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Abstract. Mundja is a MAC generation algorithm that has been designed for use
together with a stream cipher. Mundja accumulates the message onto two indepen-
dent registers: the first is a Cyclic Redundancy Checksum (CRC) that uses linear
feedback; the second is a strengthened version of the SHA-256 register [5] that
uses nonlinear feedback. Mundja is fast (asymptotically about 4 times the speed
of HMAC-SHA-256), and can generate MACs of any desired length. Mundja is de-
signed to be secure at the equivalent level of 128-bit keys. When used in cooperation
with a correspondingly secure stream cipher, it is hoped to remain secure even at
the equivalent level of 256-bit keys. Appendices give details of the use of Mundja
with the SOBER-128 [10], Turing [9] and RC4 stream ciphers.

1 Introduction

A Message Authentication Code (MAC, also occasionally known as a Message Integrity
Check) is a tag, attached to a message by the sender, in order that the receiver with the
same shared key can verify the identity of the sender and the integrity of the message.
Mundja1 is a MAC generation algorithm that has been designed for use with a stream
cipher.

The intuition behind the creation of Mundja is that a MAC should be able to be more
efficient than a corresponding hash function, because it is possible to utilize key-based
secret state information to aid in resisting attacks, whereas a hash function typically has
entirely known state. Constructions like HMAC [16] have to do extra work to overcome
this “openness”. Further, parallels with stream ciphers and recent results against hash
functions [2, 15, 20] that have cast some doubts on the Davies-Meyer [17] iterated block
hash function structure, lead us to a construction that does not have implicit blocks.

Mundja accumulates the message into two independent registers: the first is a 256-bit
Cyclic Redundancy Checksum (CRC) that uses linear feedback; the second is a strength-
ened version of the SHA-256 register [5] that uses nonlinear feedback. Unlike the SHA-256
algorithm, there is no message expansion or separation into blocks. The security corre-
sponding to the message expansion lies in finally combining these orthogonal registers.
Information from the stream cipher state is used to initialize both of these registers, and
instead of constants, further unknown input from the stream cipher state is taken as in-
put to the SHA-256 round function. During analysis of the Mundja round function, we
noticed [11] that the SHA-256 round function is not strong enough for the purposes of
Mundja, in the sense of it being difficult to input different texts that cancelled out to
create a collision in the SHA register, so Mundja alters the round function slightly by the
introduction of a nonlinear S-Box to speed diffusion.
1 From the word “mung”: muhng (MIT, 1960) Mash Until No Good. Sometime after that the

derivation from the recursive acronym “Mung Until No Good” became standard. To make
changes to a file, especially large-scale and irrevocable changes.



2 Preliminaries

We introduce notation and reprise the design of SHA-256, so we can describe Mundja in
terms of the parts that are the same, and those that are different. We also discuss the
theory behind the Mundja CRC register.

2.1 Notation

Mundja and SHA-256 are based on 32-bit words. Within each word, the most significant
bit (MSB) is the leftmost bit while the least significant bit (LSB) is the rightmost bit.
Where words must be formed from octet-oriented data, Mundja uses Least Significant
Byte first (little endian, c.f. Intel 80386), whereas SHA-256 uses Most Significant Byte
first (big endian, c.f. SPARC).

The i-th bit of a word a is denoted a[i]. SHA-256 uses two bit-wise operators: “∧”
represents the bitwise AND operation with (a ∧ b)[i] = a[i] ∧ b[i], 0 ≤ i ≤ 31; and “⊕”
represents the bitwise exclusive-OR operation with (a⊕ b)[i] = a[i]⊕ b[i], 0 ≤ i ≤ 31. The
bit-wise complement of x (equal to 232 − 1 − x) is denoted x′. The function ROTRr(X)
produces a word of the same size as X, but with the bits rotated cyclically to the right
by r positions. That is, if Y = ROTRr(X), then Y [i] = X[i + r( mod32)], 0 ≤ i ≤ 31.
For any word X, let X̂ denote the value of X with the MSB set to zero. Finally, for our
analysis we will denote the Hamming weight of x (that is, the number of ones in the binary
representation of x) by |x|.

2.2 Description of SHA-256

Padding: The message is padded and has its length in bits appended to make a multiple
of 512 bits.

Parsing: The padded message is parsed into 512-bit blocks, M (1), . . . ,M (N). Each 512-bit
input block is expressed as sixteen 32-bit words M

(i)
0 , . . . ,M

(i)
15 .

Message Expansion: The message expansion is applied to each message block individ-
ually. This is similar in principal to the key scheduling for a modern block cipher. The
message expansion first assigns the message words M

(i)
0 , . . . ,M

(i)
15 to the values of the input

words W0, . . . ,W15. The remainder of the input words W16, . . . ,W63 are determined using
an (almost) linear recurrence formula. We omit details, as this is not used by Mundja.

Register Update: The register has 8 words of state A, B, C, D, E, F , G, H. For the
first block of the message, these words are initialized to pre-determined constants. For
the remaining blocks of the message, the words are initialized to the intermediate hash
value that results from the preceding message block. Following initialization, 64 rounds
of the round function are applied to the expanded input sequence {Wt}. The t-th round
of the round function modifies the register using input word Wt and a pre-determined
constant Kt as input. The round function uses addition modulo 232 and four functions:
CH, MJ, Σ0, Σ1 with 32-bit inputs and 32-bit outputs, that are non-linear with respect to
modular addition. These functions are defined as:

CH(X, Y, Z) = (X ∧ Y )⊕ (X ′ ∧ Z);
MJ(X, Y, Z) = (X ∧ Y )⊕ (Y ∧ Z)⊕ (Z ∧X);

Σ0(X) = ROTR2(X)⊕ROTR13(X)⊕ROTR22(X);
Σ1(X) = ROTR6(X)⊕ROTR11(X)⊕ROTR25(X).



The round function modifies the register as follows:

T1t = H +t Σ1(Et) + CH(Et, Ft, Gt) + Kt + Wt;
T2t = Σ0(At) + MJ(At, Bt, Ct);

Ht+1 = Gt; Gt+1 = Ft; Ft+1 = Et; Et+1 = Dt + T1t;
Dt+1 = Ct; Ct+1 = Bt; Bt+1 = At; At+1 = T1t + T2t.

After all 64 input words have been input to the register, the resulting values of the state
are added modulo 232 to the initialized values of the state, according to the Davies-Meyer
construction [17]. These values become the new intermediate hash value. If this is the last
message block, the new intermediate hash value is output as the resulting message digest.
Otherwise, the algorithm proceeds to updating the register using the next message block.

2.3 The Mundja CRC

Another component of Mundja, used to parallel the effect of the data expansion in SHA-
256, is a 256-bit cyclic redundancy checksum of the message words, calculated over GF (2256).
This CRC is calculated word-at-a-time, using an eight word LFSR defined over GF (232).
Binary Linear Feedback Shift Registers can be extremely inefficient in software on general-
purpose microprocessors. LFSRs can operate over any finite field, so an LFSR can be made
more efficient in software by utilizing a finite field more suited to the processor. Particu-
larly good choices for such a field are the Galois Field with 2w elements (GF (2w)), where
w is related to the size of items in the underlying processor, in this case 32-bit words. The
elements of this field and the coefficients of the recurrence relation occupy exactly one unit
of storage and can be efficiently manipulated in software.

The standard representation of an element A in the field GF (2w) is a w-bit word with
bits (aw−1, aw−2, . . . , a1, a0), which represents the polynomial aw−1z

w−1+...+a1z+a0. El-
ements can be added and multiplied: addition of elements in the field is equivalent to XOR.
To multiply two elements of the field we multiply the corresponding polynomials modulo
2, and then reduce the resulting polynomial modulo a chosen irreducible polynomial of
degree w.

It is also possible to represent GF (2w) using a subfield. For example, rather than rep-
resenting elements of GF (231) as degree-31 polynomials over GF (2), Mundja uses 8-bit
octets to represent elements of a subfield GF (28), and 32-bit words to represent degree-3
polynomials over GF (28). This is isomorphic to the standard representation, but not iden-
tical. The subfield B = GF (28) of octets is represented in Mundja modulo the irreducible
polynomial z8 + z6 + z3 + z2 + 1. Octets represent degree-7 polynomials over GF (2); the
constant β0 = 0x67 below represents the polynomial z6 + z5 + z2 + z +1 for example. The
Galois finite field W = B4 = GF ((28)4) of words can now be represented using degree-3
polynomials where the coefficients are octets (subfield elements of B). For example, the
word 0xD02B4367 represents the polynomial 0xD0y3+0x2By2+0x43y +0x67. The field
W can be represented modulo an irreducible polynomial y4 + β3y

3 + β2y
2 + β1y + β0.

The CRC polynomial defined over GF (232), then, is x8 + x3 + α. The coefficient α
def=

0x00000100 = 0x00y3 + 0x00y2 + 0x01y + 0x00 = y, was chosen because it allows an
efficient software implementation: multiplication by α consists of retrieving a pre-computed
constant from a table indexed by the most significant 8 bits, shifting the input word to the
left by 8 bits of the multiplicand, and then adding (XORing) the resulting words together.
This is essentially the field multiplication used in SNOW [3, 4] and is exactly that used in
Turing [9] and SOBER-128 [10], so the same multiplication table can be used.



3 Description of Mundja

The message is presumed to be a sequence of octets. Four octets at a time are gathered
(in little-endian fashion) to form a word. If necessary, a message that is not a multiple of
four octets is treated as if it had extra trailing 0x00 octets, although the actual length is
accounted for later.

Mundja requires input from the internal state of a secure stream cipher. This stream
cipher may also be used to encrypt the message at the same time; the strength of Mundja
does not rely on whether the message is encrypted or not.

Mundja consists of two registers: the first is a strengthened version of the SHA-256 reg-
ister [5], with 8 words of state A, B, C, D, E, F , G, H; the second is a Cyclic Redundancy
Checksum (CRC) with 8 words of state denoted CRC[0], . . . , CRC[7].
Padding: Suppose that the length of the message, M , is l octets. Append k zero octets
0x00, where k is the smallest, non-negative solution to the equation l+k ≡ 0( mod4). The
length of the padded message should now be a multiple of 4 octets (that is, a multiple of
32-bits). The padded message must be less than 264 words in length.

Parsing: The padded message is parsed into a sequence of 32-bit words, {Mt}.

Initialization: All stream ciphers are initialized using a secret key. It is well known that
the keystream generated by a stream cipher should not be used more than once. In effect,
this means that a stream cipher should start in a unique secret state for every message.
For example, some stream ciphers require initialization using a nonce: a number used only
once. These mechanism must also be applied when using Mundja. First, the stream cipher
is initialized to obtain a unique secret state using the key and using whatever mechanisms
are applicable to that stream cipher. Then, sufficient words of the stream cipher output
or state are taken to initialize the two Mundja registers. The method used is dependent
on the particular partner stream cipher: see appendices for some examples.

Register Update: Following initialization, the SHA round function and CRC update
function are applied to accumulate the content of the padded and parsed message sequence
{Mt}.

The round at which Mt is accumulated into the registers is the t-th round. The value
of register state at the beginning of t-th round is denoted using a subscript t. The t-th
round of the enhanced SHA round function modifies the SHA register also using input
word Wt (from the partner stream cipher’s current state) as input. The round function
uses exactly the same functions as SHA-256 above, and additionally a nonlinear 32-bit
function S. The function S is a non-linear function that may be based on the partner
stream cipher’s S-Box construction, if any (the appendices contain some examples). The
authors advocate the use of the SOBER-128 f function (see [10]), as it is efficient and
provides more than adequate resistance to attacks. The SHA round function modifies the
SHA register according to the following algorithm:

T1t = S(Ht + Mt + Wt) + Σ1(Et) + CH(Et, Ft, Gt);
T2t = Σ0(At) + MJ(At, Bt, Ct);

Ht+1 = Gt; Gt+1 = Ft; Ft+1 = Et; Et+1 = Dt + T1t;
Dt+1 = Ct; Ct+1 = Bt; Bt+1 = At; At+1 = T1t + T2t.



The functions CH, MJ, Σ0 and Σ1 from SHA-256 are as specified above. The t-th input
word is also input to the CRC register according to the following algorithm:

Tt = Mt ⊕ (α⊗ CRCt[0])⊕ CRCt[5];
for j = 0..6 : CRCt+1[j] = CRCt[j + 1];

CRCt+1[7] = Tt.

Finalization and generation of MAC: When all the words of the input message have
been processed, another word is mixed into the SHA register in the same manner as above.
Note that whenever a word is input to the SHA register, the partner stream cipher state is
updated as if a word of keystream has been generated. The input word is 0x6996c53a+224k,
recalling that k is the number of padding octets added. This word is not added to the
CRC register. Adding this word to one register but not the other desynchronizes them in
a manner that cannot be emulated by normal inputs, preventing extension attacks.

Now data from the CRC register is transferred into the SHA register, to emulate the
effect of the data expansion in SHA-256. Eight times, the CRC register is cycled, and the
value in CRC[7] is input to the SHA register as above updating the stream cipher state
as required to get Wi. This serves to further mix and propagate any differences generated
in either register during the input phase.

Finally, to generate the MAC, this process (mixing values from the CRC register into
the SHA register) is continued with the values of A (from the SHA register) after each
mixing step used as the output MAC, until the requested amount of output has been
produced. Words are converted to bytes in little-endian fashion, as usual for Mundja.

4 Analysis of Mundja

First, we consider the security properties required of a MAC function. A MAC function
is a cryptographic algorithm that generates a tag TAG = MACK(M) of length d from
a message M of arbitrary length and a secret key K of length n. The message-tag pair
(M,TAG) is transmitted to the receiver (the message may also be encrypted before trans-
mission). Suppose the received message-tag pair is (RM,RTAG). The receiver calculates
an expected tag XTAG = MACK(RM). If XTAG = RTAG, then the receiver has some
confidence that the message-tag pair was formed by a party that knows the key K. In
some cases, the message includes sequence data (such as a nonce) to prevent replay of
message-tag pairs.

The length n of the key and the length d of the tag form the security parameters
of a MAC algorithm, as these values dictate the degree to which the receiver can have
confidence that the message-tag pair was formed by a party that knows the key K. A
MAC function with security parameters (n, d) should provide resistance to four classes of
attacks [17].

Collision Attack. In a collision attack, the attacker finds any two distinct messages
M,M∗ such that MACK(M) = MACK(M∗). A MAC function resists a collision attack
if the complexity of the attack is O(2min(n,d/2)).

First Pre-image Attack. In a first pre-image attack, the attacker is specified a tag value
TAG, and the attacker must find a message M for which MACK(M) = TAG. A MAC
function resists a first pre-image attack if the complexity of the attack is O(2min(n,d)).



Second pre-image attack In a second pre-image attack, the attacker is specified a mes-
sage M , and the attacker generates a new message M∗ such that MACK(M) =
MACK(M∗). A MAC function resists a second pre-image attack if the complexity
of the attack is O(2min(n,d)).

MAC Forgery In MAC forgery, the attacker generates a new message-tag pair (M∗, y∗)
such that y∗ = MACK(M∗). A MAC function resists MAC forgery if the complexity
of the attack is O(2min(n,d)).

In all these attacks, the attacker is presumed to be ignorant of the value of the key K.2

However, we assume that (prior to the attack) the attacker can specify messages M (i) for
which they will be provided with the corresponding tags TAG(i) = MACK(M (i)).

Mundja is intended to be a MAC function with security parameters n ≤ 128, and
d ≤ 128. That is, we claim that Mundja resists the above attacks when using 128-bit keys
and outputting tags up to 128 bits in length. Naturally, these claims are based on the
assumption that the accompanying stream cipher is secure.

Using this criteria, Mundja was designed with the following goals in mind.

Use 32-bit blocks. This minimizes the amount of padding and reduces the amount of
computation. Mundja further assumes that messages consist of whole octets; that is, the
message length is a multiple of 8 bits.

Utilize the SHA-256 round function. The cryptographers that designed SHA-256
(namely, the National Security Agency of the USA) are well respected, so using the SHA-
256 round function seems a safe choice. The SHA hash algorithms [5] have two fundamental
components: an almost-linear message schedule that expands the message to a longer
sequence of input words; and the round function for combining the input words into a
register.

Remove message expansion. A by-product of the SHA-256 message schedule is an
asymptotic four-fold increase in the number of calls to the round function. Removing the
message expansion increases the efficiency.

Strengthen the round function. The SHA-256 round function is strong, although not
as strong as the public anticipated [11]. We chose to use a strengthened version of the SHA-
256 round function. A problem with the SHA-256 round function is that the carries in the
modular addition distribute non-linear information to only a few bits. The most effective
way to strengthen the round function is to include a non-linear function S (such as an 8-bit
input S-box). This distributes non-linear information amongst a large number of bits (when
compared to modular addition). We considered various options for combining a nonlinear
function into the SHA round function. The best resistance to differential collisions was
observed when (Ht + Mt + Wt) is replaced with S(Ht + Mt + Wt) when computing T1t.
The round function is otherwise unchanged.

Accumulate on a second register (CRC register). The round function is weak when
considered on its own [11], but the combination with the message data expansion provides
significantly more security. Since Mundja has no message expansion, Mundja must include
some other method for preventing attacks. We decided to accumulate the message in a
second orthogonal register for which any attempt to cancel differences in the SHA register
2 There are circumstances (albeit rare) where the users require a MAC function to resist a

collision attack with known key. Mundja is not intended to prevent this type of attack. We note
that other common MAC constructions, such as CBC-MAC [12], cannot prevent this type of
attack either.



will introduce complex differences in this second register (and vice versa). We have chosen
to use a GF (232) CRC as the second register. The properties of such CRCs are well
understood and thus the CRC allows more concrete analysis.

Input existing stream cipher internal state to the SHA register. The internal state
of the stream cipher is already computed, and is unknown to a hypothetical attacker, so
it makes sense to utilize this secret data. For Mundja, the SHA-256 round constants are
replaced by inputs from the stream cipher internal state. This introduces key-dependent
material at each round, thus re-randomizing the register state. ut
Security Claims. We claim that, with security parameters n ≤ 128, and d ≤ 128,
Mundja resists the four classes of attacks mentioned above. The best collision attacks
are expected to be based on forming differentials in the SHA register and CRC register
before finalization. Such differential collisions are considered in detail in Section 5. It is
also possible that the values in the SHA register and CRC register after accumulating
the first message are different from the values in the SHA register and CRC register
after accumulating the first message, with the finalization step cancelling these differences.
Research in this direction is ongoing.

A first pre-image attack would require reversing the SHA round algorithm, so such
attacks seems unlikely. The best second pre-image attacks and MAC forgery attacks are
expected to be based on forming differential collisions.

Our hope is that, with a strong S function, Mundja can resist all attacks even when
using 256-bit keys. This would require an accompanying stream cipher that is designed for
256-bit keys. We have not yet ascertained if Mundja can offer this level of security.

5 Differential Analysis of Mundja

Our analysis of Mundja is related to the analysis of SHA-2 family.

Corrective Patterns of SHA-256. There are two prior publications analyzing SHA-
256: an analysis by Gilbert and Handschuh [7]; and an analysis by Hawkes, Paddon and
Rose [11]. Thus far, the most successful analysis of SHA algorithms resulted from the search
for Chaboud-Joux differential collisions [1, 2, 7, 15, 20]. This type of analysis first finds a
high-probability corrective pattern for the round function; that is, given one sequence of
inputs to the round function, the analysis finds another sequences of inputs such that both
sequences of inputs result in identical register states. The analysis of the message schedule
looks for two messages such that the message schedule will result in high-probability
differential collisions being input to the register.

The approach of [11] considers both XOR-differences ∆X = X∗ ⊕ X and addition-
differences δX = X∗ −X (mod 232): addition-differences are so-called because the differ-
ences are formed relative to the modular addition group operation. Both differences are
useful. An analysis of the Σ functions with respect to XOR-differences is simple, while
analysis of Σ functions with respect to addition-differences is quite complex. However,
the remainder of the round function is best analyzed using addition-differences. As noted
in [11], if ∆X = λ, then δX can be determined if X[i] is known for every i < 31 such that
λ[i] = 1.3 That is, if the attacker predicts the bits of X at the positions where λ̂[i] = 1,
then the attacker also predicts δX.

3 The attacker need not guess X[31] to determine δX, since differences in the most significant
bit always contribute an addition-difference of 231.



j H G F E D C B A δMt+j δSout
t+j #S Ass. Gue.

CH inputs MJ inputs

0 ∆ - - - - - - - - δSin
0 δE1/δA1 = δ0 α̂1 α̂1 α̂1

δ - - - - - - - - ∆E1/∆A1 = α1

1 ∆ - - - α1 - - - α1 δSin
1 −δΣ1(E1) β̂3 α1,α1 β̂3

δ - - - δ0 - - - δ0 −δΣ0(A1) γ̂3 β̂3 γ̂3
(Write δΣ0(A1) = δ1)

2 ∆ - - α1 β3 - - α1 - δSin
2 −δΣ1(E2) ε̂9 α1,α1 ε̂9

δ - - δ0 −δ1 - - δ0 - β3

3 ∆ - α1 β3 - - α1 - - - - - α1,α1 -
δ - δ0 −δ1 - - δ0 - - β3

4 ∆ α1 β3 - - α1 - - - −δH4 = −δ0 - - β3 -

δ δ0 −δ1 - - δ0 - - - α̂1

5 ∆ β3 - - α1 - - - - −δH5 + δSin
5 −δΣ1(E5) γ̂3 α1 γ̂3

δ −δ1 - - δ0 - - - - = δ1,2 + δSin
5

6 ∆ - - α1 - - - - - - - - α1 -
δ - - δ0 - - - - -

7 ∆ - α1 - - - - - - - - - α1 -
δ - δ0 - - - - - -

8 ∆ α1 - - - - - - - −δH8 = −δ0 - - - -
δ δ0 - - - - - - -

Table 1. A summary of the corrective patterns for Mundja. The differences shown round j are
the values before the round function is applied.

The corrective pattern is successful when certain conditions on the internal state are
satisfied, and when the attacker correctly guesses certain bits of the internal state. When
the single bit difference α1 = 231 is used, then the conditions have probability 2−9 of being
correct and the attacker must guess 30 bits of internal state. Thus, if the internal state is
unknown, then the probability of success is 2−39.

Corrective Patterns for the Mundja Round Function. The high probability of the
SHA-256 corrective pattern exists because of the prevalent use modular addition opera-
tions. Thus, addition-differences in the input word Wt can be used to cancel any addition-
difference(s) in any values being fed back. As we shall see, the inclusion of a nonlinear
function S in Mundja prevents an attacker from simply providing message words with
the correct addition-difference: now the attack must provide message words for which the
output of S has the correct addition-difference. This complicates attacks significantly.

To analyze the Mundja SHA register, we must divide the evaluation of T1t into three
separate evaluations:

Sin
t = Ht + Mt + Wt; Sout

t = S(Sin
t );

T1t = Sout
t + Σ1(Et) + CH(Et, Ft, Gt).

Table 1 summarizes the corrective pattern for the Mundja SHA register. This corrective
pattern is based on the SHA-2 corrective pattern of [11]. In this table, α1 represents a
single-bit XOR-difference, with β3 = Σ0(α1), γ3 = Σ1(α1) and ε9 = Σ1(Σ0(α1)) =
Σ1(β3). The number after the Greek letter indicates the Hamming weight of the difference.
For each round j, the rows beginning with ∆ and δ list the XOR-differences and addition-



differences respectively. The δMt+j column lists the addition-differences required for the
corrective pattern. Note that values such as Ht+4 have been written H4 to save space.
The δSout

t+j column lists the required addition-differences in the output of the S function.
The final three columns provide the data for determining the probability of the corrective
pattern. The column headed by “#S” indicates the bit positions in the output of S where
the attacker will have to generate the correct bits to cause cancellation: the attacker
will have to generate the correct bits at the positions where the bits are “1” in the listed
value(s). This affects the choice of δSin

t+j , noting that δSin
t+j will depend on the construction

of S. The column headed by “Ass.” indicates the bit positions where the attacker must
assume conditions on register states, while the last column (headed by “Gue.”) indicates
the bit positions where the attacker must guess bits.

Round 0 Inject a small XOR-difference α1 into E1 and A1.
– Guess E1 at the bits where α̂1[i] = 1, to determine δSout

0 that gives ∆E1 = α1.
Add α̂1 to Gue..

• NOTE: attacker requires δSout
0 = δE1

def= δ0 to get ∆E1 = α1. Implies δA1 = δ0.
– Make assumptions on A1 at bits where α̂1[i] = 1, to ensure that ∆A1 = α1. Add

α̂1 to Ass.
– To obtain correct δSout

0 = δ0, the attacker controls Sout
0 at α̂1. Add α̂1 to #S.

– The attacker inserts δMt = δSin
0 .

Round 1 Cancel differences in Σ0 and Σ1. Assume δCH1 = δMJ1 = 0.
• NOTE: at bits where ∆E1[i] = 1, CH chooses F1[i] for one message and G1[i] for

the other message.
– Make assumptions F1[i] = G1[i] at bits where ∆E1[i] = α1[i] = 1, to ensure that

no difference in CH results. Add α1 to Ass..
– Make assumption B1[i] = C1[i] at bits where ∆A1[i] = α1[i] = 1, to ensure that

no difference in MJ results. Add α1 to Ass..
• NOTE: ∆E1 = α1 implies ∆Σ1(E1) = γ3.
– Guess Σ1(E1) at bits where γ̂3[i] = 1, to determine δΣ1(E1). Gue. γ̂3.
• NOTE:∆A1 = α1 implies ∆Σ0(A1) = β3.
– Guess Σ0(A1) at bits where β̂3[i] = 1, to determine δΣ0(A1). Gue. β̂3.
– Attacker requires δSout

1 = −Σ1(E1) − Σ0(A1) to get δA2 = 0. This implies that
δE2 = δSout

1 + Σ1(E1) = −Σ0(A1)
def= −δ1.

– Make assumptions E2 at bits where β̂3[i] = 1, to ensure that δE2 = −Σ0(A1) =
−δ1, results in ∆E2 = β3. Add β̂3 to Ass..

– To obtain correct δSout
1 = −Σ1(E1) − Σ0(A1), the attacker must control Sout

1 at
bits where γ̂3[i] = 1, and the bits where β̂3[i] = 1. Add γ̂3, β̂3 to #S.

– The attacker inserts δMt+1 = δSin
1 .

Round 2 Cancel differences in Σ1. Assume δCH2 = δMJ2 = 0.
• NOTE: at bits where ∆E2[i] = 1, CH2 chooses F2[i] for one message and G2[i] for

the other message.
– Make assumptions on G2 and F2 at bits where ∆E2[i] = β3[i] = 1, to ensure that

no difference in CH results. Add β3 to Ass..
• NOTE: at bits where ∆F2[i] = 1, selector E2[i] chooses G2[i] to get ∆CH2[i] = 0.
– Make assumptions on E2 at bits where ∆F2[i] = α1[i] = 1, to ensure that no

difference in CH results. Add α1 to Ass..
– Make assumption A2[i] = C2[i] at bits where ∆B2[i] = α1[i] = 1, to ensure that

no difference in MJ results. Add α1 to Ass.



• NOTE: ∆E2 = β3 implies ∆Σ1(E2) = ε9.
– Guess Σ1(E1) at bits where ε̂9[i] = 1, to determine δΣ1(E2). Gue. ε̂9.
– Attacker requires δSout

2 = −Σ1(E2), to get δA3 = 0.
– To obtain correct δSout

2 = −δΣ1(E2), the attacker must control Sout
2 at bits where

ε̂9[i] = 1. Add ε̂9 to #S.
– The attacker inserts δMt+2 = δSin

2 .
Round 3 Assume δCH3 = δMJ3 = 0.

• NOTE: at bits where ∆F3[i] = 1, selector E3[i] chooses G3[i] to get ∆CH3[i] = 0.
– Make assumptions on E3 at bits where β3[i] = 1, to ensure that no difference in

CH results from ∆F3 = β3. Add β3 to Ass..
• NOTE: where ∆G3[i] = 1, selector E3[i] must choose F3[i] to ensure ∆CH3[i] = 0.
– Make assumptions on E3 at bits where α1[i] = 1, to ensure that no difference in

CH results from ∆G3 = α1. Add α1 to Ass..
– Make assumption A3[i] = B3[i] at bits where ∆C3[i]α1[i] = 1, to ensure that no

difference in MJ results. Add α1 to Ass..
• NOTE: δSout

3 = 0 and #S = 0.
– The attacker inserts δMt+3 = 0.

Round 4 Cancel difference in H4. Assume δCH4 = 0.
– The value δH4 = δE1, is known by the attacker, so no guess required.
– Make assumptions on E4 at bits where β3[i] = 1, to ensure that no difference in

CH results from ∆G4 = β3. Add β3 to Ass..
– Attacker requires δSout

4 = 0, to get δA5 = 0. Thus #S = 0.
• NOTE: δT14 = 0, and thus δE5 = δD4 = δ0, where ∆D4 = α.
– Make assumptions on E5 at the bits where ∆D4[i] = α1[i] = 1, to ensure that the

single bit difference in D4 becomes a single bit difference α1 in E5. Ass. α1.
– To cancel δH4, the attacker inserts δMt+4 = δH4.
– NOTE: The value of δH4 = −δ1, is known by the attacker, so no guess required.

Round 5 Cancel differences in H5 and Σ1. Assume δCH5 = 0.
– Make assumptions F5[i] = G5[i] at bits where ∆E5[i] = α1[i] = 1, to ensure that

no difference in CH results. Add α1 to Ass..
• NOTE: ∆E5 = α1 implies ∆Σ1(E5) = γ3.
– Guess the value of Σ1(E5) at the bits where γ̂3[i] = 1, to determine δΣ1(E5). Add

γ̂3 to Gue..
– To obtain correct δSout

5 , the attacker must know Sout
5 at bits where γ̂3[i] = 1. Add

γ̂3 to #S.
– To cancel δH5, the attacker inserts δMt+5 = −δH5.
– NOTE: The value of δH5 = −δ1, is known by the attacker, so no guess required.
– Attacker sets δMt+5 = δSin

5 − δH5 = δSin
5 + δ1.

Round 6 Assume δCH6 = 0.
– Make assumptions on E6 at bits where α1[i] = 1, to ensure that no difference in

CH results from ∆F6 = α1. Add α1 to Ass..
– Attacker requires δSout

6 = 0, to get δA7 = 0. Thus #S = 0.
– Attacker sets δMt+6 = 0.

Round 7 Assume δCH7 = 0.
– Make assumptions on E7 at bits where ∆G7[i] = α1[i] = 1, to ensure that no

difference in CH results. Add α1 to Ass..
– Attacker requires δSout

7 = 0, to get δA8 = 0. Thus #S = 0.
– Attacker sets δMt+7 = 0.



Round 8 Cancel difference in H8..
– Attacker requires δSout

8 = 0, to get δA9 = 0. Thus #S = 0.
– To cancel δH, the attacker injects δMt+8 = −δH8.
– NOTE: The value of δH8 = δ0 is known by the attacker, so no guess required.
– Attacker sets δMt+8 = −δH8 = −δ0.

Probability of the Corrective Pattern. From Table 1 we see that the total number of
bits for which the attacker makes assumptions is (9|α1|+2|α̂1|+3|β3|+1|β̂3|). This value
attains a minimum of 21 when α1 = 0x80000000. The maximum value is 23. The total
number of bits that are guessed by the attacker is (1|α̂1| + 1|β̂3| + 2|γ̂3| + 1|ε̂9|). When
α1 = 0x80000000, the attacker guesses 18 bits of state. Thus, the assumptions are correct
and a guesses are correct with probability 2−39. The minimum probability resulting from
a single bit difference is 2−42. However, we have yet to account for the non-linear function
S in rounds 0, 1, 2, and 5. The attacker needs to determine the suitable difference δSin to
obtain the correct difference δSout. This then allows the attacker to determine the correct
values of δMt+j .

We consider the simplest case where S is a SOBER-128 f function [10] wherein the
8 most significant bits become input to an 8 × 32 S-box and the 32-bit S-box output is
XORed with the input to obtain the output of f . For such an S function, the output
differences ∆Sout can be classified into two groups according to whether ∆Sout has any
bit difference in the 8 MSBs, or not.

– If ∆Sout has no bit differences in the 8 MSBs, then the attacker must only guess the
output of the S-box at the bits positions where ∆Sout[i] = 1 in order to determine Sin

from Sout. The attacker can then determine the δSin and thus choose δMt+j . This
adds a factor of 2−1 to the probability for each bit difference in ∆Sout.

– If ∆Sout has any bit difference in the 8 MSBs, then the attacker must guess all 8
MSBs of Sin to get the correct difference in the 8 MSBs of Sout. The attacker must
also introduce differences in the message to cancel out the differences that result in the
lower 24 bits of the output of the S-box. As a simple lower bound, it is expected that
the attacker will have to correct at least two such bit difference to obtain the correct
difference in the lower 24 bits of Sout. That is, the probability of getting the correct
difference in the lower 24 bits is 2−2. Thus, whenever ∆Sout has any bit difference in
the 8 MSBs, then this is expected to add a total factor of 2−8 × 2−2 = 2−10 to the
probability.

Table 2 looks at the probabilities that result when accounting for the S-box in rounds
0, 1, 2 and 5. The last two columns compare the probabilities that result when using α1 =
231 = 0x80000000 and α1 = 213 = 0x00002000 (which maximizes the probability). For
these two cases, the last three rows show: the probability from the S-box; the probability
from the assumptions and guesses; and the total probability of the corrective pattern.

5.1 Corrective Patterns and the Mundja CRC

The value of CRCt+1[7] may be expressed as:

CRCt+1[7] =
t⊕

i=0

X[t− i]⊗Mi ⊕
7⊕

j=0

Y [j, t]⊗ CRC0[j],

where 0 = X[a + 8]⊕X[a + 5]⊕ (α⊗X[a]), (1)



Round ∆Sout
t+j Probability when:

Diff. in No Diff. in α1 = 231 α1 = 213

8 MSBs 8 MSBs 0x80000000 0x00002000

0 α1 2−1 2−10 2−1

1 β3⊕ γ3 2−10 2−6 2−10 2−6

2 ε9 2−9 2−10 2−10

5 γ3 2−3 2−10 2−3

S-box Contribution 2−40 2−20

Probability for Ass. and Gue. 2−39 2−42

Total Probability of Corrective Pattern 2−79 2−62

Table 2. Probabilities resulting from the S-box.

and Y [j, t] ∈ GF (232) are constants. Now suppose we input messages M and M∗ with
∆Mi = (M∗

i ⊕ Mi). The difference ∆CRCt+1[7] = CRC∗
t+1[7] ⊕ CRCt+1[7] between the

CRC states resulting from M and M∗ satisfy:

∆CRCt+1[7] =
t⊕

i=0

X[t− i]⊗∆Mi.

The sequence {X[a]} satisfies the recurrence 0 = X[a + 8]⊕X[a + 5]⊕ (α⊗X[a]). There
are many linear relationships between elements in this sequence; some more useful linear
relationships correspond to repeated squaring of the characteristic polynomial:

0 = X[a + 2i · 8]⊕X[a + 2i · 5]⊕ (α2i

⊗X[a]),
⇒ 0 = X[a + 232 · 8]⊕X[a + 232 · 5]⊕ (α⊗X[a]), (2)

since γ232
= γ, ∀γ ∈ GF (232). The XOR of Equations (1) and (2) results in

0 = X[a + 232 · 8]⊕X[a + 232 · 5]⊕X[a + 8]⊕X[a + 5],
⇒ 0 = X[a + 232 · 8− 5]⊕X[a + 232 · 5− 5]⊕X[a + 3]⊕X[a].

Note that if we define constants

d4 = (232 · 8− 5), d3 = d4 − 3 = 232 · 8− 8,
d2 = d4 − (232 · 5− 5) = 232 · 3, d1 = d4 − (232 · 8− 5) = 0,

then the sequence {X[a]} satisfies ⊕4
k=1X[t−dk] = 0, for any value of t ≥ d4. Suppose that

there is a corrective pattern with XOR differences: (∆M [i], . . . ,∆M [i+ l]) = (∆0, . . . ,∆l).
If the message M is of sufficient length, then an attacker can input differences (according
to the corrective pattern) at four positions: ai = a + di, where d1, d2, d3, d4 are as defined
above. Then, for all t ≥ a + d4:

∆CRCt+1[7] =
t⊕

i=0

(X[t− i]⊗∆Mi) =
l⊕

j=0

(
4⊕

k=1

X[(t− a + j)− dk]

)
⊗∆j = 0,

upon substitution of ⊕4
k=1X[(t − a + j) − dk] = 0. That is, if we input the differences at

these four places a1, a2, a3, a4, then the resulting differences in the CRC state cancel out



for all t > a4. In this way, the attacker has forced a collision in the CRC without guessing
any of the CRC register. Additionally, the corrective patterns cancel out the differences in
the SHA register.

Collision Probability. The probability of the four corrective patterns cancelling out the
differences in the SHA register is anticipated to approach p4

CP , where pCP is the probability
of the corrective pattern, since the four corrective patterns are largely independent. The
attacker can use the optimal corrective pattern (that is the corrective pattern with highest
complexity) at each of the four positions. Substituting pCP = 2−62 from Table 2 gives a
probability of 2−248. In other words, the complexity of forming a collision is 2260. This is
significantly more than the complexity of 2−128 required for Mundja to be secure.

We have considered whether there is an advantage to be gained from using other linear
relationships to cancel differences in the CRC. Thus far we have been unable to find any
useful linear relationships. This work is ongoing.

6 Conclusion

Mundja is a MAC function designed for use with stream ciphers. Mundja uses a strength-
ened version of the SHA-256 round function and a 256-bit cyclic redundancy check (CRC).
The design philosophy is presented, along with an analysis of resistance to differential col-
lisions. This supports our claim that Mundja offers up to 128-bit security when used with
a secure stream cipher.
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A Appendix: How Mundja cooperates with partner stream
ciphers

The description of Mundja above makes reference to ”the partner stream cipher”. Some
aspects of Mundja (the CRC multiplication table and the constant value used in final-
ization) have been borrowed from SOBER-128, and are used no matter what the partner
stream cipher is. The following elements of the design differ depending on the partner:

– The manner in which the SHA and CRC registers are initialized after stream cipher
initialization.

– The stream of words Wt used in place of the SHA-256 round constants.
– The nonlinear S-box used to strengthen the SHA-256 round function. Some stream

ciphers might not have any equivalent of an S-box available, in which case we believe
that the SOBER-128 S-box construction (as analyzed above) should be used.

We define these missing elements for three ciphers: SOBER-128, Turing, and RC4.
Reference source code for Mundja partnering all three of these ciphers will be available on
the QUALCOMM Australia web site:
http://www.qualcomm.com.au.

A.1 SOBER-128

SOBER-128 already supports initialization using a secret key and a nonce. After initializa-
tion, the SOBER-128 register words R[i], i = 0..15 are simply copied into the SHA register
words A,B, . . . ,H and the CRC register words CRC[j], j = 0..7, respectively.



Each time the SHA register is updated, a word from the SOBER-128 LFSR R[8] is
taken as Wt.

The SOBER-128 f function is used as the function S in Mundja. Note that this function
uses an 8 × 32 S-box (denoted SBOX) with f defined as
f(X) = SBOX(X >> 24)⊕X.

A.2 Turing

Turing already supports initialization using a secret key and a nonce, however Joux and
Miller [13] observed that there was insufficient diffusion during this process. So, after
initialization, Turing is used to generate 20 words of stream cipher output (recall that
Turing generates keystream in 5-word chunks). The first 16 of these words are simply copied
into the SHA register words A,B, . . . ,H and the CRC register words CRC[j], j = 0..7,
respectively. Note that this process provides sufficient extra diffusion in the Turing LFSR
to defeat the [13] attack.

Each time the Turing LFSR is updated, a word from the LFSR R[8] is taken as Wt.
The Turing Sbox function is used as the S-box. this S-box is significantly better than the
SOBER-128 one, in that it is highly nonlinear in all of the input bits, and it is secret-
key dependent. We expect that this adds significant strength to Mundja when used in
conjunction with Turing.

A.3 RC4

We do not recommend use of RC4 as a stream cipher any more, principally due to the
strong distinguishing attack of Fluhrer & McGrew [6]. Nevertheless, we feel it is instructive
to specify how Mundja would partner with RC4.

RC4 does not directly support use of a nonce, and yet this is a requirement for use
with Mundja. So, following Ron Rivest’s advice, first initialize the RC4 state with a key
that is the MD5 hash of the secret key and nonce concatenated. Then 64 octets of RC4
keystream are generated, and formed into 16 32-bit words in little-endian fashion. These
words are simply copied into the SHA register words A,B, . . . ,H and the CRC register
words CRC[j], j = 0..7, respectively.

RC4 has an index variable i, and a state permutation S[]. It generates stream output
octet-at-a-time, whereas Mundja works word-at-a-time. Synchronization between these
processes needs to be clarified, so we choose to have RC4 generate 4 octets of output
before Mundja accumulates its input word. For each Mundja input word, the four octets
of S that (cyclically) precede the current index i (i.e. the four octets that have just been
swapped) are formed into a word in little-endian fashion and taken as Wt.

RC4 does not have a particular non-linear S-box, but the current state S forms an
8× 8 permutation and can naturally be used to provide this functionality. Where Mundja
needs a 32-bit S-box, the input is broken into octets, and each octet is individually passed
through the S permutation (in parallel) before being reassembled into a word.


