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Abstract

By the relationship between the Walsh spectra at partial points and the
Walsh spectra of its sub-functions, by the action of general linear group on
the set of Boolean functions, and by the Reed-Muller transform, a novel
method is developed, which can theoretically construct all bent functions.
With this method, we enumerate all bent functions in 6 variables; in 8-
variable case, our method is more efficient than the method presented by
Clark though we still can not enumerate all bent functions; enumeration of
all homogeneous bent functions of degree 3 in eight variables can be done
in one minute by a P4 1.7G HZ computer; construction of homogenous
bent function of degree 3 in 10 variables is efficient too; the nonexistence
of homogeneous bent functions in 10 variables of degree 4 is proved.
Keywords: bent functions, Walsh transformation, Reed-Muller transform,
group action.

1 Introduction

Boolean functions have been of great interest in many fields of engineering and
science, especially in cryptography. Boolean functions with highest possible non-
linearity are called bent functions, which was first proposed in [17] by Rothaus.
As bent function has equal Hamming distance to all affine functions, it plays
an important role in cryptography (in stream-ciphers, for instance), error cor-
recting coding, and communication (modified into sequence used in communi-
cation). Many works [3, 4, 9, 17, 19, 20, 21] have been done in construction and
classification of bent functions.

Recently, several papers [7, 15, 18] on homogeneous functions have been
published. Qu, Seberry and Pieprzyk discussed homogeneous bent functions of
degree 3 in [15]. For 6-variable Boolean functions, there are 20 monomials of
degree 3, so there are 220 homogeneous Boolean functions of degree 3. It is easy
to check each one of all these 220 functions to see if they are bent functions.
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Using this method the authors gave all 30 homogeneous bent functions of degree
3. The authors also pointed out that the identified homogenous bent functions
exhibited interesting combinatorial structure. From the paper [15], the following
problems arise naturally: is there 8-variable and 10-variable homogeneous bent
function of degree 3? In [7] by establishing the connection between invariant
theory and the theory of bent function, Charnes, Rotteler and Beth gave some
homogeneous bent functions of degree 3 in 8,10 and 12 variables with prescribed
symmetry group action. And thus they proved the existence of homogeneous
bent functions of degree 3 in 2m variables when m > 2.

In this paper, we mainly aim at construction of all homogenous bent func-
tions in 8 variables of degree 3. and the construction of homogenous bent
functions of degree in 10 variables. As there are C3

8 = 56 monomials of degree
3 in 8 variables, so there are 256 homogenous Boolean functions of degree 3
in 8 variables. Obviously it is infeasible to check one by one if they are bent
functions. It is also impossible in 10 variables case. In order to make our con-
struction possible, we first describe the relationship between the Walsh spectra
of a Boolean function f(x) at partial points and the Walsh spectra of its sub-
functions. Another way to low the complexity is to classify the set of Boolean
functions by an equivalent relationship. Two functions f(x), g(x) are equivalent
if there exists a matrix A in GL(n, 2) such that f(x) = g(Ax). If two functions
are equivalent then the spectra of one function is the linearly rearranged spec-
tra of the other function. That is, they have same Walsh spectra distribution
without consideration of the order. With above two steps, a novel algorithm
is given which theoretically can produce all bent functions. As application, we
enumerate all homogenous bent function of degree 3 in 8 variables in only one
minute in P4 1.7G HZ computer. And it is easy to construction homogenous
bent functions of degree 3 in 10 variables. The nonexistence of homogenous bent
functions of degree 4 in 10 variables is proved. we enumerate all bent functions
in 6 variables, thus the number of functions is obtained, which will be useful in
the studying of counting problem of bent functions.

The rest of the paper is organized as follows: in section 2 some basic defini-
tions and notations are described. In section 3 the algorithm 1 is given and in
section 4 some applications are given and finally a short conclusion is made in
section 5.

2 Preliminary

For each subset s ⊆ {1, 2, · · · , n}, there exists a corresponding vector s =
(s1, s2, · · · , sn) of dimension n by letting si = 1 if element i is in s else letting
si = 0. And a vector (s1, s2, · · · , sn) can be denoted by a integer s whose 2-adic
expansion is just the vector (s1, s2, · · · , sn), where si take value 0 or 1. Obvi-
ously, the set, the vector and the integer are isomorphic. So in this paper, if con-
fusion is not caused, we will use the three notations for description convenience.
Denote by F2 the Galois field with two elements {0, 1} and denote by Fn

2 the
vector space over F2. Denote by pn = F2[x1, x2, · · · , xn]/(x2

1 − x1, · · · , x2
n − xn)
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the algebra of all functions Fn
2 → F2. For each subset s ⊆ {1, 2, · · · , n}, denote∏

i∈s xi ∈ pn by xs. The algebraic normal form of a Boolean function Fn
2 → F2

can be written as f(x) =
∑2n−1

s=0 asx
s, where as ∈ Fn

2 . The degree of f(x) is
defined by

max
s∈{0,1,···,2n−1},as 6=0

H(s),

where H(s) is the Hamming weight of vector s. Denote by AF (n) the set of
functions with deg(f) ≤ 1

Definition 1[17]. Let f(x) : Fn
2 → F2 be a Boolean function, where x =

(x1, x2, · · · , xn), w = (w1, w2, · · · , wn). And w·x = w1x1+x2w2+· · ·+xnwn ∈ F2

is the dot production of w and x. Define

s(f)(w) =
∑

x∈F n
2

(−1)f(x)(−1)w·x

be the Walsh spectrum of f(x) at point w.
The transform is called the Walsh transform.
Definition 2[17]. Let f(x), x ∈ Fn

2 be Boolean function. If for any w ∈
Fn

2 , |s(f)| = 2n/2, then f(x) is called a bent function.

2.1 The Reed-Muller transform of Boolean functions

A Boolean function can be written as f(x) =
∑2n−1

s=0 asx
s, where as ∈ Fn

2 . Let
x = 0, 1, · · · , 2n − 1, then:

[f(0), f(1), · · · , f(2n − 1)] = [a0, a1, · · · , a2n−1]An,

where An can be defined recursively

A0 = [1], An =
[

1 1
0 1

]
⊗An−1 =

[
An−1 An−1

0 An−1

]
.

By the form of An, there exists a fast algorithm to transform between the
truth table of a Boolean function and its coefficients of its algebraic normal
form. By the way, the matrix An is different from the Hadamard matrix Hn.

2.2 The action of general linear group on Boolean func-
tions

Definition 3. Denote by GL(n, 2) the set of all nonsingular matrix of order n,
i.e. the general linear group. All permutation matrix of order n forms a group,
denoted by PL(n, 2). If the Hamming weight of every column and every row of
a matrix is one, the matrix is called a permutation matrix. Obviously, PL(n, 2)
is a subgroup of GL(n, 2).

Denote by AGL(n, 2) the group {(A, b)|A ∈ GL(n, 2), b ∈ Fn
2 }. The group

operation is defined by

(A, u)(B,w) = (AB,A(w) + u)
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(A, u)−1 = (A−1, A−1(u),

where (A, u), (B,w) ∈ AGL(n, 2).
Denote by G(n, 2) the group of {(A, b)|A ∈ AGL(n, 2), b ∈ AF (n)}. The

group operation is defined by

(A, u)(B,w) = (AB,A(w) + U)

(A, u)−1 = (A−1, A−1(u)

The action of group G on Boolean functions is defined by:

c : pn → pn

by : f(x) → f(Ax) + b(x) ,

where c = (A, b) ∈ G(n, 2).
The action of group AG(n, 2) on the space Fn

2 is defined by

c : Fn
2 → Fn

2

by : x → Ax + b
,

where c = (A, b) ∈ AG(n, 2). As the groups AG(n, 2), GL(n, 2), PL(n, 2) are
subgroups of G(n, 2), the action of AGL(n, 2), GL(n, 2), PL(n, 2) on the boolean
functions is the special case of G(n, 2). The functions in the set {g(x)|g(x) =
f(Ax), A ∈ G(n, 2)} are called one equivalent class. For detail see [11]. The
spectra of g(x) is just the linearly rearranged spectra of f(x). That is, the
function in one equivalent class have same Walsh spectra distribution. So, if
one function in a equivalent class is a bent function, then all functions in the
same equivalent class are bent functions too.

3 Algorithm

Lemma 1 [12]. Let

f(x1, x2, · · · , xn) =
2k−1∑

i=0

δai
(x′)fi(x′′),

where x′ = (x1, x2, · · · , xk), x′′ = (xk+1, xk+2, · · · , xn), fi(x′′) : Fn−k
2 → F2, i =

0, 1, · · · , 2k−1, the integer representation of ai ∈ F k
2 is i, δai(x

′) =
{

1, ai = x′

0, ai 6= x′ ,

then
[s(f)(a0, w

′′), s(f)(a1, w
′′), · · · , s(f)(a2k−1, w

′′)]

= Hk[s(f0)(w
′′), s(f1)(w

′′), · · · , s(f2k−1)
(w′′)]T , (1)

where w = (w′, w′′), w′′ ∈ Fn−k
2 .
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Corollary 1[12]. Let

f(x1, x2, · · · , xn) =
2k−1∑

i=0

δai
(x′)fi(x′′),

where x′ = (x1, x2, · · · , xk), x′′ = (xk+1, xk+2, · · · , xn), fi(x′′) : Fn−k
2 → F2, i =

0, 1, · · · , 2k−1, the integer representation of ai ∈ F k
2 is i, δai(x

′) =
{

1, ai = x′

0, ai 6= x′ ,

then
[s(f0)(w

′′), s(f1)(w
′′), · · · , s(f(f

2k−1
))(w

′′)]

= 2−kHk[s(f)(a0, w
′′), s(f)(a1, w

′′), · · · , s(f)(a2k−1, w
′′)].

especially, if f(x) is bent and w′′ = 0, then:

[s(f0)(0), s(f1)(0), · · · , s(f(f
2k−1

))(0)]

= 2n/2−kHk[(−1) ˜f(a0,0), (−1) ˜f(a1,0), · · · , (−1) ˜f(a2k−1,0)]T , (2)

where w = (w′, w′′), w′′ ∈ Fn−k
2 .

Remark to lemma 1 and corollary 1. In formula (1), let w′′ = 0, then

[s(f)(a0, 0), s(f)(a1, 0), · · · , s(f)(a2k−1, 0)]

= Hk[s(f0)(0), s(f1)(0), · · · , s(f2k−1)
(0)]T .

This result is proved in [5]. The first term in formula (2)

s(f0)(0) = 2n/2−k
2k−1∑

i=0

(−1) ˜f(ai,0),

which corresponds to theorem 5 in [2], a generalization of remark 6.1.14 of Dillon
[9] and was proved by Carlet [3]. So the relationship between the spectra of a
boolean function and the spectra of its subfunctions is already known, but here
we give a general description.

Here the functions fi(x′′) is called the subfunctions of function f(x).
Corollary 2. If

f(x1, x2, · · · , xn) =
2k−1∑

i=0

δai(x
′)fi(x′′),

is a bent function, then every spectrum s(fi)(w
′′) can take the following 2k + 1

values:

{(2k − j)2n/2 − j2n/2}/2k = (2k − 2j)2n/2−k, j = 0, 1, · · · , 2k.

All these values are called the k-th Granted-value.
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Proof. Once s(f)(ai, w), i = 0, 1, · · · , 2k − 1 take one of the two possible
values {±2n/2}, the value of s(fi)(w), i = 0, 1, · · · , 2k− 1 is fixed by formula (1).
The number of different values the spectrum s(fi)(w) can have only depends on
the number of positive and negative values of s(f)(ai, w), i = 0, 1, · · · , 2k − 1.
The corollary is proved.

For example, let k = 1, a bent function f(x) is divided into two sub-functions
f0(x′′), f1(x′′). The Walsh spectra the two sub-functions can take are 0,±2n/2.
The two sub-functions is called complementary plateaued functions. Let k = 2,
we get five values: 0,±2n/2−1,±2n/2. Similarly we can let k = 3, 4, · · · , n/2− 1.
Some properties in the case k = 1, k = 2 are discussed in [2, 6, 22].

Now we consider a concrete case: the number of variables n = 8, with k = 1,
the set of the first Granted-value is {0,±16}. With k = 2, the set of the 2nd
Granted-value is {0,±8,±16}. With k = 3, the set of the 3rd Granted-value is
{0,±4,±8,±12,±16}.

3.1 Algorithm 1: new construction of bent functions

Let n = 2m be an even integer bigger than 4. in [17], Rothaus pointed out that
the degree of a 2m-variable bent function is at most m and that a function,
which is the addition of a bent function and a affine linear function, is also
a bent function. In order to obtain computation advantage, the affine linear
function can be omitted. So a possible bent function can be written into f(x) =∑2n−1

s=0 asx
s, where as = 0 if H(s) > m or H(s) = 1. Denote by Bn the set

{f(x) =
2n−1∑
s=0

asx
s|as = 0 if H(s) > m or H(s) = 1} = {f(x) =

2k−1∑

i=0

δai(x
′)fi(x′′)},

denote by Bn,n−k,i the set of the i-th (n− k)-variable subfuncitons {fi(x′′)} of
n-variable functions f(x) ∈ Bn.

1. Initialization. Let k = m − 1,m − 2, · · · , 1. Compute the granted-value
by the corollary 2. The 0th Granted-value set contains just one value 2n/2. Set
k = m− 1;

2. For any a function in Bn, the function is divided into 2k sub-functions.
Used the Reed-Muller transform, compute the truth table of the first (m + 1)-
variable sub-function from its algebraic form. Use Walsh-Hadamard transform,
compute the Walsh spectra from its truth table. Check if the Walsh spectra take
values from the (m− 1)-th Granted-value. If yes, reserve the sub-function, else
discard the sub-function. The reserved sub-functions set is denoted by Rm+1.

3. Compute the Walsh spectra of the first (n− k + 1)-variable subfunctions
set

{(xn−k+1 + 1)f0(x′) + xn−k+1f1(x′)|f0(x′) ∈ Rn−k, f1(x′) ∈ Bn,n−k,1},
and check one by one if they take values in the (k − 1)-Granted -values. If
yes, reserved it, else discard it. The set of the reserved functions is denoted by
Rn−k+1.
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4. k = k − 1, if k = 0, output the bent functions set Rn,end the program
else goto step 3.

In practical application, k be any integer in set {m − 1,m − 2, · · · , 1, 0}
according to computing convenience.

4 Applications

4.1 The enumeration of bent functions in 6 variables

The algorithm 1 theoretically can construct all bent functions. Practically, it
is easy to construct all bent functions in 6 variables. The set of possible bent
function in 6 variables is B6 = {f(x)|x ∈ F 6

2 , f(x) =
∑63

s=0 asx
s, as = 0 if

H(s) > 3 or H(s) = 1}, So there are 235 functions altogether. As 235 is not a
big number, you can compute the truth table from the algebraic normal form
and get the Walsh spectra to see if they are bent functions. But it is time-
consuming. With our algorithm, it is more efficient.

The set B6 can also be expressed as the set:

{
2n−1∑
s=0

asx
s =

31∑
s=0

asx
s +

63∑
s=32

asx
s},

and denote the first 5-variable sub-functions by

B6,5,0 = {f0(x′)|f(x) = (x6 + 1)f0(x′) + x6f1(x′), f(x) ∈ B6},

and correspondingly B6,5,1.
1. Set k = 1, the first granted-value set is {0,±8}.
2. Check all functions in set B6,5,0 by the first Granted-Value set, only

215706 functions are reserved, denoted by R5.
3. Consider the set

{(x6 + 1)f0(x′) + x6f1(x′)|f0(x′) ∈ R5, f1(x′) ∈ B6,5,1}.

Similarly, check if they satisfy the 0th Granted-value condition. There are
42386176 bent functions reserved. Denote the set of all these bent functions
as R6. Consider the following fact that if f(x) is a bent function then for any
affine function l(x), f(x)+ l(x) is also a bent function. We get all bent functions
in 6 variables:

{f(x)|f(x) = g(x) + l(x), g(x) ∈ R6, l(x) ∈ AF (6)},

the cardinality of which is 128× 42386176.
The number of bent functions in 6 variables is discussed in [1, 16, 10]. Adams

and Tavares[1] estimated 48201728 as the number of bent function including
linear based bent function and those constructed from four bent functions.
49774592 was estimated in [16] as the low bound of bent functions. Wang [10]
gave a upper bound on the number of bent functions. Here the exact number of
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all 6-variable bent functions is given, which is helpful in studying the counting
of bent function and further study of bent function. N = 6 maybe be the only
case for which we can give the exact number of bent functions.

4.2 The enumeration of homogeneous bent functions of
degree 3 in 8 variables

The case in 8 variables is not as the case in 6 variables. As there are C4
8 +C3

8 +C2
8

monomials in 8 variables, all possible bent functions in 8 variables is 2154. Our
numerical experiment shows it is impossible to enumerate all bent functions in
8 variables with our algorithm 1 though it is more efficient to construct bent
functions than the heuristic method in[8]. After all 2154 is a too big number.
But we can restrict the algebraic normal form of Boolean function that we can
get some special kind of bent functions in 8 variables, for example, homogenous
bent functions. We first search for homogenous bent functions of degree 4 in 8
variables. In the algorithm 1, let k = 3, unlucky enough, no function is reserved
in set R5. This lead us to think that there exists no homogenous bent function
of degree m in 2m variables with m > 3. This is a result in [18, 13]. Further, we
get a more general result that for any integer k > 2, there exists a integer N such
that with m > N , there exists no homogenous bent function of degree m − k
in 2m variables [14]. As there exists no homogenous bent function of degree 4,
we turn to construct homogenous bent function of degree 3 in 8 variables. The
existence already had been solved by Charnes[7]. Here we want to enumerate
all homogenous bent functions of degree 3 in 8 variables.

Though there are 2C3
8 = 256 homogenous functions, it is still possible to enu-

merate all 8-variable 3-degree homogenous bent functions using the algorithm
1 directly, but it is time-consuming!

In order to enumerate all homogenous bent functions efficiently, a modifica-
tion to the algorithm 1 is necessary.

Algorithm 2. Let n = 2m be an even integer bigger than 4. All possible
bent functions can be written into f(x) =

∑2n−1
s=0 asx

s, where as = 0 if H(s) >
m or H(s) = 1. Denote by Bn the set

{f(x) =
2n−1∑
s=0

asx
s} = {f(x) =

2k−1∑

i=0

δai
(x′)fi(x′′)}.

Denote by Bn,n−k,i the corresponding set of the ith (n−k)-variable subfuncitons
{fi(x′′)} of the n-variable functions f(x) ∈ Bn.

1. Initialization. Let k = m − 1,m − 2, · · · , 1. Compute the k-th Granted-
value by the corollary 2. Set k = m− 1.

2. For any function in Bn, the function is divided into 2k sub-functions.
Used the Reed-Muller transform, compute the truth table of the first (m + 1)-
variable subfunction from its algebraic form. Use Walsh transform, compute
the Walsh spectra from its truth table. Check if the Walsh spectra take values
in the (m − 1)-th Granted-value. If yes, reserve the subfunction, else discard
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the subfunction. The reserved subfunctions set is denoted by Rm+1. Classify
the set Rm+1 by the action of permutation group PL(m+1, 2) (or group G) on
the set Rm+1, and denote by ERm+1 the set of equivalent classes.

3.Compute the Walsh spectra of the first (n − k + 1)-variable subfunctions
set {(xn−k+1 + 1)f0(x′) + xn−k+1f1(x′)|f0(x′) ∈ ERn−k, f1(x′) ∈ Bn,n−k,1},
and check one by one if they take values in the (k − 1)-th Granted-values. If
yes, reserved it, else discard it. The set of the reserved functions is denoted by
Rn−k+1. Classify the set Rn−k+1 by the action of permutation group PL(n −
k + 1, 2) (or group G), and denote by ERn−k+1 the set of equivalent classes.

4.k = k − 1, if k = 0, output the bent functions in the sets Rn, end the
program else goto step3.

With the algorithm 2, all homogenous bent functions can be enumerated.
The set of all the homogenous Boolean functions of degree 3 in 8 variables is

{f(x) =
s=255∑
s=0

asx
s|as = 0 if H(s) 6= 3}

= {f(x) = (x8+1)(x7+1)f0(x′)+(x8+1)x7f1(x′)+x8(x7+1)f2(x′)+x8x7f3(x′)}
There are 220 subfunctions in the set B8,6,0, 215 in B8,6,1, 215 in B8,6,2, and 26

in B8,6,3.
1.Let k = 2, by the corollary 2, the set of 2nd Granted-values is {0,±8,±16},

and k = 1, the set of 1st Granted-values is {0,±16}.
2.Noticing that there are 220 homogeneous functions in the set of B8,6,0. By

Reed-Muller transformation and Walsh transformation, the spectra of f0(x′′)
in B8,6,0 can be got. Sieved by the set of 2nd Granted-Value {0,±8,±16},
only 95370 sub-functions are reserved. Under the action of permutation group
PL(6, 2), only 181 equivalent classes are reserved. That is, the cardinality of
the set ER6 is 181.

3.Consider the set {(x7 + 1)f0(x′) + x7f1(x′)|f0(x′) ∈ ER6, f1(x′) ∈ B8,6,1},
the cardinality of which is 181× 215. Similarly, get the spectra of them, Sieved
by the set of 1st-Granted-Value {0,±16}, only 3540 sub-functions in R7 are
reserved and by action of permutation group PL(7, 2) only 251 sub-functions
are reserved in ER7. Let k = 1.

4.Consider the set {(x8 + 1)f0(x′) + x8f1(x′)|f0(x′) ∈ ER7, f1(x′) ∈ B8,7,1},
the cardinality of which is 251×221. Check if they are bent functions. Only 722
bent functions are reserved, and by the action of permutation group PL(8, 2),
there are 14 equivalent classes in ER8. See the appendix 1.

Now we say we already construct all homogenous bent functions of degree 3
in 8 variables. This can be seen from the following two facts.

Fact 1. Denote by Bn a set of Boolean functions of n variables(or the
r-order Reed-Muller code R(r,n)), denote

Bn,n−1,0 = {f0(x′)|f(x) = (xn + 1)f0(x′) + xnf1(x′), f(x) ∈ Bn, x′ ∈ Fn−1
2 }

and respectively Bn,n−1,1. Classify the set Bn,n−1,0 under the action of permu-
tation group PL(n− 1, 2)(or group G) into ERn−1, and define a set

B′ = {f(x)|f(x) = (xn+1)f0(x′)+xnf1(x′), f0(x′) ∈ ERn−1, f1(x′) ∈ Bn,n−1,1}.
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Then the numbers of equivalent classes of B′ and Bn under the action of
PL(n, 2) (or group G) is equal.

Proof. For any a given function f(x) = (xn + 1)h1(x′) + xnf1(x′) ∈ Bn,
there exists a function h2(x′) ∈ ERn−1 and A ∈ PL(n− 1, 2) such that

h1(x′) = h2(Ax′).

Then the funciton f(x) is in set

{(xn + 1)h2(x′A) + xnf1(x′A)|f1(x′) ∈ Bn,n−1,1},

which is transformed by A from the set

{(xn + 1)h2(x′) + xnf1(x′)|f1(x′) ∈ Bn,n−1,1} ⊆ B′.

That is, for any a function in Bn can be transformed into the set B′ by the
action of PL(n− 1, 2). So the conclusion is proved.

Fact 2. If f(x) = g(Ax), then the two functions have same Walsh distribu-
tion without consideration of the order. So if a function in one equivalent class
satisfies the Granted-value condition, then all functions in the same class can
satisfy too.

From all these 14 functions, we get a set {f(xA)|f(x) ∈ ER8, A ∈ PL(8, 2)},
the cardinality of which is 293760. So there are 293760 homogeneous bent
functions, which is all homogeneous bent function in 8 variables. This can be
done in one minute in a p4 1.7GHZ computer.

The correctness can also be verified by the following easy experiment. Use
the algorithm 2 to construct all homogenous bent functions of degree 3 in 6
variables. Denote by B6 the set of all 220 homogenous Boolean functions. Let
k = 1, the 1st Granted-value set is {0,±8}. Sieve the 210 functions in the set
B6,5,0, we get 15 functions in R5, and by the action of PL(5, 2), only 1 function
is reserved in ER5. Sieve all 1 × 210 functions in the set {(x6 + 1)f0(x′) +
x6f1(x′)|f0(x′) ∈ R5, f1(x′) ∈ B6,5,1} by the 0th Granted-value, only 2 functions
are reserved. The 2 functions can be classified into 1 function under the action
of PL(6, 2) in set ER6. Consider the set {f(xA)|f(x) ∈ ER6, A ∈ PL(6, 2)},
the cardinality of which is 30. This result verifies the correctness of algorithm
2 and the correctness of our result in 8 variables case.

4.3 The construction of homogenous bent functions of de-
gree 3 in 10 variables

As there are too many 3-degree homogeneous bent functions in 10 variables,
only some type of bent functions are given here. If you like, you can construct
as many as possible.

In corollary 2, let k = 2, similar to the case in 8-variable, we get the set R8.
The first function in appendix 1, denoted by f0(x), is in the set. Similarly we
get a set {(x9 + 1)f0(x) + x9f1(x)|f1(x) ∈ B10,8,1}, the cardinality of which is
228, sieved by the set of the first Granted-Value, only 19200 sub-functions are
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reserved in R9. Now get a set {(x10 + 1)f0(x′) + x10f1(x′)|f0(x′) ∈ R9, f1(x′) ∈
B10,9,1}, the cardinality of which is 19200×236. Check if they are bent functions.
It is efficient to construct bent functions, but it is hard to enumerate, after all
19200 × 236 is a big number. Our experiment constructs a lot of homogeneous
bent functions, which are expanded by f0(x′). By the limitation of space, only
two examples are listed in appendix 2.

Here we don’t classify the set R9 because the cardinality of PL(9, 2) is
9! = 362880, classification a set of cardinality 19200 with a group of cardinality
362880 is a time-consuming task.

4.4 The nonexistence of homogeneous bent function of de-
gree 4 in 10 variables

We need a result by Hou[20] on the relationship between the bentness and the
coefficients of a Boolean function first.

Lemma 2[20]. Let f =
∑

v⊂{1,2,···,2t} avxv) ∈ P2t(t ≥ 2) be a bent function,
where xv =

∏
i∈v xi ∈ Pn for a subset v ⊂ {1, 2, · · · , n}. For a given integer

l ≥ 1 and for a given subset s ⊂ {1, 2, · · · , 2t}.
If

2t > |s| ≥ max{l + t, (l − 1)degf + 1}
or

2t = |s| ≥ max{l + t + 1, (l − 1)degf + 1},
then the following equation holds:

∑

{s1, s2, · · · , sl}
s1, · · · , sl ⊂ s distinct

s1

⋃ · · ·⋃ sl = s

as1 · · · asl
= 0. (3)

This is a necessary condition for a function being a bent function.
If l = 2, t = 5, and deg(f) = 4, then |s| ≥ max{7, 5} = 7.
Use the algorithm 1, we have:
1. Let k = 4, by corollary 2, compute the set of the 4th Granted-value{±4k|k =

0, 1, · · · , 8}, k = 3, the set of the 3rd granted-value is {±8k|k = 0, 1, 3, 4}, k = 2,
the set of the 2nd granted-value is {0,±16,±32}.

2. k = 4, sieved the set B10,6,0 by the 4th granted-value, and classify the
set R6 by the action of permutation PL(6, 2), only there are 14 equivalent
classes reserved in ER6. k = 3, sieve the set {(x7 + 1)f0(x′) + x7f1(x′)|f0(x′) ∈
ER6, f1(x′) ∈ B10,6,1} by the 3rd granted -value, we get a set R7 and classify it
into ER7. Only 95 functions is left in ER7.

3. When k = 2, consider the set {(x8+1)f0(x′)+x8f1(x′)|f0(x′) ∈ ER7, f1(x′) ∈
B10,7,1}. Sieve the set by the 2nd Granted-Value, and the result set is R8.
Check functions in R8 by the coefficients condition as follows. In lemma 2, let
t = 5, deg(f) = 4, l = 2, then |s| > 6, the equation (3) holds. Let s be

{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 8, }, {1, 2, 3, 4, 5, 7, 8}, {1, 2, 3, 4, 6, 7, 8},
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{1, 2, 3, 5, 6, 7, 8}, {1, 3, 4, 5, 6, 7, 8}, {2, 3, 4, 5, 6, 7, 8}, {1, 2, 3, 4, 5, 6, 7, 8}.
And check if all functions in set

{(x8 + 1)f0(x′) + x8f1(x′)|f0(x′) ∈ ER7, f1(x′) ∈ B10,7,1}

satisfy the equation (3). If the formula holds, reserve the function, else discard
it.

Sieved by the Granted-Value and the coefficients condition, no 8-variable
sub-function is reserved. That means that there exists no homogeneous bent
function of degree 4 in 10 variables.

5 Conclusion

In this paper, by the relationship between the Walsh spectra at partial points
and the Walsh spectra of its sub-functions, and by the well known Reed-Muller
transformation, an algorithm is developed to construct bent functions, which
theoretically can construct all bent functions. By the action of permutation
group on Boolean functions, we get an improved algorithm 2. With the algo-
rithm 2, all homogenous bent functions of degree 3 in 8 variables are enumerated;
it is efficient to construct 3-degree homogenous bent functions in 10 variables as
many as you want; the nonexistence of 4-degree homogenous bent function in
10 variables is proved. Use the algorithm 1 or 2, we get all bent functions in 6
variables. In 8-variable case, it is hard to enumerate all bent functions though
it is efficient to construct bent functions. The enumeration of 8-variable bent
functions is still under research.
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Appendix1 The algebraic normal forms of homogeneous bent functions of
degree 3 in 8 variables, and denote x0x1x2 by x012.

1.x023 + x123 + x014 + x025 + x135 + x235 + x045 + x245 + x016 + x026 + x126 +
x236 +x046 +x246 +x346 +x356 +x456 +x027 +x037 +x047 +x147 +x347 +x157 +
x257 + x357 + x457 + x067 + x367

2.x012 + x013 + x023 + x015 + x125 + x035 + x145 + x245 + x016 + x136 + x046 +
x146+x346+x156+x256+x037+x237+x047+x247+x347+x257+x357+x267+x467

3.x012 + x013 + x023 + x015 + x125 + x035 + x145 + x245 + x016 + x136 + x046 +
x146 +x346 +x156 +x256 +x027 +x237 +x047 +x247 +x347 +x057 +x357 +x457 +
x067 + x267 + x367 + x567

4.x023 + x123 + x014 + x025 + x125 + x035 + x135 + x045 + x145 + x245 + x016 +
x026 +x126 +x036 +x136 +x236 +x046 +x056 +x156 +x356 +x017 +x027 +x127 +
x037 + x137 + x237 + x047 + x247 + x057 + x157 + x357 + x457 + x267 + x467 + x567

5.x012 + x013 + x123 + x014 + x024 + x025 + x125 + x235 + x045 + x145 + x016 +
x136 +x236 +x046 +x246 +x056 +x156 +x256 +x456 +x027 +x127 +x037 +x137 +
x237 + x057 + x157 + x357 + x457 + x067 + x167 + x267 + x467

6.x012+x013+x123+x014+x024+x025+x125+x035+x135+x235+x045+x145+
x245 +x016 +x026 +x126 +x036 +x236 +x046 +x146 +x056 +x156 +x356 +x017 +
x027+x037+x137+x237+x147+x057+x157+x257+x457+x167+x267+x367+x567

7.x012 + x013 + x123 + x014 + x024 + x025 + x125 + x035 + x135 + x235 + x045 +
x145 +x245 +x016 +x026 +x126 +x036 +x236 +x046 +x146 +x246 +x346 +x056 +
x156 +x356 +x017 +x027 +x037 +x137 +x237 +x147 +x247 +x347 +x057 +x157 +
x257 + x457 + x167 + x267 + x367 + x567

8.x012 + x013 + x123 + x014 + x024 + x025 + x125 + x035 + x135 + x235 + x045 +
x345 +x016 +x026 +x036 +x136 +x236 +x046 +x146 +x246 +x056 +x156 +x256 +
x037+x137+x237+x147+x247+x347+x157+x257+x357+x457+x067+x167+x267

9.x012+x013+x123+x014+x024+x025+x125+x035+x135+x235+x045+x345+
x016 +x026 +x036 +x136 +x236 +x046 +x146 +x246 +x056 +x156 +x256 +x017 +
x027+x127+x037+x237+x347+x057+x157+x357+x167+x267+x367+x467+x567

10.x012 +x013 +x123 +x014 +x024 +x025 +x125 +x035 +x135 +x235 +x045 +
x345 +x016 +x026 +x036 +x136 +x236 +x046 +x246 +x056 +x156 +x256 +x456 +
x017 +x027 +x127 +x037 +x237 +x147 +x347 +x057 +x157 +x357 +x457 +x167 +
x267 + x367 + x467 + x567

11.x012 +x013 +x123 +x014 +x024 +x015 +x025 +x035 +x135 +x235 +x045 +
x145 +x345 +x016 +x126 +x036 +x136 +x236 +x256 +x356 +x017 +x027 +x127 +
x037 + x237 + x047 + x247 + x347 + x157 + x257 + x357 + x457 + x167 + x267

12.x012 +x013 +x123 +x014 +x024 +x034 +x015 +x235 +x045 +x145 +x245 +
x345 +x016 +x026 +x126 +x036 +x146 +x246 +x056 +x156 +x256 +x356 +x017 +
x127+x237+x047+x147+x247+x157+x257+x357+x457+x067+x267+x467+x567

13.x012 +x013 +x023 +x123 +x024 +x124 +x034 +x134 +x015 +x125 +x035 +
x235+x045+x145+x245+x345+x016+x026+x126+x136+x046+x017+x027+x137+
x237+x047+x147+x247+x347+x057+x157+x257+x357+x067+x167+x367+x467
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14.x012 +x013 +x023 +x123 +x024 +x124 +x034 +x134 +x015 +x125 +x035 +
x235 +x045 +x145 +x245 +x345 +x126 +x136 +x046 +x246 +x056 +x017 +x027 +
x137 + x237 + x047 + x147 + x247 + x347 + x057 + x157 + x257 + x357 + x367 + x567

Appendix2.The truth tables of homogeneous bent functions of degree 3 in
10 variables. From left to right, each hexadecimal character is expanded into
four bits. The first bit of the expanded bits string is the value of the function
with input 0, and so on.

1).00061117053f4e74171e5caa12d8fcc9055672de3cacee8147e46ac97ee1099617
225366121b0c05003a1edb05fcbeb874eba9c94d1135963659b1de0f5cd281121b3
03942883af0505628d1ffc522e7712dca69e282fc6366ca872b0a65b1de5f65d7ed0f
f6dd241d28cf05b2bbc533a5354b24369a7d2eb2d20666de7d3093
2).00061117053f4e74171e5caa12d8fcc9055672de3cacee8147e46ac97ee1099617
225366121b0c05003a1edb05fcbeb874eba9c94d1135963659b1de0f5cd281003a1
12b639a28d171443af0ede403f539a94e2166cab4e7e282cfaf42e135967e77c5cc1d
d7fc360f09ee1793a9d712217d03a07e1ef966fa56822e5a357817
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