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Abstract. In [1], Li et al. proposed a new type of signature scheme, called the (t, n) threshold-
mutisignature scheme. The first one needs a mutually trusted share distribution center (SDC) while the
second one does not. In this paper, we present a security analysis on their second schemes. We point
out that their second threshold-multisignature scheme is vulnerable to universal forgery by an insider
attacker under reasonable assumptions. In our attack, (n − t + 1) colluding members can control the
group secret key. Therefore, they can generate valid threshold-multisignautre for any message without
the help of other members. Furthermore, honest members cannot detect this security flaw in the system,
since any t members can generate threshold-multisignatures according to the prescribed protocols.
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1 Introduction

In the well known conventional digital signature concept by Diffie and Hellman [2] one signer is
sufficient to sign a message m know to him and one verifier is sufficient to check the validity of any given
signature. In other concepts, we may call them multiparty signature concepts, it is required that only
several signers should be able to sign or that only several verifiers should be able to verify a signature.
A lot of schemes for slightly different concepts have been suggested, for an overview see [3].

In a multisignature scheme [4] some signers can generate a signature on a message together, one verifier
is sufficient to verifier a given signature and the verifier needs the identity of the signers for verification.
In particular, the signers are not anonymous.

The concepts of group oriented cryptography and threshold cryptosystems were developed by Frankel
and Desmedt [5,6,7]. In a threshold cryptosystem, the private key is not held by a individual. Instead,
the key is shared among a group such that a certain minimum number of them can work together to use
the key without compromising its value. Any subset of the group with fewer than the threshold number
of members will have no information about the key. This distribution of the key provides protection
against dishonest group members and accidental disclosure of the key.

Finally, in a threshold multisignature scheme [1], t out of a group of n signers are able to generate
a signature on a together, one verifier is sufficient to verify a given signature and the verifier needs the
identity of the signers for verification. In particular, the signers are not anonymous.

In [1], Li et al. proposed two (t, n) threshold-multisignature : One of their schemes needs the assistance
of a mutually trusted SDC, while the other does not. In this paper, we demonstrate an attack to show
that in their second threshold-multisignature scheme, (n− t+1) colluding members can control the group
secret key. Therefore, they can generate valid threshold signature for any message without the help of
other members. Furthermore, honest members cannot detect any security flaw in the system, since under
the assumption that the clerk is also corrupt, any t members can generate threshold-multisignatures
according to the prescribed protocols.

The rest of this paper is organized as follows. Section 2 introduces Li et al.’ second threshold-
multisignature schemes are based. Section 3 presents our security analysis on their schemes. The con-
clusion is drawn in section 4.
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2. Review of Li et al.’s Second Threshold-Multisignature Schemes

In [1], Li et al. proposed a new type of signature scheme, called the (t, n) threshold-mutisignature
scheme. The first one needs a mutually trusted SDC while the second one does not. In this section we
only review their second scheme which does not need a trusted center.

Their second scheme consists of three parts: group public key and secret shares generation phase,
partial signature generation and verification phase, and group signature generation and verification phase.

Part 1: Group Public Key and Secret Shares Generation Phase

Let A(|A| = n) be the set of all shareholders, B be any subset in A of size t (|B| = t). The public
parameters, (H, p, q, α), should be agreed by all shareholders in advance.

• a collision free one-way hash function H.

• p= a large prime modulus, where 2511 < p < 2512.
• q= a prime divisor of p-1, where 2159 < p < 2160.
• a positive integer α = hp−1/q mod p, where 1 ≤ h ≤ p−1, and g is a generator with order q in GF (p).

Each shareholders i, i ∈ A, randomly selects a (t− 1)-th degree polynomial, fi(x), and an integer xi

associated with each shareholder i, where xi ∈ [1, q − 1]. Then he computes a corresponding public key
yi, as

yi = αfi(0) mod q mod p. (1)

{xi, yi} are the public keys of the shareholders i, i ∈ A , and the polynomial fi(x) is his secret
parameter. The group public key y can be determined by all shareholders as

y =
∏

i∈A

yi mod p.(= α
∑

i∈A fi(0) mod q mod p). (2)

Since there is no trusted SDC, each shareholder i must act as a trusted SDC to generate and distribute
following values to the shareholder j, j ∈ A, j 6= i, as :

uij = gij + fi(xj) mod q, (3)

yij = αuij mod p, (= αgij+fi(xj) mod q mod p, ) (4)

zij = αgij mod p. (5)

Where xj is the public key of shareholder j, and gij is random integer with 0 < gij < q. The value of uij

is the secret share generated by shareholder i for shareholder j, and both yij and zij are shareholder j’s
public values.

Part 2: Partial Signature Generation and Verification Phase

Each shareholder i, i ∈ B, randomly selects an integer ki, ki ∈ [1, q − 1], and compute a public value
ri, as

ri = αki mod p. (6)

Then each shareholder i, i ∈ B, makes ri publicly available through a broadcast channel. Once all ri, i ∈ B
are available, each shareholder i in B computes the product R and a hash value E as

R =
∏

i∈B

ri mod p, (= α
∑

i∈B ki mod q mod p) (7)
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E = H(m,R) mod q (8)

Then shareholder i uses his secret keys fi(0),ki and uij j ∈ A. j is not belong to B. To calculate the
partial signature si as

si = fi(0) +
∑

j∈A,j /∈B

(uji ·
∏

e∈B,e 6=i

0− xe

xi − xe
) + ki · E mod q. (9)

Each shareholders i in B sends the values {m, si} to the designated combiner, DC. The DC firstly
computes the values of R and E from the broadcast channel, and then he uses shareholder i’s public key
xi, yi and yji, for j ∈ A, j ∈ B to verify the validity of the partial signature as

αsi ≡ (yi · (
∏

j∈A,j /∈B

yji)
∏

e∈B,e 6=i

0−xe
xi−xe ) modq

) · rE
i mod p. (10)

If the above equation holds, then the partial signature {m, ri, si} is valid.

Part 3: Group Signature Generation and Verification Phase

Once all these t partial signature are verified by the DC, the DC can generate the group signature
for the message m as {m,B, R, S}, where

S =
∑

i∈B

si mod q (11)

To verify the validity of the group signature {m,B, R, S}, the verifier has to compute the verification
value T and the hash value E as

T =
∏

i∈B

((
∏

j∈A,j /∈B

zji)
∏

e∈B,e 6=i

0−xe
xi−xe

) mod p (12)

E = H(m,R) mod q (13)

Then, the verifier uses the group public key y to check

αS ≡ y · T ·RE mod p (14)

If the above equation holds, the group signature {m,B, R, S} is valid.

3. An Attack on Li Chuan Ming et al.’s second threshold-multisingature
scheme

First the possible attacker models are described. In the multisignature environment we can distinguish
between an insider-,an outsider- and designated combiner (DC) attack . The outsider does not play an
active role in a protocol, while the insider does. The DC attack can be active (he does not follow the
protocol) or passive (he just reveals some parameters). Furthermore, one strength of the insider attack
depends on the number of the attack.

In this section, we show an attack on Li Chuan Ming et al.’s second threshold-multisingature schemes
in which n group members generate the group public key in a distributed way. We present the details
about how (n− t+1) colluding members can cheat other (t−1) honest members by controlling the group
secret key. In our attack, we make the following two assumptions:

- Assumption 1. Except (t − 1) honest members in the system, all other (n − t + 1) members are
dishonest and collude together.
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-Assumption 2. The designated combiner DC is also corrupted by dishonest members. Here, the
DC is passive. He just reveals some parameters.

For simplicity, but without loss of generality, we assume that the first (t−1) members , i.e., U1, U2, · · · , Un

are honest members and all other (n− t+1) members are dishonest. We further assume that as the head
of dishonest members, Un controls the group secret key, while other colluding members tolerate his faults
in the group public key generation. When needed, these conspirators send their secret keys to Un.

The details of our attack are given as follows. The whole procedure consists of three steps: member
Un controlling the group private key, member Un distributing secret shares, and dishonest members
generating valid individual signatures.

Step 1. Member Un controlling the group private key

In the group public key generation of Li et al.’s second scheme, it is not required that all public keys
yi’s should be published simultaneously. Thus, member Un can be the last one to publish his public
key yn. By choosing a random number x as the group secret key, he first sets the group public key by
y = αx mod p. Then, when all other y′is (i ∈ {1, 2, · · · , n−1}) are published, he computes and publishes
his public key yn as follows:

yn = y ·
n−1∏

i=1

y−1
i mod p (15)

Therefore, all members in group A will take y as the group public key, since the following equation
holds:

y = yn ·
n−1∏

i=1

yi = αx mod p (16)

Hence, member Un has controlled the group private key x corresponding to y. Of course, member Un

does not know his private key sn corresponding to yn since he cannot find discrete logarithm of yn to the
base α.

Step 2. Member Un distributing secret shares

The difficulty is how member Un can distribute his secret key sn to other members even though he
does not know the value of sn. For this sake, Un does as follows.

1. Firstly, Un assumes that he has chosen a (t − 1)-degree polynomial fn(X) such that fn(0) = sn,
where sn is the unknown but fixed number satisfying yn = αfn(0) mod p. At the same time he selects
(t− 1) random numbers bi ∈ [0, q − 1], and sets fn(xi) = bi, for each i ∈ {1, 2, · · · , t− 1}.

2. Secondly, he chooses random numbers gni ∈ Zq and he sends uni = gni+bi, yni = αgni+bi mod p,
zni = αgni mod p privately to each member Ui i ∈ {1, 2, · · · , t−1}. However, Un cannot send unj , ynj , znj

to each of his conspirators since he does not know the value of fn(xj) for each j ∈ {t, t + 1, · · · , n − 1}.
But, as Un’s conspirators, each member Uj tolerates this fault.

3. Thirdly, Un has to publish the related public key unj , ynj , znj , for all j ∈ {1, 2, · · · , n − 1}. Of
course, for i ∈ {1, 2, · · · , t− 1}, Un computes uni = gni + bi, yni = αgni+bi mod p, zni = αgni mod p
. The remainder is to compute unj = gnj + fn(xj), ynj = αgnj+fn(xj) mod p, znj = αgnj mod p.
This key step is that he compute αfn(xj). We now explain that Un can also carry out αfn(xj) for each
j ∈ {t, t + 1, · · · , n} even though he does not know the value of fn(xj). According to the Lagrange
interpolating formula, the following equation holds.

fn(0) =
t−1∑

i=1

fn(xi) ·
∏

k∈Bj ,k 6=i

−xk

xi − xk
+ fn(xj) ·

∏

k∈Bj ,k 6=j

−xk

xj − xk
mod p (17)
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Here we write CBji =
∏

k∈Bj ,k 6=i

−xk

xi−xk
, CBjj =

∏
k∈Bj ,k 6=j

−xk

xj−xk
, where Bj = {1, 2, · · · , t− 1, j},

j ∈ {t, t + 1, · · · , n− 1}.

fn(0) =
t−1∑

i=1

fn(xi) · CBji + fn(xj) · CBjj mod p (18)

We have

αfn(0) =
t−1∏

i=1

αfn(xi)·CBjiαfn(xj)·CBjj mod p, fn(xi) = bi (19)

αfn(xj) = (αfn(0) ·
t−1∏

i=1

α−cBji·bi)C−1
Bjj ∀j ∈ {t, t + 1, · · · , n− 1} (20)

After all αfn(xj) (j ∈ {1, 2, · · · , n− 1}) are computed, Un publishes uni = gni + fn(xi),
yni = αgni+fn(xi) mod p, zni = αgni mod p to the honest members, where i ∈ {1, 2, · · · , t − 1}.
Though αfn(xj) (j ∈ {t, t + 1, · · · , n− 1}) are computed, Un has no way to know fn(xj) unless he solve
discrete logarithm. But members Uj (j ∈ {t, t+1, · · · , n−1}) are his conspirators , they can tolerate that.
Un can randomly send unj to their conspirators, but correctly sends ynj = αgni+fn(xj) mod p, znj =
αgnj mod p. Any member can verify that all ynj , znj ’s are consistent since the following equation:

αfn(0) =
∏

j∈B

(ynj · z−1
nj )CBj , ∀ B ⊆ {1, 2, · · · , n− 1} and | B |= t (21)

When Un and all other members published all uij , yij , zij , i, j ∈ {1, 2, · · · , n−1} and i 6= j, the system
is set up. After that, Un can use the known group secret key x to forge valid threshold-multisignature
on any message m. That is, he first chooses a random k ∈ [0, q − 1] and computes R = αk mod p and
E = H(m,R). Then, he gets S from equations:

αS ≡ y · T ·RE mod p (22)

and

T =
∏

i∈B

((
∏

j∈A,j /∈B

zji)
∏

e∈B,e 6=i

0−xe
xi−xe

) mod p. (23)

Where zji = αgji mod p.
We have

S ≡ x +
∑

i∈B

∑

j∈A,j /∈B

gji

∏

e∈B,e 6=i

0− xe

xi − xe
+ kE. (24)

In this equation, Un knows x, k. Moreover, j /∈ B, these numbers gji, are his conspirators’ random
numbers, so he can obtain gji from his conspirators. It is easy to know that such forged pair (R, S) is a
valid threshold-multisignature on message m, since it satisfies Equation (14). Furthermore, as we have
mentioned, under the help of the corrupted clerk, dishonest members can also generate valid individual
signature. So they can cheat honest members that the system is normal and secure.

Step 3. Dishonest members generating their individual signatures

Now, we assume t members of a subset B want to sign a message m. According to the individual
signature generation (10), Un cannot generate valid individual signature since he does not know the value
fn(0). In addition, if n /∈ B, any malicious member Uj(t ≤ j ≤ n − 1) cannot generate valid individual
signature since he does not know the value of fn(xj). However, note that if under our assumption 2, we
will see that the corrupted DC can help dishonest members to generate valid individual signatures in
two cases: (1) n ∈ B and (2) B = {1, 2, · · · , t − 1, j} where j ∈ {t, t + 1, · · · , n − 1}. In the following,
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we only describe how dishonest members can generate their valid individual signatures in case 1. As we
mentioned above, in this case n ∈ B, any other (honest or dishonest) member can generate his individual
signature normally. Therefore, we now focus on how member Un can generate his individual signature.

In Li et al.’s scheme, it is also not required that all ri’s should be published simultaneously, thereby
member Un can be the last one to publish rn. That is, Un first selects a random number k ∈ [0, q − 1],
and sets

R = gk mod p. (25)

When all other ri’s have been broadcast, he computes and broadcasts the following rn:

rn = R ·
∏

i∈B/{n}
r−1
i mod p. (26)

Consequently, each member Uj (j ∈ B/{n}) computes R by R = rn ·
∏

i∈B/{n}
r−1
i mod p. Then, by using

Equation (9), each Uj generates and sends his individual signature (ri, si) to the DC. The corrupted
clerk reveals the values of all (ri, si)’s to Un. To get his individual signature on the message m, Un first
solves S from the following equation

S ≡ x +
∑

i∈B

∑

j∈A,j /∈B

gji

∏

e∈B,e 6=i

0− xe

xi − xe
+ kE. (27)

Next, he computes his individual signature (rn, sn) as follows.

rn = R ·
∏

i∈B/{n}
r−1
i mod p, and sn = S −

∑

i∈B/{n}
si mod q. (28)

Finally, Un sends (rn, sn) to the DC so that the clerk can generate the threshold-multisignature (R, S)
for the message m. If necessary, theDC publishes all individual signatures (ri, si) (i ∈ B) as the evidences
that all members in B indeed generated valid individual signatures for the message m. After all (ri, si)’s
have been broadcast, each member in B can verify the validity of each pair (ri, si) by using Equation
(10). Up to this point, Un generated his individual signature pair (rn, sn).

The following theorem proves that the above (R, S) is valid threshold-multisignature for the message
m, and that (rn, sn) is Un’s valid individual signature for the message m.

Theorem 1. The above procedure that Un generates his individual signature is successful. That is,
(1) The pair (R, S) generated by Equation (23),(25) is a valid threshold-multisignautre for the message

m, and
(2) The pair (rn, sn) generated by Equation (26) is Un’s valid individual signature for the same

message m.

Proof: It is obvious that the pair (R, S) generated by Equation (25) satisfies Equation (14). We now
prove (2): we need to show that the pair (rn, sn) generated by Equation (26) satisfies Equation (10).
This is justified by the following equalities.

αsn = α
S− ∑

i∈B/{n}
si

mod p

= y · T ·RE(
∏

i∈B/{n}
α−si) mod p

= y · T ·RE
∏

i∈B/{n}
(yi(

∏

j∈A,j /∈B

y

∏
e∈B,e 6=i

0−xe
xi−xe modq

ji rE
i ))−1 mod p

= (R ·
∏

i∈B/{n}
r−1
i )E · y ·

∏

i∈B/{n}
y−1

i · T · (
∏

i∈B/{n}

∏

j∈A,j /∈B

y−1
ji )

∏
e∈B,e 6=i

0−xe
xi−xe modq

mod p
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= rE
n · y ·

∏

i∈B/{n}
y−1

i · (
∏

i∈B

(
∏

j∈A,j /∈B

zji)
∏

e∈B,e 6=i

0−xe
xi−xe

) · (
∏

i∈B/{n}
(

∏

j∈A,j /∈B

y−1
ji )

∏
e∈B,e 6=i

0−xe
xi−xe modq

) mod p

= rE
n · y ·

∏

i∈B/{n}
y−1

i · (
∏

j∈A,j /∈B

y

∏
e∈B,e 6=i

0−xe
xn−xe

jn ) · (
∏

i∈B

(
∏

j∈A,j /∈B

zji · y−1
ji )

∏
e∈B,e 6=i

0−xe
xi−xe modq

) mod p

= rE
n · y ·

∏

i∈B/{n}
y−1

i · (
∏

j∈A,j /∈B

y

∏
e∈B,e 6=n

0−xe
xn−xe

jn ) · (
∏

i∈B

(
∏

j∈A,j /∈B

α−fj(xi))
∏

e∈B,e 6=i

0−xe
xi−xe modq

) mod p

= rE
n · y ·

∏

i∈B/{n}
y−1

i · (
∏

j∈A,j /∈B

y

∏
e∈B,e 6=i

0−xe
xn−xe

jn ) ·
∏

j∈A,j /∈B

α

∑
i∈B

−fj(xi)
∏

e∈B,e 6=i

0−xe
xi−xe

mod p

= rE
n · y ·

∏

i∈B/{n}
y−1

i · (
∏

j∈A,j /∈B

y

∏
e∈B,e 6=i

0−xe
xn−xe

jn ) ·
∏

j∈A,j /∈B

α−fj(0) mod p

= rE
n · y ·

∏

i∈B/{n}
y−1

i · (
∏

j∈A,j /∈B

y

∏
e∈B,e 6=i

0−xe
xn−xe

jn ) ·
∏

j∈A,j /∈B

y−1
j mod p

= rE
n · yn · (

∏

j∈A,j /∈B

yjn)
∏

e∈B,e 6=i

0−xe
xn−xe mod q

mod p

4 Conclusion

In this paper, we presented a security analysis to Li et al.’s second threshold-multisignature scheme
without a mutually thrusted SDC, we demonstrated an attack that allows (n−t+1) colluding members to
control the group secret key and then generate valid threshold-multisignature for any message. However,
honest members cannot detect this security flaw in the system since t members can generate threshold-
multisignatures according to the specified protocols. Consequently, colluding dishonest members can
cheat honest members successfully.
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