 Test Vectors

key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]

s[0] = [02 F7 4A 1C 26 45 6B F5 EC D6 A5 36 F0 54 57 B1]

s[1] = [A7 8A C6 89 47 6C 69 7B 39 0C 9C C5 15 D8 E8 88]

s[2] = [96 D6 73 16 88 D1 68 DA 51 D4 0C 70 C3 A1 16 F4]

key = [AC C3 51 DC F1 62 FC 3B FE 36 3D 2E 29 13 28 91]

s[0] = [9C 51 E2 87 84 C3 7F E9 A1 27 F6 3E C8 F3 2D 3D]

s[1] = [19 FC 54 85 AA 53 BF 96 88 5B 40 F4 61 CD 76 F5]

s[2] = [5E 4C 4D 20 20 3B E5 8A 50 43 DB FB 73 74 54 E5]

key = [43 00 9B C0 01 AB E9 E9 33 C7 E0 87 15 74 95 83]

s[0] = [9B 60 D0 02 FD 5C EB 32 AC CD 41 A0 CD 0D B1 0C]

s[1] = [AD 3E FF 4C 11 92 70 7B 5A 01 17 0F CA 9F FC 95]

s[2] = [28 74 94 3A AD 47 41 92 3F 7F FC 8B DE E5 49 96]

B.2 IV Test Vectors

mkey = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]

iv = [00 00 00 00 00 00 00 00]

s[0] = [ED B7 05 67 37 5D CD 7C D8 95 54 F8 5E 27 A7 C6]

s[1] = [8D 4A DC 70 32 29 8F 7B D4 EF F5 04 AC A6 29 5F]

s[2] = [66 8F BF 47 8A DB 2B E5 1E 6C DE 29 2B 82 DE 2A]

iv = [59 7E 26 C1 75 F5 73 C3]

s[0] = [6D 7D 01 22 92 CC DC E0 E2 12 00 58 B9 4E CD 1F]

s[1] = [2E 6F 93 ED FF 99 24 7B 01 25 21 D1 10 4E 5F A7]

s[2] = [A7 9B 02 12 D0 BD 56 23 39 38 E7 93 C3 12 C1 EB]

iv = [27 17 F4 D2 1A 56 EB A6]

s[0] = [4D 10 51 A1 23 AF B6 70 BF 8D 85 05 C8 D8 5A 44]

s[1] = [03 5B C3 AC C6 67 AE AE 5B 2C F4 47 79 F2 C8 96]

s[2] = [CB 51 15 F0 34 F0 3D 31 17 1C A7 5F 89 FC CB 9F]


