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Abstract

Recently, Canetti, Halevi, and Katz showed a general method for constructing CCA-secure
encryption schemes from identity-based encryption schemes in the standard model. We improve
the efficiency of their construction, and show two specific instantiations of our resulting scheme
which offer the most efficient encryption (and, in one case, key generation) of any CCA-secure
encryption scheme to date.
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1 Introduction

Security against adaptive chosen-ciphertext attacks (i.e., “CCA-security”) [29, 17, 1] has become
the de facto level of security for public-key encryption schemes. The reasons for this are many:
CCA security helps protect against subtle attacks that have been demonstrated against schemes
not meeting this notion of security [3, 24, 23]; is helpful in defending against “active” attackers who
may modify messages in transit (see [32]); and, finally, allows encryption schemes to be developed
and then securely “plugged in” to higher-level protocols which may then be executed in arbitrary
environments (see, e.g., [8, Sec. 8.2.2]).

Nevertheless, only a relatively small number of encryption schemes have been rigorously proven
secure against adaptive chosen-ciphertext attacks in the standard model 1 (i.e., without resorting
to the use of random oracles [2]). Schemes based on general assumptions are known [17, 30, 27],
but these rely on generic non-interactive zero-knowledge proofs [4, 18] and do not currently lead to
practical solutions. More interesting from a practical point of view are efficient schemes based on
specific number-theoretic assumptions; two general methodologies for constructing such schemes
are known. The first methodology is based on the “smooth hash proof systems” of Cramer and
Shoup [14], and has led to a variety of constructions [13, 14, 19, 15, 25]. The second, and more
recent, method [11] constructs a CCA-secure encryption scheme from any semantically-secure (or,
“CPA-secure”) identity-based encryption (IBE) scheme [7, 12] (which can in turn be constructed
in the standard model based on specific number-theoretic assumptions [10, 5, 6, 34]). Overall, the
most efficient CCA-secure encryption scheme currently known is a hybrid encryption system due
to Kurosawa and Desmedt [25] which builds on the original proposal of Cramer and Shoup [13] and
relies on the decisional Diffie-Hellman assumption.
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In this paper, we suggest a new method which allows for the construction of very efficient
CCA-secure encryption schemes. Our technique modifies the approach of Canetti, Halevi, and
Katz [11], who (as noted above) show a transformation from any semantically-secure “weak” IBE
scheme to a CCA-secure public-key encryption scheme. Briefly and somewhat informally, their
transformation from an IBE scheme2 (Setup,Der,Enc,Dec) to a CCA-secure scheme proceeds as
follows: key generation is performed by running Setup and letting the public (resp. secret) key be
the master public key PK (resp., master secret key msk) output by this algorithm. To encrypt
a message m using public key PK, a sender generates a random key-pair (vk, sk) for a one-time
signature scheme and sends the ciphertext 〈vk,EncPK(vk,m), σ〉, where EncPK(vk,m) represents
an encryption of message m for the “identity” vk using master public parameters PK, and σ
represents a signature on the second component of this ciphertext using sk. To decrypt ciphertext

〈vk,C, σ〉, the receiver first verifies whether Vrfyvk(C, σ)
?
= 1. If so, the receiver then decrypts C

with respect to the “identity” vk (it can do this since it has the master secret key msk).
Though conceptually simple, this transformation does add noticeable overhead to the underlying

IBE scheme: encryption requires the sender to generate keys for a one-time signature scheme [26]
and also to compute a signature using the keys just generated; decryption requires the receiver to
verify a signature with respect to the verification key included as part of the ciphertext. Although
one-time signatures are “easy” to construct in theory, and are more efficient than “full-blown”
signatures (i.e., those which are existentially unforgeable under an adaptive chosen-message attack
[20]), they still have their price. In particular:

• One-time signatures based on cryptographic hash functions such as SHA-1 can be designed
to allow very efficient signing ; key generation, on the other hand, typically requires hundreds
of hash function evaluations and is relatively expensive (though not as expensive as key
generation in schemes based on number-theoretic assumptions). More problematic, perhaps,
is that such schemes have very long public keys and signatures, which would result in very
long ciphertexts in the scheme of [11].

• One-time signatures based on number-theoretic assumptions (say, by adapting “full-blown”
signature schemes) yield schemes whose computational cost — both for key generation and
signing — is more expensive, but which have the advantage of short(er) public keys and
signatures.

Either way, the transformation of Canetti, Halevi, and Katz results in a CCA-secure encryption
scheme which is less efficient than the underlying IBE system.

1.1 Our Contribution

We describe a transformation from any CPA-secure “weak” IBE system to a CCA-secure encryption
scheme which adds essentially no overhead. The efficiency advantage of our approach arises from our
observation that the one-time signature in the construction of Canetti, et al. (as described earlier)
can be replaced by a message-authentication code (mac) along with an appropriate “encapsulation”
of a mac key (for the purposes of this informal description, one can think of an encapsulation
as a commitment). Using the notation introduced earlier, encryption using our approach is now
performed (informally) by first “encapsulating” a key r which results in an encapsulation com along
with a decommitment string dec. The final ciphertext is 〈com,EncPK(com,m◦dec), tag〉, where tag

2Definitions of IBE schemes and their security, as well as definitions of CCA-secure encryption, are reviewed in
Section 2.
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is now a message authentication code computed on the second component of the ciphertext using
key r. Decryption of ciphertext 〈com, C, tag〉 is done in the natural way, but note that here the
receiver must first decrypt C (with respect to “identity” com) and only then can the receiver verify
the correctness of tag. Indeed, this feature of our scheme complicates the security proof somewhat
(and in particular we must be careful to avoid circular arguments).

Adapting [16, 21], we show how encapsulation of the mac key can be done both efficiently and
securely using, e.g., SHA-1: encapsulation requires only a single hash function evaluation, and is
secure under the assumption that SHA-1 is second-preimage resistant (the scheme can be easily
modified so as to be secure under the weaker assumption of the existence of UOWHFs [28]). This
encapsulation scheme may have other applications, and thus the scheme — as well as the relatively
simple proof of security we provide for this encapsulation scheme here (cf. Theorem 2) — may be
of independent interest. Furthermore, our technique of replacing a one-time signature by a mac

seems applicable to other constructions (e.g., those of [17, 30] as well as the various extensions
mentioned in [11]), giving efficiency improvements in those cases as well.

In addition to the general method discussed above, we also show two specific instantiations of
our approach based on two IBE schemes recently introduced by Boneh and Boyen [5]. Our resulting
schemes are quite efficient: in particular, the times required for key generation and encryption are
as fast as (or faster than) the most efficient previous CCA-secure schemes to date.

1.2 Hybrid Encryption

In practice, public-key encryption is almost never used to encrypt actual data. Instead, hybrid
encryption is typically used, whereby a public-key scheme is used to encrypt a random key, and
the data is then encrypted using some symmetric-key encryption scheme and this key. In fact,
“encryption” of the symmetric key is not required; “encapsulation” (cf. [33]) — which may be more
efficient — is enough. It is well known that if both the public-key encapsulation scheme and the
underlying symmetric-key encryption scheme are CCA-secure, then the resulting hybrid scheme is
CCA-secure as well.

Interestingly, Kurosawa and Desmedt have recently shown [25] that the public-key encapsulation
scheme does not necessarily need to be CCA-secure in order for the resulting hybrid scheme to be
CCA-secure. In particular, they show a hybrid encryption scheme which is based on, but more
efficient than, the Cramer-Shoup scheme [13] when used for hybrid encryption. The specific hybrid
schemes proposed here are as efficient as the Kurosawa-Desmedt scheme in terms of encryption
(and, in one case, key generation), but somewhat less efficient in other measures; we provide detailed
comparisons in Section 4. It is somewhat surprising that constructions based on completely different
approaches end up having such similar performance for both encryption and key generation.

1.3 Outline

In Section 3, we present and prove secure a generic construction of a CCA-secure encryption scheme
based on a variety of primitives (IBE, macs, and encapsulation) formally defined in Section 2.
Section 4 describes in more detail two specific instantiations of the various primitives; the efficiency
of the resulting schemes are then compared with previous work.

2 Basic Definitions

We review the standard definitions of public-key encryption schemes and their security against
adaptive chosen-ciphertext attacks. This is followed by definitions of identity-based encryption,
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message authentication, and “encapsulation” as needed for our construction.

Definition 1 (Public-key encryption) A public-key encryption scheme PKE is a triple of ppt

algorithms (Gen,Enc,Dec) such that:

• The randomized key generation algorithm Gen takes as input a security parameter 1k and
outputs a public key PK and a secret key SK. We write (PK,SK)← Gen(1k).

• The randomized encryption algorithm Enc takes as input a public key PK and a message
m ∈ {0, 1}∗, and outputs a ciphertext C. We write C ← EncPK(m).

• The decryption algorithm Dec takes as input a ciphertext C and a secret key SK. It returns
a message m ∈ {0, 1}∗ or the distinguished symbol ⊥. We write m← DecSK(C).

We require that for all (PK,SK) output by Gen, all m ∈ {0, 1}∗, and all C output by EncPK(m)
we have DecSK(C) = m.

Definition 2 (CCA security) A public-key encryption scheme PKE is secure against adaptive
chosen-ciphertext attacks (i.e., is “CCA-secure”) if the advantage of any ppt adversary A in the
following game is negligible in the security parameter k:

1. Gen(1k) outputs (PK,SK). Adversary A is given 1k and PK.

2. The adversary may make polynomially-many queries to a decryption oracle DecSK(·).

3. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly chosen
and the adversary is given a “challenge ciphertext” C ∗ ← EncPK(mb).

4. A may continue to query its decryption oracle DecSK(·) except that it may not request the
decryption of C∗.

5. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by PrA,PKE[Succ]. The
adversary’s advantage is defined as |PrA,PKE[Succ]− 1/2|.

2.1 Identity-Based Encryption

Informally, an IBE scheme is a public-key encryption scheme in which any string (i.e., identity)
can serve as a public key. In more detail, a setup algorithm is first run to generate “master” public
and secret keys. Given the master secret key and any string ID ∈ {0, 1}∗ (which can be viewed
as an identity), it is possible to derive a “personal secret key” SKID. Any sender can encrypt
a message for “identity” ID using only the master public key and the string ID. The resulting
ciphertext can be decrypted using the derived secret key SKID, but the message remains hidden
from an adversary who does not know SKID even if that adversary is given SKID′ for multiple
identities ID′ 6= ID. The concept of identity-based encryption was introduced by Shamir [31],
and provably-secure IBE schemes in the random oracle model were demonstrated by Boneh and
Franklin [7] and Cocks [12]. More recently, provably-secure IBE schemes in the standard model
have been developed [10, 5, 6, 34]; see further discussion below.

In the original definition of security for IBE proposed and achieved by Boneh and Franklin
[7], the adversary may choose the “target identity” (ID in the above discussion) in an adaptive
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manner, based on the master public key and any keys SKID′ the adversary has obtained thus far.
A weaker notion of security, proposed and achieved by Canetti, Halevi, and Katz [10], requires
the adversary to specify the target identity before the public-key is published; we will refer to this
notion of security as “weak” IBE. As in [11], our construction only requires weak IBE schemes
secure against chosen-plaintext attacks. We therefore only recall this definition of security.

Definition 3 (IBE) An identity-based encryption scheme IBE is a 4-tuple of ppt algorithms
(Setup,Der,Enc,Dec) such that:

• The randomized setup algorithm Setup takes as input a security parameter 1k and a value
` for the identity length. It outputs some system-wide parameters PK along with a master
secret key msk. (We assume that k and ` are implicit in PK.)

• The (possibly randomized) key derivation algorithm Der takes as input the master key msk

and an identity ID ∈ {0, 1}`. It returns the corresponding decryption key SKID. We write
SKID ← Dermsk(ID).

• The randomized encryption algorithm Enc takes as input the system-wide public key PK,
an identity ID ∈ {0, 1}`, and a message m ∈ {0, 1}∗; it outputs a ciphertext C. We write
C ← EncPK(ID,m).

• The decryption algorithm Dec takes as input an identity ID, its associated decryption key
SKID, and a ciphertext C. It outputs a message m ∈ {0, 1}∗ or the distinguished symbol ⊥.
We write m← DecSKID

(ID,C).

We require that for all (PK,msk) output by Setup, all ID ∈ {0, 1}`, all SKID output by Dermsk(ID),
all m ∈ {0, 1}∗, and all C output by EncPK(ID,m) we have DecSKID

(ID,C) = m.

As mentioned earlier, we provide a definition of security only for the case of “weak” IBE, as
considered in [10, 5]. (Of course, a scheme satisfying the stronger definition of [7, 6] is trivially a
weak IBE scheme as well.)

Definition 4 (Selective-ID IBE) An identity-based scheme IBE is secure against selective-
identity, chosen-plaintext attacks if for all polynomially-bounded functions `(·) the advantage of
any ppt adversary A in the following game is negligible in the security parameter k:

1. A(1k, `(k)) outputs a target identity ID∗ ∈ {0, 1}`(k).

2. Setup(1k, `(k)) outputs (PK,msk). The adversary is given PK.

3. The adversary A may make polynomially-many queries to an oracle Dermsk(·), except that it
may not request the secret key corresponding to the target identity ID∗.

4. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly chosen
and the adversary is given a “challenge ciphertext” C ∗ ← EncPK(ID∗,mb).

5. A may continue to query its oracle Dermsk(·), but still may not request the secret key corre-
sponding to the identity ID∗.

6. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by PrA,IBE[Succ]. The
adversary’s advantage is defined as |PrA,IBE[Succ]− 1/2|.

For completeness, we remark that a slightly weaker definition — in which ` = Ω(log k) is a
priori bounded, rather than being given as a parameter to Setup — suffices for our construction.
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2.2 Message Authentication

We view a message authentication code as a pair of ppt algorithms (Mac,Vrfy). The authentication
algorithm Mac takes as input a key sk and a message M , and outputs a string tag. The verification
algorithm Vrfy takes as input a key sk, a message M , and a string tag; it outputs either 0 (“reject”)
or 1 (“accept”). We require that for all sk and M we have Vrfysk(M,Macsk(M)) = 1. For simplicity,
we assume that Mac and Vrfy are deterministic.

We give a definition of security tailored to the requirements of our construction; in particular,
we require only “one-time” security for our message authentication code. We remark that efficient
schemes satisfying this definition can be constructed without any computational assumptions using,
e.g., almost strongly universal hash families [35].

Definition 5 (Message authentication) A message authentication code (Mac,Vrfy) is secure
against a one-time chosen-message attack if the success probability of any ppt adversary A in the
following game is negligible in the security parameter k:

1. A random key sk ∈ {0, 1}k is chosen.

2. A(1k) outputs a message M and is given in return tag = Macsk(M).

3. A outputs a pair (M ′, tag′).

We say that A succeeds if (M, tag) 6= (M ′, tag′) and Vrfysk(M
′, tag′) = 1.

In the above, the adversary succeeds even if M = M ′ but tag 6= tag′. Thus, the definition
corresponds to what has been termed “strong” security in the context of signature schemes.

2.3 Encapsulation

We define a notion of “encapsulation” which may be viewed as a weak variant of commitment. (Note
that our definition is unrelated to that of key encapsulation which was discussed in Section 1.2.) In
terms of functionality, an encapsulation scheme commits the sender to a random string as opposed
to a chosen message as in the case of commitment. In terms of security, our construction only
requires binding to hold for honestly-generated encapsulations; this is analogous to assuming an
honest sender during the first phase of a commitment scheme.

Definition 6 (Encapsulation) An encapsulation scheme is a triple of ppt algorithms (Setup,S,R)
such that:

• Setup takes as input the security parameter 1k and outputs a string pub.

• S takes as input 1k and pub, and outputs (r, com, dec) with r ∈ {0, 1}k . We refer to com as
the public commitment string and dec as the de-commitment string.

• R takes as input (pub, com, dec) and outputs an r ∈ {0, 1}k ∪ {⊥}.

We require that for all pub output by Setup and for all (r, com, dec) output by S(1k, pub), we have
R(pub, com, dec) = r. We also assume for simplicity that com and dec have fixed lengths for any
given value of the security parameter.

As in the case of commitment, an encapsulation scheme satisfies notions of both binding and
hiding. Informally, “hiding” requires that com should leak no information about r; more formally,
the string r should be indistinguishable from random even when given com (and pub). “Binding”
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requires that an honestly-generated com can be “opened” to only a single (legal) value of r; see
below.

Definition 7 (Secure encapsulation) An encapsulation scheme (Setup,S,R) is secure if it sat-
isfies both hiding and binding as follows:

Hiding: The following is negligible for all ppt A:
∣

∣

∣

∣

Pr

[

pub← Setup(1k); r0 ← {0, 1}
k ;

(r1, com, dec)← S(1k, pub); b← {0, 1}
: A(1k, pub, com, rb) = b

]

−
1

2

∣

∣

∣

∣

.

Binding: The following is negligible for all ppt A:

Pr





pub← Setup(1k);
(r, com, dec)← S(1k, pub);

dec′ ← A(1k, pub, r, com, dec)
: R(pub, com, dec′) 6∈ {⊥, r}



 .

In the above, both hiding and binding are required to hold only computationally. In Section 4 we
show a novel encapsulation scheme which is both simple and efficient, and which achieves statistical
hiding (and computational binding).

3 A Generic Construction

We now describe our construction of a CCA-secure encryption scheme from the primitives intro-
duced in the previous section. Let (Setup′,Der′,Enc′,Dec′) be an IBE scheme, (Setup,S,R) be an
encapsulation scheme, and (Mac,Vrfy) be a message authentication code. Our scheme is constructed
as follows:

Key generation Keys for our scheme are generated by running Setup′(1k) to generate (PK,msk)
and Setup(1k) to generate pub. The public key is (PK, pub), and the secret key is msk.

Encryption To encrypt a message m using public key (PK, pub), a sender first encapsulates
a random value by running S(1k, pub) to obtain (r, com, dec). The sender then encrypts
the “message” m ◦ dec with respect to the “identity” com; that is, the sender computes
C ← Enc′PK(com,m ◦ dec). The resulting ciphertext C is then authenticated by using r as a
key for a message authentication code; i.e., the sender computes tag = Macr(C). The final
ciphertext is 〈com, C, tag〉.

Decryption To decrypt a ciphertext 〈com, C, tag〉, the receiver derives the secret key SKcom cor-
responding to the “identity” com, and uses this key to decrypt the ciphertext C as per the
underlying IBE scheme; this yields a “message” m ◦ dec (if decryption fails, the receiver
outputs ⊥). Next, the receiver runs R(pub, com, dec) to obtain a string r; if r 6=⊥ and
Vrfyr(C, tag) = 1, the receiver outputs m. Otherwise, the receiver outputs ⊥.

Intuition for the security of the above encryption scheme against chosen-ciphertext attacks is
similar to [11]. Let 〈com∗, C∗, tag∗〉 be the challenge ciphertext (cf. Definition 2). In the absence of
any decryption queries, it is clear that the value of the bit b remains hidden from the adversary due
to the security of the underlying IBE scheme. Decryption queries of the form 〈com, C, tag〉 with
com 6= com∗ do not further help the adversary since the adversary would be unable to determine b
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even if it had the secret key SKcom corresponding to com (this follows again from the security of the
underlying IBE scheme). Thus, it is left to examine decryption queries of the form 〈com∗, C, tag〉.
The crux of our proof is to show that all queries of this form are rejected (i.e., the decryption oracle
returns ⊥ in response to all queries of this form) with all but negligible probability. A formal proof
of this statement is somewhat involved, as it requires avoiding the apparent “circularity” arising
from the IBE scheme, the message authentication code, and the encapsulation scheme; the details
are given in the proof below.

Theorem 1 Assuming the IBE scheme, message authentication code, and encapsulation scheme
used above satisfy Definitions 2.1, 2.2, and 2.3, respectively, the above construction is a PKE scheme
which is secure against adaptive chosen-ciphertext attacks.

Proof Given any ppt adversary A attacking the above encryption scheme in an adaptive chosen-
ciphertext attack, we construct a ppt adversary A′ attacking the underlying IBE scheme in a
selective-identity, chosen-plaintext attack. Relating the success probabilities of these adversaries
gives the desired result.

Let `(k) denote the length of strings com output by S. Define adversary A′ as follows:

1. A′(1k, `(k)) runs Setup(1k) to generate pub, and runs S(1k, pub) to obtain (r∗, com∗, dec∗).
The adversary A′ then outputs the “target identity” com∗.

2. A′ is then given IBE parameters PK. Adversary A′, in turn, runs A on inputs 1k and
(PK, pub).

3. When A submits the ciphertext 〈com, C, tag〉 to its decryption oracle, A′ proceeds as follows:

• If com = com∗, then A′ returns ⊥.

• If com 6= com∗, then A′ makes the oracle query Der′
msk

(com) to obtain SKcom. It then
computes m ◦ dec = Dec′SKcom

(com, C), followed by r = R(pub, com, dec). If r 6=⊥ and
Vrfyr(C, tag) = 1, it returns m to A. Otherwise, it returns ⊥.

4. At some point, A outputs two messages m0,m1. Adversary A′ outputs the messages m0◦dec∗

and m1 ◦ dec∗, and receives in return a ciphertext C∗. It computes tag∗ = Macr∗(C
∗) and

returns 〈com∗, C∗, tag∗〉 to A.

5. A may continue to make decryption oracle queries, and these are answered as before. (Recall,
A may not query the decryption oracle on the challenge ciphertext itself.)

6. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal strategy for attacking the underlying IBE scheme in a selective-
identity, chosen-plaintext attack; in particular, A′ never requests the secret key corresponding to
“target identity” com∗.

Before analyzing the success probability of A′, we prove a claim bounding the probability of a
certain event. Say a ciphertext 〈com, C, tag〉 is valid if decryption of this ciphertext would not result
in ⊥. Let Valid denote the event that A ever submits a ciphertext 〈com∗, C, tag〉 to its decryption
oracle which is valid. (We always implicitly assume that 〈com∗, C, tag〉 6= 〈com∗, C∗, tag∗〉 since
this event is disallowed after A is given the challenge ciphertext, and occurs with only negligible
probability before A is given the challenge ciphertext.)

Claim Pr[Valid] is negligible.
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Proof Let Game 0 denote the original experiment in which A interacts with a real decryption
oracle (and not the simulated decryption oracle provided by A′); we are interested in bounding
Pr0[Valid]. Let Equiv be the event that the adversary ever submits a ciphertext 〈com∗, C, tag〉 for
which (1) C decrypts to some arbitrary m ◦ dec (using the secret key SKcom∗) and furthermore
(2) R(pub, com∗, dec) = r with r 6∈ {r∗,⊥}. Let Forge be the event that Equiv does not occur, and
A at some point submits a ciphertext 〈com∗, C, tag〉 such that Vrfyr∗(C, tag) = 1. Clearly, we have
Pr0[Valid] ≤ Pr0[Equiv] + Pr0[Forge].

We first show that Pr0[Equiv] is negligible, by the binding property of the encapsulation scheme.
Consider an adversary B acting as follows: given input (1k, pub, r∗, com∗, dec∗), adversary B gen-
erates (PK,msk) for the IBE scheme and runs A on inputs 1k and (PK, pub). Whenever A makes
a decryption oracle query, B can legitimately answer this query since B knows msk. When A
submits its two messages m0,m1, adversary B simply chooses b ∈ {0, 1} at random and encrypts
mb in the expected way to generate a completely valid ciphertext 〈com∗, C∗, tag∗〉 (B can easily
do this since it has both r∗ and dec∗). Now, if Equiv ever occurs then B learns dec such that
R(pub, com∗, dec) 6∈ {⊥, r∗}. But this exactly violates the binding property of (Setup,S,R).

We next show that Pr0[Forge] is negligible. Let q(k) be a polynomial upper bound on the
number of decryption queries made by A, and let Forgei denote the event that Forge occurs for the
first time on the ith decryption query of A. Let Forge′i denote the event that the ith decryption
query is of the form 〈com∗, C, tag〉 and Vrfyr∗(C, tag) = 1 when all previous decryption queries of
the form 〈com∗, C ′, tag′〉 are answered with ⊥ (without checking whether they are valid or not). We
refer to this latter “game” (which formally depends on the i under consideration) as Game 0 ′.

Note that Pr0[Forge] =
∑q(k)

i=1 Pr0[Forgei]. Furthermore, for all i we have Pr0′ [Forge′i] ≥ Pr0[Forgei].

Letting Forge′
def
= ∪iForge′i, we obtain Pr0[Forge] ≤ Pr0′ [Forge′].

Define Game 1 which proceeds exactly as Game 0′, except that A is now given a random

encryption of mb ◦ 0n(k) instead of a random encryption of mb ◦ dec∗ (here, n(k)
def
= |dec∗|; recall

that Definition 2.3 requires the length of dec∗ to be fixed for a given value of k). We claim that
∣

∣Pr0′ [Forge′]− Pr1[Forge′]
∣

∣ is negligible. Indeed, if this is not the case then we can easily construct
an algorithm B attacking the security of the underlying IBE scheme:

• Given input 1k, algorithm B runs Setup(1k) to generate pub and then runs S(1k, pub) to
obtain (r∗, com∗, dec∗). It outputs com∗ as the target identity and is then given the IBE
parameters PK. Finally, it runs A on inputs 1k and (PK, pub).

• Decryption queries of A are answered as follows:

– Queries of the form 〈com, C, tag〉 with com 6= com∗ are answered by first querying
Der′

msk
(com) to obtain SKcom, and then decrypting in the usual way.

– Upon receiving a query of the form 〈com∗, C, tag〉, first check whether Vrfyr∗(C, tag) = 1.
If so, abort the experiment and output 1. Otherwise, return ⊥ to A.

• Eventually, A sends a pair of messages m0,m1 to its encryption oracle. B selects a bit b at
random, and sends mb ◦ dec∗ and mb ◦ 0n(k) to its encryption oracle. It receives in return a
challenge ciphertext C∗, and uses this to generate a ciphertext 〈com∗, C∗, tag∗〉 in the natural
way.

• Further decryption queries of A are answered as above.

• If A halts and B has not previously aborted the experiment, then B outputs a random bit.
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The probability that B outputs 1 when given an encryption of mb ◦ dec∗ is 1
2 + 1

2 · Pr0′ [Forge′].

On the other hand, the probability that B outputs 1 when given an encryption of mb ◦ 0n(k) is
1
2 + 1

2 · Pr1[Forge′]. Since the difference between these two probabilities must be negligible if the
underlying IBE scheme is secure, this proves the current claim.

Define Game 2 which proceeds exactly as Game 1, except that the challenge ciphertext given
to A is now constructed as follows: S(1k, pub) is run to give (r, com∗, dec∗) but an independent
random key r∗ ∈ {0, 1}k is chosen as well. Compute C∗ ← EncPK(com∗,m ◦ 0n(k)), followed by
tag∗ = Macr∗(C

∗). The challenge ciphertext, as usual, is 〈com∗, C∗, tag∗〉. We claim that the
difference

∣

∣Pr1[Forge′]− Pr2[Forge′]
∣

∣ is negligible. To see this, consider the following algorithm B
breaking the hiding property of the encapsulation scheme:

• B is given input 1k and (pub, com∗, r̃). It then runs Setup′(1k) to generate (PK,msk), and
runs A on input 1k and (PK, pub).

• Decryption queries of A are answered as follows:

– Queries of the form 〈com, C, tag〉 with com 6= com∗ are answered by running Der′
msk

(com)
to obtain SKcom, and then decrypting in the usual way.

– Upon receiving a query of the form 〈com∗, C, tag〉, first check whether Vrfyr̃(C, tag) = 1.
If so, abort the experiment and output 1. Otherwise, return ⊥ to A.

• Eventually, A sends a pair of messages m0,m1 to its encryption oracle. B selects a bit b
at random and proceeds as follows: it computes C ∗ ← EncPK(com∗,mb ◦ 0n(k)), computes
tag∗ = Macr̃(C

∗), and returns the challenge ciphertext 〈com∗, C∗, tag∗〉 to A.

• Further decryption queries of A are answered as above.

• If A halts and B has not previously aborted the experiment, then B outputs a random bit.

Now, if r̃ is such that (r̃, com∗, dec∗) was output by S(1k, pub) then the view of A is exactly as in
Game 1 and so the probability that B outputs 1 in this case is 1

2(1 + Pr1[Forge′]). On the other
hand, if r̃ is chosen independently of com∗ then the view of A is exactly as in Game 2 and so the
probability that B outputs 1 in this case is 1

2(1 + Pr2[Forge′]). Since the difference between these
two probabilities must be negligible by the hiding property of the encapsulation scheme, this proves
the current claim.

Finally, we claim that Pr2[Forge′] is negligible. This follows quite easily from the security of the
message authentication code, and we omit the details here. This completes the proof of the claim.

Given the preceding claim, we see that the simulation which A′ provides for A is statistically
close to a real execution of A: in particular, the only difference occurs when Valid occurs. We
therefore conclude that the advantage of A′ is negligibly close to the advantage of A. Since the
advantage of A′ is negligible under the assumed security of the underlying IBE, the advantage of
A must be negligible as well. This completes the proof of Theorem 1.

4 Efficient Instantiations

Here, we describe two particular instantiations of our scheme by describing specific instantiations
of the various primitives.
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IBE schemes. Boneh and Boyen [5] recently proposed two efficient IBE schemes suitable for our
purposes. We refer to [5] for the full details and content ourselves with giving only a high-level
description of their first scheme here. Let

�
and

�
1 be two (multiplicative) cyclic groups of prime

order q for which there exists an efficiently-computable map ê :
�
×

�
→

�
1 which is bilinear

and non-degenerate. Namely, (1) for all µ, ν ∈
�

and a, b ∈ � q we have ê(µa, νb) = e(µ, ν)ab, and
(2) ê(g, g) 6= 1 for some generator g of

�
. The IBE scheme is defined as follows:

Setup Pick random generators g, g1, g2 of
�

and a random x ∈ � q. Set g3 = gx and Z = ê(g1, g3).
The master public key is PK = (g, g1, g2, g3, Z) and the master secret key is msk = x.

Derive To derive the secret key for “identity” ID ∈ � q using msk = x, choose a random r ∈ � q

and return the key SKID = (gx
1 gr

2g
r·ID
3 , gr).

Encrypt To encrypt a message M ∈
�

1 with respect to “identity” ID ∈ � q, choose a random
s ∈ � q and output the ciphertext (gs, gs

2g
s·ID
3 , M · Zs).

Decrypt To decrypt ciphertext (A,B,C) using private key (K1,K2), output C ·ê(B,K2)/ê(A,K1).

Correctness can be easily verified. Security of the above scheme is based on the decisional bilinear
Diffie-Hellman (decision-BDH) problem. For efficiency, we assume that the master secret key msk

contains the discrete logarithms of g1, g2, and g3 with respect to base g, in which case generating
SKID requires only two exponentiations.

The second IBE scheme of Boneh and Boyen [5] is more efficient than the above in terms of
both key-generation and decryption time (the time required for encryption is essentially the same),
but is based on a cryptographic assumption which is less standard.

When the above scheme is used for key encapsulation (in the sense of Section 1.2), the sender
need only send (gs, gs

2g
s·ID
3 ) and compute the key Hα(Zs) where H is a keyed hash function (see

below); the receiver, given ciphertext 〈A,B〉, computes the matching key Hα(ê(A,K1)/ê(B,K2)),
where K1,K2 are as before. In this description, H represents a keyed hash function where the key
α is included as part of the receiver’s public key. Under the decisional-BDH assumption, it suffices
for H to be chosen from a pairwise-independent hash family in order for the scheme to be secure.
We remark, however, that this encapsulation scheme is also secure under a potentially weaker “hash
BDH” assumption as well (and a similar remark holds also for the second IBE scheme of [5]). See
further discussion at the end of this section.

Message authentication codes. A number of efficient message authentication codes are known,
and we do not suggest any particular one. We stress that we only require “one-time” security
(cf. Definition 2.2) and so efficient schemes which do not rely on any computational assumptions
(e.g., [35]) may be used. Furthermore, messages to be authenticated have a (known) fixed length;
this enables slight optimizations and/or simplifications of known schemes.

Encapsulation schemes. We suggest an encapsulation scheme based on a fixed cryptographic
hash function H : {0, 1}448 → {0, 1}128 (constructed, e.g., by suitably modifying the output length
of SHA-1), and for a particular choice of security parameters; it is easy to adapt the scheme for the
more general case. Our scheme works as follows:

• Setup chooses a hash function h from a family of pairwise independent hash functions mapping
448-bit strings to 128-bit strings, and outputs pub = h.

• The encapsulation algorithm S takes pub as input, chooses a random x ∈ {0, 1}448, and then
outputs (r = h(x), com = H(x), dec = x).

11



• The recovery algorithm R takes as input (pub = h, com, dec) and outputs h(dec) if H(dec) =
com, and ⊥ otherwise.

Note that binding holds as long as it is infeasible to find a dec′ 6= dec such that H(dec′) = H(dec),
where dec is chosen uniformly at random (cf. Definition 2.3). Thus, binding holds as long as H is
second-preimage resistant (the construction can be easily modified so as to be based on UOWHFs
by simply having Setup choose a key h′ for a UOWHF and including h′ in pub); collision-resistance
is not necessary.3 Furthermore, the above scheme satisfies statistical hiding. More specifically:

Theorem 2 For the encapsulation scheme described above, the statistical difference between the
following distributions is at most 2−63:

(1) {pub← Setup; (r, com, dec)← S(pub) : (pub, com, r)}

(2) {pub← Setup; (r, com, dec)← S(pub); r ′ ← {0, 1}128 : (pub, com, r′)}.

Proof (Sketch) The idea is loosely based on [16, 21], but our proof is much simpler. For any

x ∈ {0, 1}448, let Nx
def
= {x′ | H(x′) = H(x)} (this is simply the set of elements hashing to H(x)).

Call x good if |Nx| ≥ 2255, and bad otherwise. Since the output length of H is 128 bits, there are
at most 2255 · 2128 = 2383 bad x’s; thus, the probability that an x chosen uniformly at random from
{0, 1}448 is bad is at most 2−65.

Assuming x is good, the min-entropy of x — given pub and com — is at least 255 bits since
every x̃ ∈ Nx is equally likely. Viewing h as a strong extractor (or, equivalently, applying the
leftover-hash lemma [22]) we see that {h,H(x), h(x)} has statistical difference at most 2−64 from
{h,H(x), U128}, where U128 represents the uniform distribution over {0, 1}128. The theorem follows
easily.

A concrete scheme. Given the primitives above, we may construct a CCA-secure encryption
scheme as described in the previous section. However, as discussed in Section 1.2, improved effi-
ciency can be obtained by directly constructing a hybrid encryption scheme; we do so here.

Key generation requires running the key-generation algorithm for the underlying IBE scheme
and then choosing a hash function h from a family of pairwise independent hash functions.

Encryption of a message M involves (1) running the encapsulation scheme to obtain (k =
h(x), ID = H(x), x); (2) using the underlying IBE as a key encapsulation scheme, with
identity ID, to generate a ciphertext C1 encapsulating a key k′; (3) using k′ to encrypt M ◦x
by, for example, computing C2 = G(k′)⊕ (M ◦ x), where G is a PRG; (4) computing a mac

on C1, C2 using key k.

The ciphertext consists of ID,C1, C2, and the tag output by the mac.

Decryption of ciphertext (ID,C1, C2, tag) is done in the obvious way: recover k ′ from C1 (us-
ing identity ID), recover M ◦ x from C2, and compute k = h(x). If H(x) = ID and
Vrfyk((C1, C2), tag) = 1, then output M ; otherwise, output ⊥.

We tabulate the efficiency of our schemes, and compare them to the scheme of Kurosawa-
Desmedt [25], in Table 1. Scheme 1 is instantiated using the first IBE from [5], as described above;

3This also explains why an output length of 128 bits for H should provide a sufficient level of security.
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Encryption Decryption Key generation Ciphertext overhead

Scheme 1 3.5 p-exps. 2 p-exps. + 2 pairings 3 exps. 2|p|+ 704

Scheme 2 3.5 p-exps. 1.5 exps. + 1 pairing 2 exps. 2|p|+ 704

KD [25] 3.5 p-exps. 1.5 exps. 3 exps. 2|p|+ 128

Table 1: Efficiency comparison for CCA-secure hybrid encryption schemes. When tabulating com-
putational efficiency, “private-key” operations (hash function/block cipher evaluations) are ignored,
and one multi-exponentiation is counted as 1.5 exponentiations. Ciphertext overhead represents
the difference (in bits) between the ciphertext length and the message length, and |p| is the length
(in bits) of a group element. “p-exp” refers to an exponentiation relative to a fixed base.

scheme 2 is instantiated using the second IBE from [5]. During encryption all bases of exponen-
tiation are fixed which potentially enables further speed-up by pre-computation. In Scheme 1
we assume that g1, g3 are generated by raising the fixed generator g to a random power. Hence,
computing ê(g1, g3) requires only a single exponentiation assuming ê(g, g) is pre-computed.

In addition to comparing the efficiency of these various schemes, it is interesting also to compare
the cryptographic assumptions on which they are based. Security of the Kurosawa-Desmedt scheme
(as in the case of the Cramer-Shoup scheme [13] on which it is based) inherently relies on the
decisional Diffie-Hellman assumption, and it does not seem possible to obtain provable security
using a weaker variant of this assumption. In contrast, as noted earlier, our schemes may be proven
secure under “hash BDH”-type assumptions which are potentially weaker than the decisional-BDH
assumption.4

5 Conclusions

We present an efficient methodology for constructing CCA-secure public-key cryptosystems from
weak identity-based encryption schemes. Our construction adds only a mac and a weak “commit-
ment” to the original IBE system. Consequently, performance of the resulting public-key system
is very close to the performance of the underlying IBE scheme. This improves on a previous
transformation of Canetti, et al. which relies on the use of one-time signature schemes.

Applying our construction to recent IBE systems of Boneh and Boyen we obtain an efficient
CCA-secure public-key cryptosystem without random oracles. Encryption (and, in one case, key
generation) in the resulting systems are more efficient than in the Cramer-Shoup scheme, and on
par with the recent proposal of Kurosawa and Desmedt. Decryption time and ciphertext size are
comparable, though a bit worse. Our schemes are also somewhat more flexible than the Kurosawa-
Desmedt scheme in terms of the cryptographic assumptions needed to obtain a proof of security.
Our results show that building CCA-secure systems from IBE can produce very efficient schemes.
The resulting schemes, as well as the proofs of security, are very different from those based on the
work of Cramer and Shoup.

4In fact, we may base security of our constructions on purely computational — rather than decisional — assump-
tions; e.g., the computational-BDH assumption (using hard-core bits to encrypt one bit at a time). Although this
no longer yields a practical scheme, it achieves CCA-secure encryption based on a computational assumption while
avoiding the extreme inefficiency of NIZK proofs.
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