
New Monotone Span Programs from Old

Ventzislav Nikov1 and Svetla Nikova2

1 Department of Mathematics and Computing Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
v.nikov@tue.nl

2 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Heverlee-Leuven, Belgium
svetla.nikova@esat.kuleuven.ac.be

Abstract. In this paper we provide several known and one new con-
structions of new linear secret sharing schemes (LSSS) from existing
ones. This constructions are well-suited for didactic purposes, which is
a main goal of this paper. It is well known that LSSS are in one-to-one
correspondence with monotone span programs (MSPs). MSPs introduced
by Karchmer and Wigderson, can be viewed as a linear algebra model
for computing a monotone function (access structure). Thus the focus is
in obtaining a MSP computing the new access structure starting from
the MSPs that compute the existing ones, in the way that the size of the
MSP after the transformation is well defined. Next we define certain new
operations on access structures and prove certain related properties.

1 Introduction

A secret sharing scheme (SSS) is a system designed to share a secret among a
group of participants in such a way that the secret can be reconstruct only by
specified groups of participants. It was pointed out by Brickell [4] how the linear
algebra view leads naturally to a wider class of secret sharing schemes. This have
later been generalized to all possible so-called monotone access structures by
Karchmer and Wigdreson [13] based on a linear algebra model of computation
called monotone span program (MSP). An SSS is linear if the dealer and the
participants use only linear operations to compute the shares and the secret.
Each linear SSS (LSSS) can be viewed as derived from a monotone span program
computing its access structure. On the other hand, each monotone span program
gives rise to an LSSS. Hence, one can identify an LSSS with its underlying
monotone span program. Such an MSP always exists, because MSPs can compute
any monotone access structure. An important parameter of the MSP is its size,
which is also the size of the corresponding LSSS. We will speak of the MSP
underlying an LSSS and of the LSSS induced by an MSP.

A wide range of general approaches for designing secret sharing schemes
are known, e.g., Shamir [21], Benaloh-Leicher [2], Ito et al. [10], Bertilsson and

Ingemarsson [3], Brickell [4], Massey [14], Blakley and Kabatyanskii [1], Simonis
and Ashikhmin [22] and van Dijk [8]. All these techniques result in LSSSs and
therefore are equivalent to MSP based secret sharing, but only few of them are
suitable for building Verifiable SSS (VSS) and none of them for Multi-Party
Computation (MPC).

It turns out to be convenient to describe the protocols in terms of MSPs.
The results of Cramer et al. [6, 7] and Nikov et al. [16–19] show that distributed
commitments (DC), verifiable secret sharing (VSS), proactive VSS, and multi-
party computation (MPC) can be efficiently based on any LSSS induced by an
MSP, provided that the access structure computed by the MSP allows DC, VSS,
proactive VSS or MPC.

A general question for multi-parti protocols is to find a “good measure”, so
that “often” the protocols are polynomially efficient in the number of players. Let
complexity mean the total number of rounds, bits exchanged, local computations
done, etc. The best measure known for a protocol efficiency is the Monotone
Span Program Complexity [6], which coincides with complexity in terms of linear
secret sharing schemes over finite fields. On the other hand the MSP complexity
is its size.

Shortly before the MSPs were introduced, Martin in [15] presented methods
for producing new access structures and new LSSSs from existing ones. He uses
general linear matrix presentation of an access structure, introduced by Brickell
and Davenport in [5], which allows to distinguish between complete and incom-
plete access structures. While this approach provably extends the class of access
structures that can be handled, from a practical point of view MSPs represent
the most powerful known general technique for constructing DC, SSS, VSS and
MPC protocols. That is why, in this paper we focus on MSP based approach for
building LSSS.

In this paper we provide several known and one new constructions of new
LSSSs from existing ones. The focus is in obtaining the MSP computing the
new access structure starting from the MSPs that compute the existing ones. As
a result the size of the MSP after the transformation is well defined. Next we
define certain new operations on access structures and prove related properties.

The paper is organized as follows. In the next Section 2 we give some pre-
liminaries. In Section 3 constructions for building new MSPs mfrom old are
presented. In the last Section 4 of the paper we define certain new operations on
access structures and prove certain properties, which are of independent interest.

2 Preliminaries

Let us denote the players in a Secret Sharing Scheme by Pi, 1 ≤ i ≤ n, the set
of all players by P = {P1, . . . , Pn} and the set of all subsets of P (i.e., the power
set of P) by P (P). We call the groups who are allowed to reconstruct the secret
qualified and the groups who should not be able to obtain any information about
the secret forbidden. The set of qualified groups is denoted by Γ (Γ ⊆ P (P))
and the set of forbidden groups by ∆ (∆ ⊆ P (P)). The set Γ is called monotone

increasing if for any set A in Γ any set containing A is also in Γ. Similarly,
∆ is called monotone decreasing, if for each set B in ∆ each subset of B is
also in ∆. A monotone increasing set Γ can be efficiently described by the set
Γ− consisting of the minimal elements in Γ , i.e., the elements in Γ for which no
proper subset is also in Γ. Similarly, the set ∆+ consists of the maximal elements
(sets) in ∆, i.e., the elements in ∆ for which no proper superset is also in ∆.
The tuple (Γ,∆) is called an access structure if Γ ∩ ∆ = ∅. It is obvious that
(Γ−,∆+) generates (Γ,∆). If the union of Γ and ∆ is equal to P (P) (so Γ is
equal to ∆c, the complement of ∆), then we say that the access structure (Γ,∆)
is complete and we denote it just by Γ. Throughout the paper we will consider
connected access structures, i.e., the access structures in which every player is
in at least one minimal set. Also we will consider complete general monotone
access structure Γ , which describes subsets of participants that are qualified to
recover the secret s ∈ F (F - finite field) and therefore set ∆ = Γ c.

Definition 1. The dual access structure Γ⊥ of an access structure Γ , defined
on P, is the collection of sets A ⊆ P such that P \A = Ac /∈ Γ (i.e. Ac ∈ ∆).

An m × d matrix M over a field F defines a map from Fd to Fm by taking a
vector v ∈ Fd to the vector Mv ∈ Fm. Associated with m × d matrix M (or a
linear map) are two natural subspaces, one in Fm and the other in Fd. They are
defined as follows. The kernel of M (denoted by ker(M)) is the set of vectors
u ∈ Fd, such that Mu = 0. The image of M (denoted by im(M)) is the set of
vectors v ∈ Fm such that v = Mu for some u ∈ Fd.

For an arbitrary matrix M over F, with m rows and for an arbitrary non-
empty subset A of {1, . . . ,m}, let MA denote the restriction of M to the rows i
with i ∈ A. If A = {i} we write Mi. Similarly for any vector k ∈ Fm an arbitrary
non-empty subset A of {1, . . . ,m}, let kA ∈ F|A| denote the restriction of k to
the coordinates i ∈ A. If A = {i} we write ki. Let M(i) ∈ Fm , for i = 1, . . . , d,
denote the i-th column in m×d matrix M . Sometimes we will denote the matrix
M by [M(1), . . . ,M(d)] too. In the sequel vi will denote a vector but vi stands
for the i-th coordinate of vector v.

With the standard inner product 〈v,w〉 =
∑

viwi, we write v ⊥ w, when
〈v,w〉 = 0. For an F-linear subspace V of Fd, V⊥ denotes the collection of
elements of Fd, that are orthogonal to all of V (the orthogonal complement). It
is again an F-linear subspace. For all subspaces V of Fd we have V = (V⊥)⊥.
Other standard relations are (im(MT))⊥ = ker(M), and im(MT) = (ker(M))⊥,
as well as 〈v,MTw〉 = 〈Mv,w〉.

Let v = (v1, . . . ,vd1) ∈ Fd1 and w = (w1, . . . ,wd2) ∈ Fd2 be two vectors.
The tensor vector product v ⊗ w is defined as a vector in Fd1d2 that the j-
coordinate in v is replaced by vjw, i.e., v ⊗w = (v1w, . . . ,vd1w) ∈ Fd1d2 . Let
M be an m1×d1 matrix, and N be an m2×d2 matrix. The Kronecker (or tensor,
direct, outer) product M ⊗ N is defined as an m1m2 × d1d2 matrix with rows
Mi ⊗Nj for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. Next we will give some properties of
the tensor product.

Lemma 1. Let x,a ∈ Fm1 , y,b ∈ Fm2 , c ∈ Fd1 and d ∈ Fd2 be arbitrary
vectors. Let A be an m1 × d1 matrix, B be an m2 × d2 matrix, C be an d1 × n1

matrix and D be an d2 × n2 matrix. Then the following equations hold

〈x⊗ y,a⊗ b〉 = 〈x,a〉〈y,b〉
(A⊗ a)c = (Ac)⊗ a

(A⊗B)T = AT ⊗BT

(A⊗B)(c⊗ d) = (Ac)⊗ (Bd)
(A C)⊗ (B D) = (A⊗B)(C ⊗D).

Now we give a formal definition of a Monotone Span Program.

Definition 2. [13] A Monotone Span Program (MSP) M is a quadruple (F,M,
ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m columns)
over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε = (1, 0, . . . , 0)T

∈ F d is called target vector. The size of M is the number m of rows and is de-
noted as size(M).

As ψ labels each row with a number i from [1, . . . ,m] that corresponds to player
Pψ(i), we can think of each player as being the “owner” of one or more rows.
Also consider a “function” ϕ from [P1, . . . , Pn] to [1, . . . ,m] which gives for every
player Pi the set of rows owned by him (denoted by ϕ(Pi)). In some sense ϕ is
“inverse” of ψ. For any set of players B ⊆ P consider the matrix consisting
of rows these players own in M , i.e. Mϕ(B). As is common, we shall shorten
the notation Mϕ(B) to just MB . The reader should stay aware of the difference
between MB for B ⊆ P and for B ⊆ {1, . . . ,m}.

An MSP is said to compute a (complete) access structure Γ when ε ∈ im(MT
A)

if and only if A is a member of Γ . We say that A is accepted by M if and only if
A ∈ Γ , otherwise we say A is rejected by M. In other words, the players in A can
reconstruct the secret precisely if the rows they own contain in their linear span
the target vector of M, and otherwise they get no information about the secret.
Hence when a set A is accepted by M there exists a so-called recombination
vector (column) λ such that MT

Aλ = ε. Notice that the vector ε /∈ im(MT
B) if

and only if there exists a vector k ∈ Fd such that MBk = 0 and k1 = 1.
Let the dealer of the scheme shares a secret s, so in the sharing phase he

chooses a random vector ρ and gives to player Pi (1 ≤ i ≤ n) a share Mi(s,ρ)T .
In the reconstruction phase using the recombination vector λ any qualified
group can reconstruct the secret as follows: 〈λ,MA(s,ρ)T 〉 = 〈MT

Aλ, (s,ρ)T 〉 =
〈ε, (s,ρ)T 〉 = s. Regarding privacy, let B be forbidden group of players, and
consider the joint information held by the players in B, i.e. MBx = sB , where
x = (s,ρ)T . Let s′ ∈ F be arbitrary, and let k be such that MBk = 0 and
k1 = 1. Then sB = MB(x + k(s′ − s)) where the first coordinate of argument
x + k(s′ − s) is now equal to s′. This means that, from the point of view of the
players in B, their shares sB are equally likely consistent with any secret s′ ∈ F.

3 Compositions of MSPs

In this section we shall consider the following problem:
Given some access structures, the MSPs computing them and a new access struc-
ture obtained from the given ones after certain operations, how can we construct
an MSP that computes the new access structure?

3.1 Restrictions and Contractions

In this section we study the structure of monotone span programs which are
produced within an existing secret sharing scheme, using certain constructions.

Definition 3. [15] Let Γ be a monotone access structure defined on set P and
let Q ⊆ P. The restriction of Γ at Q, Γ|Q, and the contraction of Γ at Q, Γ·Q,
are monotone access structures defined on P \Q such that for each A ⊆ P \Q,

A ∈ Γ|Q ⇐⇒ A ∈ Γ, A ∈ Γ·Q ⇐⇒ A ∪Q ∈ Γ.

Thus the members of (Γ|Q)− are precisely the members of Γ− that do not
contain any member of Q. If Q ∈ Γ then the members of (Γ·Q)− are all the
single participants of P \Q. If Q /∈ Γ then (Γ·Q)− comprises of all the minimal
non empty sets of the form A ∩ (P \Q), where A ∈ Γ−.

Theorem 1. [15] Let M be an MSP computing Γ and Q ⊂ P. Then there exists
an MSP M|Q, computing the restriction of Γ at Q (i.e., Γ|Q). The size of M|Q
is equal to |ϕ(P \Q)| (smaller than the size of M).

Proof. Let Q ⊂ P and A ⊆ Qc. Define ∆ = Γ c, ∆|Q = (Γ|Q)c and take M =
M|Q. Form the matrix M by removing the rows in M , which correspond to the
members of Q, i.e., we set M = MQc . The functions ψ and ϕ are not changed.
The proof that the MSP M|Q with matrix M computes the access structure Γ|Q
is now straightforward and left to the reader. ut

Now we will consider contractions of a monotone access structure only in the
non-trivial case, i.e., when Q /∈ Γ .

Theorem 2. [15] Let M be an MSP computing Γ and let Q ⊂ P, Q /∈ Γ . Then
there exists an MSP M·Q, which computes the contraction of Γ at Q (i.e., Γ·Q),
with size equal to the size of M.

Proof. Now we will consider contractions of a monotone access structure in the
non-trivial case, i.e., when Q /∈ Γ . Let Q ⊂ P, Q /∈ Γ and A ⊆ Qc. Define
∆ = Γ c, ∆·Q = (Γ·Q)c and take M = M·Q. The new matrix M is the same as M ,
but the rows which belong to the members of Q, become rows of all the members
of Qc, i.e., ϕ(Pi) = ϕ(Pi)∪ ϕ(Q), for Pi ∈ Qc. Observe now that the MSP M·Q
with matrix M computes Γ·Q. Indeed from (A ∈ Γ·Q ⇐⇒ A∪Q ∈ Γ), it follows
that (B ∈ ∆·Q ⇐⇒ B ∪Q ∈ ∆).

We will leave the proof that MSP M·Q with matrix M computes the access
structure Γ·Q again to the reader. ut

3.2 Insertions

In this section we investigate a useful general construction, introduced by Martin
[15], which allows to begin with “small” schemes with a few participants and
build them up to “large” schemes with higher number of participants.

Definition 4. [15] Let Γ1 and Γ2 be two monotone access structures defined on
participant sets P1 and P2 respectively, and let Pz ∈ P1. Define the insertion of
Γ2 at player Pz in Γ1, Γ1(Pz → Γ2), to be the monotone access structure defined
on the set (P1 \ Pz) ∪ P2 such that for A ⊆ (P1 \ Pz) ∪ P2 we have

A ∈ Γ1(Pz → Γ2) ⇐⇒
{
A ∩ P1 ∈ Γ1, or
((A ∩ P1) ∪ Pz ∈ Γ1 and A ∩ P2 ∈ Γ2) .

In other words Γ1(Pz → Γ2) is the monotone access structure Γ1 with participant
Pz “replaced” by the sets of Γ2. Notice that this insertion is an operation on a
monotone increasing set. Later we will define insertion on monotone decreasing
set.

Theorem 3. Let Γ1 and Γ2 be monotone access structures defined on the set
of participants P1 and P2 and with MSPs M1 and M2 respectively, and let
Pz ∈ P1. Let the size of M1 be m1 and the size of M2 be m2. Then there
exists an MSP M computing the access structure Γ1(Pz → Γ2) of size equal to
m1 + (m2 − 1)|ϕ1(Pz)|.

Proof. We will give here first the construction of MSP M, then we prove that it
computes Γ1(Pz → Γ2). Let M (1) and M (2) be corresponding matrices to MSPs
M1 and M2. Let the matrix M (2) = (u M̃ (2)), where u is its first column. Let
M

(1)
= M

(1)
P1\{Pz}, i.e., all rows in M (1) except those owned by Pz and assume

that the rows of Pz are the first rows in M (1). Consider the rows owned by Pz,
i.e., M (1)

Pz
. Denote q = |ϕ1(Pz)| and let ui = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Fq be the

column vector with 1 in the i-th position. Let matrix M̃ , consists of diagonal

blocks sub-matrices ui⊗ M̃ (2) for i = 1, . . . , q, i.e., M̃ =

M̃ (2) · 0 · 0
0 · M̃ (2) · 0
0 · 0 · M̃ (2)

and denote by M̂ the matrix M (1)

Pz
⊗ u. Then the MSP M =

(
M̂ M̃

M
(1)

0

)
com-

putes Γ1(Pz → Γ2).
More specific define Γ = Γ1(Pz → Γ2), ∆ = Γ c, and set ∆1 = (Γ1)c and

∆2 = (Γ2)c. Let M1 be an MSP with m1 × d1 matrix M (1), and functions ψ1

and ϕ1. Similarly let M2 be an MSP with m2 × d2 matrix M (2), and functions
ψ2 and ϕ2. Let M

(1)
= M

(1)
P1\{Pz}, i.e., all rows in M (1) except those owned

by Pz and assume that the rows of Pz are the first rows in M (1). Consider the
rows owned by Pz, i.e., M (1)

Pz
. Denote the columns in the matrix M (1)

Pz
by zk for

k = 1, . . . , d1. Thus, this matrix is denoted by [z1, . . . , zd1]. Finally, let by M (2)
(`)

denote the columns in M (2) for ` = 1, . . . , d2, i.e., M (2) = [M (2)
(1) , . . . ,M

(2)
(d2)

] and

take M̃ (2) = [M (2)
(2) , . . . ,M

(2)
(d2)

] the matrix M (2) without its first column. Let
ui = (0, . . . , 0, 1, 0, . . . , 0)T ∈ F|ϕ1(Pz)| be the column vector with 1 in the i-th
position.

Now we construct the MSP M for Γ1(Pz → Γ2) by its matrix M in the
following way:
A) Take M (1) and replace every column zk with zk ⊗M

(2)
(1) , for k = 1, . . . , d1,

i.e., [z1, . . . , zd1] ⊗M
(2)
(1) . The rest of the matrix (i.e., M

(1)
) is not changed in

this step. Thus this matrix now has size (m1 + (m2 − 1)|ϕ1(z)|)× d1.
B) For the first m2|ϕ1(Pz)| rows, add additional columns ui ⊗M

(2)
(`) , for ` =

2, . . . , d2, (i.e., ui⊗ [M (2)
(2) , . . . ,M

(2)
(d2)

] = ui⊗ M̃ (2)) and repeat this operation for
i = 1, . . . , |ϕ1(Pz)|. For the remaining m1 − |ϕ1(Pz)| rows add additional zero
columns. The matrix now has size (m1+(m2−1)|ϕ1(Pz)|)×(d1+(d2−1)|ϕ1(Pz)|).

The obtained matrix M consists of four sub-matrices and has the form M =(
M̂ M̃

M
(1)

0

)
, where the sub-matrices are as follows. The first one in the upper

left corner is [z1, . . . , zd1] ⊗M
(2)
(1) - will be denoted by M̂ ; the second one, in

the upper right corner denoted by M̃ , consists of diagonal blocks sub-matrices

ui ⊗ M̃ (2), i.e., M̃ =

M̃ (2) · 0 · 0
0 · M̃ (2) · 0
0 · 0 · M̃ (2)

 . The third one, in the lower left

corner is M
(1)

; and the last one in the lower right corner is the null matrix.
Now the rows owned by participant Pi ∈ P1\{Pz} correspond to his previous

rows in M
(1)

. But the rows owned by participant Pj ∈ P2 are repeated |ϕ1(Pz)|
times, because M (2) is multiplied so many times.

We will prove that this MSP M computes access structure Γ1(Pz → Γ2).
Rewriting Definition 4 in terms of ∆ instead of Γ we have:

B ∈ ∆ ⇐⇒
(
B ∩ P1 ∈ ∆1 and

{
(B ∩ P1) ∪ {Pz} ∈ ∆1, or
B ∩ P2 ∈ ∆2.

)
.

This can be rewritten as

B ∈ ∆ ⇐⇒
{

(B ∩ P1) ∪ {Pz} ∈ ∆1 or,
(B ∩ P1 ∈ ∆1, and B ∩ P2 ∈ ∆2) .

The latest means that, in order to prove that MSP M computes access structure
Γ1(Pz → Γ2) we need to prove the following three cases:
Case 1. If (B ∩P1)∪{Pz} ∈ ∆1 we will prove that B ∈ ∆ holds. Let (B ∩P1)∪
{Pz} ∈ ∆1. There exists a column vector (1, k̂) ∈ Fd1 such that M (1)

(B∩P1)∪{Pz}

(1, k̂) = 0. Define a new column vector (1,k) ∈ Fd1+d2−1 by (1,k) = (1, k̂,0).

We have MB(1,k) = 0, since

MB∩P1(1,k) = M
(1)

B∩P1
(1, k̂) = 0 and,

MB∩P2(1,k) = M̂B∩P2(1, k̂) = [[z1, . . . , zd1]⊗M
(2)
(1)]B∩P2(1, k̂)

= [[z1, . . . , zd1](1, k̂)]⊗ [M (2)
(1)]B∩P2 = 0⊗ [M (2)

(1)]B∩P2 = 0.

Here [M (2)
(1)]B∩P2 denotes the first column in matrix M (2) restricted to the rows

owned by B ∩ P2. Hence we proved that (1,k) ∈ ker(MB) and thus it follows
that B ∈ ∆.

Case 2. If B ∩ P1 ∈ ∆1 and B ∩ P2 ∈ ∆2 we will prove that B ∈ ∆ holds.
Let q = |ϕ1(Pz)| denote the number of rows that player Pz possesses in M (1).
Let B ∩P1 ∈ ∆1 and B ∩P2 ∈ ∆2. Then there exist column vectors (1, k̂) ∈ Fd1
and (1, k̃) ∈ Fd2 such that M (1)

B∩P1
(1, k̂) = 0 and M

(2)
B∩P2

(1, k̃) = 0. Notice

that now (B ∩ P1) ∪ {Pz} /∈ ∆1 implies that M (1)
Pz

(1, k̂) = [z1, . . . , zd1](1, k̂) =
α 6= 0, where α ∈ F|ϕ1(Pz)| = Fq. Construct a new column vector (1,k) ∈
Fd1+(d2−1)|ϕ1(Pz)| by taking (1,k) = (1, k̂,α1k̃, . . . ,αqk̃) = (1, k̂,α ⊗ k̃). Now
we check that MB(1,k) = 0. Indeed

MB∩P1(1,k) = M
(1)

B∩P1
(1, k̂) = 0 and,

MB∩P2(1,k) = M̂B∩P2(1, k̂) + M̃B∩P2(α⊗ k̃)

= [z1 ⊗M
(2)
(1) , . . . , z

d1 ⊗M
(2)
(1)]B∩P2(1, k̂)

+ [ui ⊗M
(2)
(2) , . . . ,u

i ⊗M
(2)
(d2)

]B∩P2(αik̃)

= [[z1, . . . , zd1](1, k̂)]⊗ [M (2)
(1)]B∩P2

+ ui ⊗ [[M (2)
(2) , . . . ,M

(2)
(d2)

](αik̃)]B∩P2

= αi[M
(2)
(1)]B∩P2 + αi[[M

(2)
(2) , . . . ,M

(2)
(d2)

](k̃)]B∩P2

= αi{[[M (2)
(2) , . . . ,M

(2)
(d2)

](k̃)]B∩P2 + [M (2)
(1)]B∩P2}

= αi{[[M (2)
(1) ,M

(2)
(2) , . . . ,M

(2)
(d2)

](1, k̃)]B∩P2}

= αiM
(2)
B∩P2

(1, k̃) = 0.

Here starting from the second equality we consider M (1)
Pz

row by row. It follows
that (1,k) ∈ ker(MB) and B ∈ ∆.

Case 3. (Reverse) If B ∈ ∆ we will prove that either (B∩P1)∪{Pz} ∈ ∆1 or
(B ∩ P1 ∈ ∆1 and B ∩ P2 ∈ ∆2) holds. Let B ∈ ∆. Then there exists a column
vector (1,k) ∈ Fd1+(d2−1)|ϕ1(Pz)| such that MB(1,k) = 0. We can rewrite (1,k)
as (1, k̂, k̃1, . . . , k̃q), where k̂ ∈ Fd1−1, k̃i ∈ Fd2−1 are column vectors. First, let
us consider (1, k̂):
From MB(1,k) = 0 we conclude that M

(1)

B∩P1
(1, k̂) = 0. If it is also true that

M
(1)
Pz

(1, k̂) = 0 it will follow that (B ∩P1) ∪ {Pz} ∈ ∆1, so we are done.

But ifM (1)
Pz

(1, k̂) = α 6= 0 then fromMB(1,k) = 0 we will have that M̂B∩P2(1, k̂)+

M̃B∩P2(k̃1, . . . , k̃q) = 0. Rewriting the last equation, as in case 2), we ob-

tain αi[M
(2)
(1)]B∩P2 + [[M̃ (2)](k̃i)]B∩P2 = 0, for i = 1, . . . , q. Since at least one

αj 6= 0, we can construct a new vector (1,k) ∈ Fd1+(d2−1)|ϕ1(Pz)| such that
MB(1,k) = 0, as follows: (1,k) = (1, k̂, α1

αj
k̃j, . . . ,

αq

αj
k̃j). Now consider column

vector (1, k̃j/αj). It satisfies M (2)
B∩P2

(1, k̃j/αj) = 0. Therefore we have both
B ∩ P1 ∈ ∆1 and B ∩ P2 ∈ ∆2 which proves the case 3. ut

3.3 Composite

In this section we will follow the settings given in [12]. Recall that P is the set
of participants and let P = P1∪· · ·∪P` be a partition of P (that is ∅ 6= Pi 6= P,
Pi ∩ Pj = ∅, if i 6= j and ∪`i=1Pi = P). Let us write |Pi| = ni and n =

∑`
i=1 ni.

For a set A ⊆ P we denote Ai = A ∩ Pi. Obviously A = A1 ∪ · · · ∪ A`. For
i = 1, . . . , `, let Γi be an access structure on Pi and let Γ0 be an access structure
on the participants set P0 = {P1, . . . ,P`}.

Definition 5. [12] With the notion as above the composite access structure of
Γ1, . . . , Γ`, following Γ0, denoted by Γ0[Γ1, . . . , Γ`], is defined as follows

Γ0[Γ1, . . . , Γ`] = {A ⊆ P | ∃B ∈ Γ0 such that Ai ∈ Γi for all Pi ∈ B}
=
⋃
B∈Γ0

{Ai ∈ Γi for all Pi ∈ B}.

That is, each of the sets Pi plays the role of a participant for Γ0. A coalition
A ⊆ P is qualified if and only if it includes, as subsets, qualified coalitions in
enough of the components Γ1, Γ2, . . . , Γ` to constitute an qualified subset for Γ0.
Note that the access structures Γi could be defined over P, not only over Pi.

A composite SSS can be useful for secret sharing when the set of participants
is divided into several groups, each of them with its own family of qualified
coalitions. The relation among these groups is given by the structure Γ0.

The following relations are known given a partition P = P1 ∪ · · · ∪ P` and
access structures Γ1, . . . , Γ`:

– the sum of Γ1, . . . , Γ` is Γ1 + · · ·+Γ` = {A ⊆ P | Ai ∈ Γi for some i}, hence
Γ1 + · · ·+ Γ` = T0,`[Γ1, . . . , Γ`];

– the product of Γ1, . . . , Γ` is Γ1×· · ·×Γ` = {A ⊆ P | Ai ∈ Γi for all i}, hence
Γ1 × · · · × Γ` = T`−1,`[Γ1, . . . , Γ`];

– let Γ1, Γ2 be two structures defined on the sets P1 and P2 and let Pz is a
participant from P1. Then the operation insertion can be presented also as
Γ1(Pz → Γ2) = Γ1[Γ2, T0,1, . . . , T0,1].

– Composite access structures can be obtained by applying insertion several
times as follows Γ0[Γ1, . . . , Γr] = Γ0(P1 → Γ1)(P2 → Γ2) . . . (Pr → Γr).

Thus the composite access structures are equivalent to insertion (see Definition
4) applied multiple times.

Theorem 4. [20] Let Γ0[Γ1, . . . , Γ`] be a composite access structure. Denote by
Mj the MSP computing Γj for j = 0, . . . , ` and by mj the size of Mj. Let
Pi be the “owner” of m0

i rows in the MSP M0. Then there exists an MSP M
computing Γ0[Γ1, . . . , Γ`] of size m =

∑`
i=1m

0
i mi.

Proof. We will give first the construction of MSP M from [20], then we prove
that it computes Γ0[Γ1, . . . , Γ`]. Suppose that access structures Γ0, Γ1, . . . , Γ` are
computed by MSPs M0,M1, . . . ,M`. Let M (j) be the corresponding matrices.

Then the MSP M =

M (0) I(1) I(2) . . .

0 M (1) 0
0 0 M (2)

...
. . .

 computes Γ0[Γ1, . . . , Γ`], where

I(j) is the matrix which has a single 1 in the j-th row and 1-st column, all other
entries are 0. But the size of M is bigger than

∑`
i=1m

0
i mi.

On the other hand since the composite access structure Γ0[Γ1, . . . , Γ`] can
be constructed by applying several times the operation insertion. By applying
Theorem 3 we obtain the MSP that computes Γ0[Γ1, . . . , Γ`]. The size of the
MSP is m = m0 +

∑`
i=1m

0
i (mi − 1). To complete the proof we only need to

recall that m0 =
∑`
i=1m

0
i . ut

Corollary 1. If access structures Γ0, Γ1, . . . , Γ` are ideal, then the composite
access structure Γ0[Γ1, . . . , Γ`] is also ideal.

Proof. Since Γ0 is ideal it follows that m0
i = 1 and m0 = `. From the fact that

Γi is ideal for i = 1, . . . , ` it follows that mi = ni, where ni is the number of
players in Pi. Applying Theorem 4 we obtain that m =

∑`
i=1 ni = n, i.e. the

scheme is ideal. ut

3.4 Sums and Products

As Martin pointed out in [15] there are many special cases of the use of insertion.
He considered two of them.

Definition 6. [15] If Γ1 and Γ2 are defined on P1 and P2 respectively, then one
can define the sum Γ1 + Γ2 and the product Γ1 × Γ2 as the monotone access
structures defined on P1 ∪ P2 such that for A ⊆ P1 ∪ P2,

A ∈ Γ1 + Γ2 ⇐⇒ (A ∩ P1 ∈ Γ1 or A ∩ P2 ∈ Γ2) ,
A ∈ Γ1 × Γ2 ⇐⇒ (A ∩ P1 ∈ Γ1 and A ∩ P2 ∈ Γ2) .

Van Dijk [8] showed some relations between insertion, product, sum of the access
structures and the dual access structures.

(Γ1(Pz → Γ2))⊥ = Γ⊥
1 (Pz → Γ⊥

2), (1)
(Γ1 × Γ2)⊥ = Γ⊥

1 + Γ⊥
2 ,

(Γ1 + Γ2)⊥ = Γ⊥
1 × Γ⊥

2 .

Theorem 5. [20, 6] Let Γ1 and Γ2 be monotone access structures defined on P1

and P2 with MSPs M1 of size m1 and M2 of size m2 respectively. Then there
exists an MSP M of size m1 +m2 computing the sum Γ1 + Γ2.

Proof. We will give first the construction of MSP M, then we prove that it
computes Γ1 + Γ2. Martin proves in [15] that using the access structure Γ =
{Pa, Pb, PaPb} defined on the set {Pa, Pb}, where the players Pa, and Pb are
not in P1 ∪ P2 we have Γ1 + Γ2 = Γ (Pa → Γ1)(Pb → Γ2). Thus it is possible to
constructM starting fromM applying twice Theorem 3. The MSPM computes
Γ and has matrix M =

(
1
1

)
.

Suppose that access structures Γ1 and Γ2 are computed by MSPs M1,M2.
Let M (1) and M (2) be the corresponding matrices. Let the matrices M (1) =
(u M

(1)
) and M (2) = (v M

(2)
), where u,v are their first columns. Then the

MSP M =

(
u M

(1)
0

v 0 M
(2)

)
computes the sum Γ1 + Γ2. Thus M is a (m1 +

m2)× (d1 + d2 − 1) matrix. The labelling of M is carried over in a natural way
from M1 and M2.

Now we will show that this MSP computes the access structure Γ1 + Γ2. As
usual let Γ = Γ1 +Γ2 and ∆ = Γ c, correspondingly ∆1 = (Γ1)c and ∆2 = (Γ2)c.
Rewriting Definition 6 in terms of ∆ instead of Γ we have:

B ∈ ∆ ⇐⇒ (B ∩ P1 ∈ ∆1 and B ∩ P2 ∈ ∆2) .

Thus we will check that both directions hold. If B ∩ P1 ∈ ∆1 and B ∩ P2 ∈ ∆2

there exist column vectors (1, k̂) ∈ Fd1 and (1, k̃) ∈ Fd2 such that M (1)
B∩P1

(1, k̂) =

0 and M
(2)
B∩P2

(1, k̃) = 0. Construct the column vector (1,k) = (1, k̂, k̃) ∈
Fd1+d2−1. It is easy to check that MB(1,k) = 0, using the fact that B =
(B ∩ P1) ∪ (B ∩ P2) and hence B ∈ ∆.

On the other hand, if B ∈ ∆ then there exists a column vector (1,k) ∈
Fd1+d2−1 such that MB(1,k) = 0. Rewrite it in the form (1,k) = (1, k̂, k̃),
where k̂ ∈ Fd1−1 and k̃ ∈ Fd2−1 are column vectors. Then it is easy to check
that M (1)

B∩P1
(1, k̂) = 0 and M

(2)
B∩P2

(1, k̃) = 0. Thus we have B ∩ P1 ∈ ∆1 and
B ∩ P2 ∈ ∆2. Thus M computes Γ . ut

Theorem 6. [20] Let Γ1 and Γ2 be monotone access structures defined on P1

and P2 with MSPs M1 of size m1 and M2 of size m2 respectively. Then there
exists an MSP M of size m1 +m2 computing the product Γ1 × Γ2.

Proof. We will give first the construction of MSP M, then we will show that
it computes Γ1 × Γ2. Martin proves in [15] that using the access structure Γ =
{PaPb} defined on the set {Pa, Pb}, where the players Pa, and Pb are not in
P1∪P2 we have Γ1×Γ2 = Γ (Pa → Γ1)(Pb → Γ2). Thus it is possible to construct
M starting from M applying twice Theorem 3. The MSP M computes Γ and

has the matrix M =
(

1 −1
0 1

)
.

In order to compute the size(M) we need a direct construction instead of the
method proposed by Martin. Thus, another way to construct the same MSP is to
use the construction from Theorem 5, taking into account the relation between
product and sum (see (1)) and applying three times the construction of Cramer
and Fehr for constructing a dual MSP [7]. Although this construction allows us
to compute the size of M it does not give information about the properties of
M. For this purpose we build the matrix M as follows:

Suppose that access structures Γ1 and Γ2 are computed by MSPs M1,M2.
Let M (1) and M (2) be the corresponding matrices. Let the matrices M (1) =
(u M

(1)
) and M (2) = (v M

(2)
), where u,v are their first columns. Then the

MSP M =

(
u −u M

(1)
0

0 v 0 M
(2)

)
computes the product Γ1 × Γ2. Thus M is a

(m1 +m2)× (d1 + d2) matrix. The labelling of M is carried over in the natural
way from M1 and M2.

We will show that this MSP computes the access structure Γ1×Γ2. As usual
write Γ = Γ1 × Γ2, ∆ = Γ c, ∆1 = (Γ1)c and ∆2 = (Γ2)c. Rewriting Definition
6 in terms of ∆ instead of Γ we have:

B ∈ ∆ ⇐⇒ (B ∩ P1 ∈ ∆1 or B ∩ P2 ∈ ∆2) .

Thus we will check that both directions hold. Now, if B ∩ P1 ∈ ∆1 or B ∩ P2 ∈
∆2 then there exists a column vector (1, k̂) ∈ Fd1 or (1, k̃) ∈ Fd2 such that
M

(1)
B∩P1

(1, k̂) = 0 or M (2)
B∩P2

(1, k̃) = 0. Construct a column vector (1,k) =
(1, α, (1 − α)k̂, αk̃) ∈ Kd1+d2 , for α = 0 or α = 1. It is easy to check that
MB(1,k) = 0 and hence B ∈ ∆.

Conversely, if B ∈ ∆ then there exists a column vector (1,k) ∈ Fd1+d2
such that MB(1,k) = 0. Rewrite it in the form (1,k) = (1, α, k̂, k̃), where
k̂ ∈ Fd1−1 and k̃ ∈ Fd2−1 are column vectors too. Then it is easy to check that
M

(1)
B∩P1

(1, k̂/(1− α)) = 0, when 1− α 6= 0 or M (2)
B∩P2

(1, k̃/α) = 0, when α 6= 0.
Thus we have B ∩ P1 ∈ ∆1 or B ∩ P2 ∈ ∆2. ut

4 New Operations on and Properties of Access Structures

4.1 Element-Wise Union

We will first describe some properties of the operation for access structures,
introduced in [16] and later applied to different models in [17–19]. The same
operation for monotone structures was also defined by Fehr and Maurer in [9],
which they call element-wise union.

Definition 7. For any two monotone decreasing sets ∆1,∆2 operation] is
defined as follows: ∆1]∆2 = {A = A1 ∪A2;A1 ∈ ∆1, A2 ∈ ∆2}.

It is easy to check that ∆1] ∆2 is monotone decreasing. Note that if A ∈
(∆1]∆2)+ then A = A1 ∪A2 for some A1 ∈ ∆+

1 and A2 ∈ ∆+
2 .

Definition 8. For any two monotone increasing sets Γ1, Γ2 operation] is de-
fined as follows: Γ1] Γ2 = {A = A1 ∪A2;A1 /∈ Γ1, A2 /∈ Γ2}c.

Obviously Γ1]Γ2 is monotone increasing, since Γ1]Γ2 = (∆1]∆2)c. Note that
from B ∈ Γ1] Γ2 it follows that B ∈ Γ1, B ∈ Γ2 and that B 6= A1 ∪ A2 with
A1 /∈ Γ1, A2 /∈ Γ2.

Corollary 2. For any two access structures Γ1 and Γ2, the element-wise union
is subset of their product.

Γ1] Γ2 ⊂ Γ1 × Γ2.

4.2 Element-Wise Intersection

In this section we will consider operation, which is in some sense dual to the
element-wise union.

Definition 9. The element-wise intersection operation ◦ for any two monotone
increasing sets Γ1, Γ2 is defined as follows: Γ1◦Γ2 = {B = B1∩B2;B1 ∈ Γ1, B2 ∈
Γ2}.

It is easy to check that Γ1 ◦ Γ2 is monotone increasing.

Lemma 2. B ∈ (Γ1] Γ2)⊥ if and only if B = B1 ∩B2 for some B1 ∈ Γ⊥
1 and

B2 ∈ Γ⊥
2 .

Proof. Let us find the dual of Γ1]Γ2. Let A /∈ Γ1]Γ2, i.e., A = A1∪A2 for some
A1 /∈ Γ1 and A2 /∈ Γ2 (see Definition 7). Hence A = A1∪A2;Ac1 ∈ Γ⊥

1 , A
c
2 ∈ Γ⊥

2 .
Thus Ac = Ac1 ∩ Ac2;Ac1 ∈ Γ⊥

1 , A
c
2 ∈ Γ c2 . In other words B ∈ (Γ1] Γ2)⊥ if and

only if B = B1 ∩B2 for some B1 ∈ Γ⊥
1 and B2 ∈ Γ⊥

2 . ut

Corollary 3. For any access structures Γ1 and Γ2, their element-wise intersec-
tion is the dual access structure of the element-wise union of the dual access
structures Γ⊥

1 and Γ⊥
2 .

Γ1 ◦ Γ2 = (Γ⊥
1] Γ⊥

2)⊥.

Lemma 3. For any access structures Γ1 and Γ2, their sum is subset of the
element-wise intersection.

Γ1 + Γ2 ⊂ Γ1 ◦ Γ2.

Proof. Using Definition 1 it is easy to verify that Γ1 ⊆ Γ2 if and only if ∆2 ⊆ ∆1

if and only if Γ⊥
2 ⊆ Γ⊥

1 . Now using Corollaries 2, 3 and the relation between the
operations (1) we conclude that

Γ1 + Γ2 = (Γ⊥
1 × Γ⊥

2)⊥ ⊂ (Γ⊥
1] Γ⊥

2)⊥ = Γ1 ◦ Γ2.

ut

4.3 Insertions in Monotone Decreasing Sets

Now we will define the operation insertion in monotone decreasing sets.

Definition 10. Let ∆1 and ∆2 be two monotone decreasing sets defined on
participant sets P1 and P2 respectively, and let Pz ∈ P1. Define the insertion
of monotone decreasing set ∆2 at player Pz in ∆1, ∆1(Pz → ∆2), to be the
monotone decreasing set defined on the set (P1 \ Pz) ∪ P2 such that for A ⊆
(P1 \ Pz) ∪ P2 we have

A ∈ ∆1(Pz → ∆2) ⇐⇒
{
A ∈ ∆1, or
((A ∩ P1) ∪ Pz ∈ ∆1 and A ∩ P2 ∈ ∆2) .

Hence ∆1(Pz → ∆2) is the monotone decreasing set ∆1 with participant Pz
“replaced” by the sets of ∆2. It is easy to verify that, ∆1(Pz → ∆2) is monotone
decreasing too.

Let us consider Γ1 defined on the set of players P. Add one extra player Pz to
the set of players P and form a new access structure Γ3, such that A ∈ ∆+

1 if and
only if A∪Pz ∈ ∆+

3 . Note that the player Pz is not important for reconstructing
the secret.

Now combining Definition 10 and the construction above we arrive at the
following lemma.

Lemma 4. With the notions as above the following relation holds:

∆1]∆2 = ∆3(Pz → ∆2).

4.4 Some New Properties

In this section we investigate certain properties of access structures (e.g. star
topology for forbidden sets and element-wise union of an access structure with
its dual) .

Definition 11. An access structure has star topology for forbidden sets, if there
exists a player Pi such that Pi is a member of every maximal forbidden set, i.e.
for any set A ∈ ∆+, Pi ∈ A. Call Pi to be in the center of the star.

The next lemma follows directly from Definition 1 and Definition 11.

Lemma 5. Access structure Γ has star topology for forbidden sets if and only
if Pi /∈ B for any set B ∈ (Γ⊥)−.

Lemma 6. Access structure Γ has star topology for forbidden sets if and only
if Pi /∈ A for any set A ∈ Γ−.

Proof. Assume that there exists A ∈ Γ− such that Pi ∈ A. Define B = A\{Pi},
so B ∈ ∆. Thus, using the monotone decreasing property of ∆, there exists a
set C such that B ⊆ C and C ∈ ∆+. It is now easy to check that Pi /∈ C,
because otherwise it will follow that A ⊆ C, which is impossible since A ∈ Γ

and Γ is monotone increasing, implying that C ∈ Γ . So, Pi /∈ C and C ∈ ∆+. By
Definition 11 this contradicts to the fact that Γ has a star topology for forbidden
sets.

Let us now assume the opposite, i.e. Pi /∈ A for any set A ∈ Γ−. Suppose
that there exists B ∈ ∆+ such that Pi /∈ B, i.e. Γ has not a star topology
for forbidden sets. Define A = B ∪ {Pi}, so A ∈ Γ . Then, using the monotone
increasing property of Γ , there exists a set C such that C ⊆ A and C ∈ Γ−. It
is now easy to check that Pi ∈ C, because otherwise it will follow that C ⊆ B
and ∆ is monotone decreasing, implying that C ∈ ∆. So, Pi ∈ C and C ∈ Γ− a
contradiction. ut

Corollary 4. Access structure Γ has star topology for forbidden sets if and only
if the dual access structure Γ⊥ has star topology for forbidden sets.

Lemma 7. Access structure Γ has star topology for forbidden sets if and only
if Γ is not connected.

Proof. Note that the following two statements are equivalent: “Pi is not in the
core(Γ)” and “Pi /∈ A for any A ∈ Γ−”. So, from Lemma 6 such players Pi
belong to any set A ∈ ∆+, i.e. the access structure Γ has star topology for the
forbidden sets. ut

Now we are ready to give another proof of an interesting property of access
structures.

Theorem 7. [11] For any access structure Γ core(Γ) = core(Γ⊥). Access struc-
ture Γ is connected if and only if the dual access structure Γ⊥ is connected.

Proof. By Lemma 7 all players Pi which are not in the core(Γ) are in the center
of the star and vice versa. Note that by Lemma 5 the same is true for the players
Pi which are not in the core(Γ⊥). ut

Remark 1. Players Pi which are not in the core(Γ) are actually dead players for
both access structures Γ and Γ⊥ (their individual information rate is zero in
both access structures).

Lemma 8. Access structure Γ] Γ⊥ is not trivial (i.e., P ∈ Γ] Γ⊥).

Proof. Recall the set ∆]∆⊥ = {A = A1∪A2;A1 /∈ Γ,A2 /∈ Γ⊥} from Definition
7. Suppose that there exist A1 and A2, such that A1 /∈ Γ , A2 /∈ Γ⊥ and A1∪A2 =
P. This would mean that ∆] ∆⊥ = P (P), i.e. Γ] Γ⊥ = ∅. Without loss of
generality we can assume that A1∩A2 = ∅, because otherwise we can replace A2

with A2\A1 ∈ ∆⊥ (from the monotone decreasing property). Hence A1 = Ac2 and
A1 = Ac2 /∈ Γ . From Definition 1 it follows that Ac1 = A2 ∈ Γ⊥. But A2 /∈ Γ⊥,
which contradicts our assumption. Hence there are no sets A1 and A2, such that
A1 /∈ Γ , A2 /∈ Γ⊥ and A1 ∪A2 = P. Therefore we have Γ] Γ⊥ 6= ∅. ut

Now we are ready to state next interesting result in this section.

Theorem 8. Let Γ and Γ⊥ be connected access structures. Then Γ]Γ⊥ = {P}.

Proof. We have already proved in Lemma 8 that P ∈ Γ] Γ⊥. Hence it is
sufficient to prove that except for {P} there are no other sets in Γ] Γ⊥.

For any set A ∈ ∆+ and any player Pi ∈ P, Pi /∈ A we have (A ∪ {Pi}) ∈ Γ .
Set B = (A ∪ {Pi})c then B ∈ ∆⊥. Therefore A ∪B = (P \ {Pi}) ∈ (∆]∆⊥).

Assume that there exists a player Pj such that (P \ {Pj}) /∈ (∆]∆⊥). So,
Pj ∈ A for every set A ∈ ∆+, because otherwise using the construction given
above we arrive at a contradiction. Hence the access structure Γ has the star
topology for the forbidden sets (see Definition 11), i.e., there exists a player Pj
such that for any set A ∈ ∆+, Pj ∈ A. Now using Lemma 7 we obtain that Γ is
not connected – a contradiction which proves the statement of the theorem. ut

References

1. G. Blakley, G. Kabatianskii. Linear Algebra Aproach to Secret Sharing Schemes,
LNCS 829, 1994, pp. 33-40.

2. J. Benaloh, J. Leichter. Generalized Secret Sharing and Monotone Functions,
CRYPTO’88, LNCS 403, Springer-Verlag 1990, pp. 25-35.

3. M. Bertilsson, I. Ingemarsson. A construction of Practical Secret Sharing Schemes
using Linear Block Codes, AUSCRYPT’92, LNCS 718, Springer-Verlag 1993,
pp. 67-79.

4. E. Brickell. Some ideal secret sharing schemes, J. of Comb. Math. and Comb.
Computing 9, 1989, pp. 105-113.

5. E. Brickell, D. Davenport. On the Classification of Ideal Secret Sharing Schemes,
Crypto’89, LNCS 435, Springer-Verlag 1990, pp. 278-285.

6. R. Cramer, I. Damgard and U. Maurer. General Secure Multi-Party Computation
from any linear secret sharing scheme, EUROCRYPT’00, LNCS 1807, Springer-
Verlag, pp. 316-334.

7. R. Cramer, S. Fehr. Optimal Black-Box Secret Sharing over Arbitrary Abelian
Groups, CRYPTO’2002, LNCS 2442, 2002, pp. 272-287.

8. M. van Dijk. Secret Key Sharing and Secret Key Generation, Ph.D. thesis, 1997,
TU Eindhoven.

9. S. Fehr, U. Maurer. Linear VSS and Distributed Commitments Based on Secret
Sharing and Pirwise Checks, CRYPTO’02, LNCS 2442, Springer-Verlag, pp. 565-
580.

10. M. Ito, A. Oaito, T. Nishizeki. Secret Sharing Scheme Realizing General Access
Structure, Proc. IEEE Goblecom’87, 1987, pp. 99-102.

11. W. -A. Jackson, K. Martin. Geometric Secret Sharing Schemes and Their Duals,
Desings Codes and Cryptography, 4, 1994, pp. 83-95.

12. W. -A. Jackson, K. Martin, C. O’Keefe. Mutually Trusted Authority-Free Secret
Sharing Schemes, J. of Cryptology 10, 1997, pp. 261-289.

13. M. Karchmer, A. Wigderson. On Span Programs, Proc. 8-th Annual Structure
in Complexity Theory Conference, San Diego, California, 18-21 May 1993. IEEE
Computer Society Press, pp. 102-111.

14. J. Massey. Minimal Codewords and Secret Sharing, Proc. 6th Joint Swedish-
Russian Int. Workshop on Inform. Theory 1993, pp. 276-279.

15. K. Martin. New Secret Sharing Schemes from Old, J. of Comb. Math. and Combin.
Comput., 14, 1993, pp. 65-77.

16. V. Nikov, S. Nikova, B. Preneel, J. Vandewalle. Applying General Access Struc-
ture to Proactive Secret Sharing Schemes, Proc. of the 23rd Symposium on Infor-
mation Theory in the Benelux, May 29-31, 2002, Universite Catolique de Lovain
(UCL), Lovain-la-Neuve, Belgium, pp. 197-206, Cryptology ePrint Archive: Report
2002/141.

17. V. Nikov, S. Nikova, B. Preneel, J. Vandewalle. On Distributed Key Distribution
Centers and Unconditionally Secure Proactive Verifiable Secret Sharing Schemes
based on General Access Structure, INDOCRYPT 2002, LNCS 2551 Springer-
Verlag, 2002, pp. 422-437.

18. V. Nikov, S. Nikova, B. Preneel. On Multiplicative Linear Secret Sharing Schemes,
INDOCRYPT’2003, LNCS 2904, 2003, pp. 135-147, Cryptology ePrint Archive:
Report 2003/006.

19. V. Nikov, S. Nikova. On Proactive Secret Sharing Schemes, SAC’2004, LNCS.
20. P. Pudlak, J.Sgall. Algebraic models of computation and interpolation for alge-

braic proof systems, Proc. Feasible Arithmetic and Proof Complexity, LNCS, 1998,
pp. 279-295.

21. A. Shamir. How to Share a Secret, Communications of the ACM 22, 1979, pp. 612-
613.

22. J. Simonis, A. Ashikhmin. Almost Affine Codes, DCC 14, 1998, pp. 179-197.

