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Abstract. By considering a new metric, we generalize cryptographic
properties of Boolean functions such as resiliency and propagation char-
acteristics. These new definitions result in a better understanding of the
properties of Boolean functions and provide a better insight in the space
defined by this metric. This approach leads to the construction of “hand-
made” Boolean functions, i.e., functions for which the security with re-
spect to some specific monotone sets of inputs is considered, instead of
the security with respect to all possible monotone sets with the same
cardinality, as in the usual definitions. This approach has the advantage
that some trade-offs between important properties of Boolean functions
can be relaxed.
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1 Introduction

For any two binary vectors z = (x1,22,...,2,) and ¥ = (y1,¥Y2,.-.,Yn) in FZ,
define the sets d(z,y) = {i : x; # y;} and sup(z) = {i : z; # 0}. Denote
the size of a set A with |A|. Then the Hamming distance between the binary
vectors z and y is equal to d(z,y) = |d(z,y)| and the Hamming weight of z is
wt(z) = |sup(z)|. It was noted that §(z,y) has properties similar to metric and
sup(z) has properties similar to norm [FM02,NN03].

Our goal is to use d(x, y) instead of the Hamming distance and sup(z) instead
of the Hamming weight and to explore the properties of this new space. For this
purpose we consider monotone increasing and monotone decreasing sets. A set
A is called monotone decreasing if for each set in A, its subsets belong to A.
Similarly, a set I" is said to be monotone increasing if for each set in I its
supersets belong to I'.



As it has already been shown in [NNO3], this new space with monotone
sets can be used to generalize notions such as codes, minimum distance of a
code, minimal codewords, generator and parity check matrices of a code, packing
and covering, error-correcting capabilities, etc. In addition, monotone sets are
widely used in Secret Sharing Schemes (SSS) to describe the sets of players which
are allowed (disallowed) to reconstruct a secret. It has been recently pointed
out [FM02,NN03] that the security of (verifiable) SSS can be derived from the
properties of this space.

This paper focuses on Boolean functions. In particular, we generalize the def-
inition of t-resilient functions to functions which are resilient with respect to a
monotone decreasing set A. Analogously, the parameters for defining the prop-
agation characteristics (PC) of functions are replaced by monotone decreasing
sets. Our aim is to provide a new insight to the previous results and to give a
better understanding of which structural properties contribute in which way to
known results.

1.1 Motivation

Very often the properties of resiliency and PC imply strong requirements to
the rest of the parameters of a Boolean function. This leads to some trade-offs
between them, since all relevant properties cannot be satisfied simultaneously.
For example, Siegenthaler’s inequality [S84] states that d < n —t¢ — 1, where d
is the algebraic degree, n is the dimension and ¢ is the order of resiliency. By
exactly defining which components need to satisfy a certain order of resiliency
or PC, we can strengthen the weaker components by using other constructions
and achieve in this way an optimal design.

By means of example, we present a modified version of the combination
generator (see Section 3.6 for concrete examples). Let A be the set consisting
of all subsets of LFSRs for which the sum of the lengths is shorter than the
security parameter for the (fast) correlation attack [S85,MS92,JJ99]. It is known
that the feedback polynomials of the combining LFSRs should be primitive with
distinct degrees, not necessary co-prime, in order to obtain maximum linear
complexity [RS87]. Using t-resilient functions the degrees of LFSRs’ polynomials
are uniformly chosen. But considering A-resilient functions instead, allows us to
choose the degrees non-uniformly as well as to relax the requirements to the
rest of the function parameters like nonlinearity, algebraic degree, etc. Using a
A-resilient function as combiner f, the (fast) correlation attack can be avoided.
Moreover, the degree of the function f should be high in order to counter the
linear synthesis by Berlekamp-Massey [M69] and algebraic attacks [CMO03]. Note
that in this model the trade-off defined by the Siegenthaler’s inequality can be
relaxed to another form as shown in Section 3.2.

In order to preclude more recent algebraic attacks, we should also require that
the function has no low degree multiples [CM03]. To get even better security, but
a small trade-off in speed, one can replace some linear feedback shift registers
by nonlinear feedback shift registers or clock controlled linear feedback shift
registers, since the algebraic attacks of [CMO03] do not apply on this model. The



set A for defining the resiliency contains again the subsets of LFSRs for which
the sum of the lengths is smaller than the security parameter for the (fast)
correlation attack.

1.2 Previous Work

The first steps in considering generalizations of classical ¢-resiliency and func-
tions satisfying PC properties has been made in [CCCF00]. The authors extended
the properties of resiliency and propagation characteristics with respect to sub-
spaces. So, our definitions can be seen as natural extensions of the definitions
by Canteaut et al., instead of subspaces, to collections of subspaces.

We also refer to the research on almost resilient functions and functions sat-
isfying almost PC properties [KJS01,K99,DSS01]. There, the concept is different
and is based on probabilities but it is also introduced for relaxing the parameters
and for avoiding (or relaxing) the trade-offs.

1.3 Organization of the Paper

The paper is organized as follows. In Sect. 2, we give some background and
preliminaries. Sect. 3 deals with A-resilient functions. We first investigate the
notions algebraic and numerical degree, nonlinearity and divisibility results for
the Walsh coefficients. Then different constructions are identified amongst the
other we mention the constructions of Siegenthaler, Camion et al., Maiorana-
MacFarland, the Direct sum and the Partial-Spread constructions. Next we es-
tablish a connection between A-resilient functions and A-orthogonal arrays. We
also give two concrete examples of A-resilient functions that have better trade-off
between degree/nonlinearity and resiliency compared with the classical theory.
In Sect. 4 we generalize functions which satisfy SAC and PC of some mono-
tone decreasing sets. Then a relation between them and A-resilient functions
is proven. In this setting we also investigate the question when a function may
possess linear structures. Finally we investigate the algebraic degree and show
a generalization of Kurosawa and Satoh’s construction of PC functions using a
relation between monotone span programs and linear codes.

2 Background

Define the set P = {1,...,n} and denote the power set of P by P(P). The set
I (I' € P(P)) is called monotone increasing if for each set A in I', each set
containing A is also in I'. Similarly, the set A (A C P(P)) is called monotone
decreasing, if for each set B in A each subset of B is also in A. A monotone
increasing set I' can be described efficiently by the set I'~ consisting of the
minimal elements (sets) in I, i.e., the elements in I" for which no proper subset
is also in I'. Similarly, the set AT consists of the maximal elements (sets) in
A, i.e., the elements in A for which no proper superset is also in A. We set



I' = A¢ (A° = P(P) \ 4). Note that I" is monotone increasing if and only if A
is monotone decreasing.

The dual sets A+ and I't to I and A, respectively, are defined by I' =
{A: A° € A} and A+ = {A: A° € T'}. Tt is easy to see that AL is monotone
decreasing and I'* is monotone increasing. For two monotone decreasing sets
Al and AQ define Al (] AQ = {A = A1 @] AQ;A1 € Al,AQ € AQ} Note that
A1 W Ay is again a monotone decreasing set.

As it has been pointed out in [FM02,NNO03], é(x,y) has similar properties as
a metric and sup(x) has similar properties as a norm. Notice that sup(z) and
0(x,y) = sup(x — y) are subsets of P and that P is partially ordered (i.e., x <y
if and only if sup(z) C sup(y)). For a vector u € Fy, let w = u @ 1 (where 1
denotes the all-1 vector), i.e., sup(u) = sup(u)°. The dot product w - z is equal
to the component-wise inner product.

For an element A € A\ {0}, the subspace defined by A is given by Ux = {u :
sup(u) C A}. The dual Uz of the subspace Uy is the subspace consisting of the
elements x such that -y = 0 for all y € Ua. Consequently, Uz is defined by
A de., Ux = Upe = {u: sup(u) C A°}.

Let f(x) = f(x1,...,2,) be a Boolean function on Fy. The Walsh transform
Wy of a Boolean function f(x) plays an important role in our work. It is a
real-valued function, which is defined as follows

Wi(w) = Y (DI,

z€Fp

A function with equally distributed outputs is called a balanced function. It is
clear that for balanced functions W;(0) = 0. A Boolean function f(z) on F3 is
said to be a plateaued function [CaPr03,2Z99b] if its Walsh transform W takes
only three values 0 and £\, where )\ is a positive integer, called the amplitude
of the plateaued function.

The nonlinearity Ny of a Boolean function f, which is defined by the min-
imum distance of the function to the set of affine functions A, ie., Ny =
minge 4 d(f,g), can be expressed using its Walsh transform as follows: Ny =
271 — L maxyepy |Wy(w)].

Other representations of a Boolean function f(x) are the algebraic normal
form (ANF)

f(l‘): @ a'uxua a, € Fa,

u€lFy

and the numerical normal form (NNF)

fl@)=Y" daz", M, eC.

u€Fy

The degree of the ANF is called the algebraic degree or shortly degree (denoted
by deg(f)), the degree of the NNF is called the numerical degree of the Boolean



function. The autocorrelation r¢ of a Boolean function f on 3 is a real-valued
transformation, defined by

re(u)=2"" Z (=1)f @+ @tu)

zEFy

We will also need an important property of the sum of characters (see e.g., [J92,
p. 263]).

Lemma 1. For any subspace V- C F3, we have

Z(_l)w‘x _ {|V| ifwe Vl,‘

0 otherwise.
zeV

3 A-Resilient Functions

3.1 Definition and Relation with the Classical Definition of
Resiliency

In this section we generalize the definitions of resilient and correlation-immune
(CI) functions with respect to a monotone decreasing set A. We assume that the
set A is the maximal possible monotone decreasing set for which the function sat-
isfies the corresponding property. The monotone increasing set I" corresponding
with A is defined by I' = A°.

Definition 1. Let f(z) = f(x1,...,2,) be a Boolean function on FY and A be
a monotone decreasing set. Then f(x) is called A-resilient iff f(z) Dw -z is a
balanced function for all w such that sup(w) € A. Furthermore, f(x) is called
A-CL iff f(z)®w-x is a balanced function for all w such that sup(w) € A\ {0}.

When A = {A : |A] < ¢t} the definitions of A-resilient function and t-resilient
function, (resp. A-CI function and t-CI function) coincide. The property bal-
ancedness of f(z) @ w - x can be translated in terms of Walsh spectrum into
Wy (w) = 0. Denote the set of vectors which have zero Walsh value by ZWy,
then A C {sup(u) : u € ZW;}. Note that ZW N I" is not necessarily empty.

Ezample 1. Consider the sets At and I'™ in the set F3: AT = {{1,2},{3,4}}
and I'™ = {{1,4},{2,4},{1,3},{2,3}}. It is easy to verify that I = A° and
I'n A = (. A function which is A-resilient has zero Walsh coefficients for the
inputs w, where sup(w) € {0, {1}, {2}, {3}, {4}, {1, 2}, {3,4}}, i.e., for the vectors
w € {(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0,0,1), (1,1,0,0), (0,0, 1,1)}.

Next we establish the relationship with the classical definition of resiliency. For
the monotone sets I" and A define the parameters

t1 =min{|A|: Ae "} and ty = max{|A|: A€ AT}.

From the definition of ¢; and the fact that I" is a monotone increasing set, each
subset of size t; — 1 belongs to A, which implies that a A-resilient function is also



(t1 — 1)-resilient. Analogously, a A-CI function is (¢; — 1)-CI. The parameter to
defines the maximum dimension of a subspace in which the A-resilient function
is resilient.

The following theorem shows a necessary and sufficient condition for A-
resilient functions concerning its balancedness properties on affine subspaces.

Theorem 1. A Boolean function f on Fy is A-resilient if and only if f is
balanced when restricted to any of the affine subspaces a + Uy, where A € AL,

Proof. 1t suffices to show that a Boolean function f on F4 is resilient on the
subspace V if and only if f is balanced on the affine subspaces a + V=, for all
a € F3. Assume f is resilient on the subspace V, or equivalently Wy(v) = 0
for all v € V. Now Va € F} using the equation (1) the following equations are
equivalent

D (1) Wi(v) =0

veV
Do) 3 ()@ =0
veV zelFy
Z (1)@ Z(_l)(aﬂ)w + Z (—1)/@ Z(—l)(“”)'” =0
z€a+V+ veV z¢a+V+ veV
VoY (pi o,
z€a+V+

The proof of the converse part of the theorem follows from the equivalence of
the above equations. a

Remark 1. From the definition of resiliency, we deduce that if at most ¢ compo-
nents of a ¢-resilient function are fixed (this defines a subspace V' of dimension
n — t), the output is balanced. The previous theorem generalizes this property
by proving that the function is also balanced on all affine subspaces of V.

Ezxample 2. A possible truth table of the A-resilient function defined by Exam-
ple 1 is given by the vector (0,1,0,1,1,1,0,0,0,0,1,1,1,0,1,0). This function
is exactly 1-resilient. Moreover the function is resilient with respect to two sub-
spaces of dimension 2 whose basis is given by < ej,es > and < e3,eq >, where
e; is the all zero vector except for position ¢. One can check that the conditions
of Theorem 1 are satisfied.

3.2 Algebraic and Numerical Degree
Theorem 2. For a A-resilient function f on F3 all ANF coefficients a, of f

with sup(u) € I't and wt(u) > 1 are equal to zero. If sup(u) € 't and wt(u) = 1
then a, = 1.



Proof. The Siegenthaler’s inequality deg(f) < n —t — 1 for t-resilient functions
on % relies on the observation that the coefficient a,, of the term z* in the ANF
of f satisfies the following relation [XMS88§]

a, =271 = 27w TLN " () mod 2. (1)

w=u

Consider now u with sup(u) € I'*: then sup(u) € A and hence sup(w) C
sup(u) € A for all w < u. By definition of A-resilient functions Wy (w) = 0 for
sup(w) € A. Therefore a,, = 0 for all u such that sup(u) € I'* and wt(u) > 1,
but when sup(u) € I't and wt(u) = 1 we obtain a, = 1. Note that this is
a generalization of the Siegenthaler’s inequality for ¢-resilient functions since if
A={A:|Al <t} wehave 't ={B:|B| >n—t}. O

Remark 2. For a A-CI function f on FJ all coefficients a, from the ANF of f
with sup(u) € I't, wt(u) > 1 and W;(0) # 2" + 2"~ wHW=1 are equal to zero.
If sup(u) € I't, wt(u) = 1 and W;(0) # 2" — 272 then a, = 1. The proof for
A-CI functions is analogous to the previous proof. This result generalizes the
Siegenthaler’s inequality for ¢-CI functions of degree d, i.e., t < n — d.

Remark 8. Notice that because of the factor mod 2 in (1) the coefficient a,, is
1 for u such that sup(u) C [A]* and Wy (u) = £2"~*H®+! The maximum
weight of such u defines the normal algebraic degree of the Boolean function.
Knowledge of the coefficients of the ANF of f enables us to derive bounds (upper
and lower) on the nonlinearity as shown in [ZZ199, Theorem 18 and Theorem
30].

We now generalize the definition of degree to this new setting.

Definition 2. Define a monotone decreasing set Deg = {A: A C sup(u), a, #
0}. We call the set Deg™ the “degree-set” of f.

Remark 4. The “degree-set” of f satisfies the following relation Deg C A+U{A :
A € I't)|A| = 1}. Moreover, the equality does not always hold; it is even possible
that Deg™ N [AL]T = 0.

Example 3. Applying Theorem 2 to the function of Example 1, we obtain that
all coefficients a, for u such that sup(u) € I't are zero, which gives addi-
tional information compared to the Siegenthaler’s inequality. Note that [I't]~ =
{{3,4},{1,2}} and [A*]t = {{2,4},{2,3},{1,4},{1,3}}. Because the ANF of
f is given by x123 @ 7174 ® 1273 © T2w4 ® 71 ® T3, the equality Degt = [AL]F
holds in this example.

Theorem 3. For a A-resilient function f(x) on Ty all coefficients A\, from NNF
of g(x) = f(x) @21 @+ D x,, withsup(u) € 't are equal to zero. Moreover, all
coefficients A, from NNF of g with sup(u) € [A+]T are non-zero.



Proof. In [CGO1] the authors characterize a t-resilient function f by the nu-
merical degree of the function g(x) = f(x) ® z1 & - -+ & x,. Analogous to the
Siegenthaler’s inequality the numerical degree of function g(x) is less than or
equal to n —t — 1. The proof uses the connection between Walsh coefficients,
i.e., Wi(w) = W,(w) and the observation that the coefficient A, of the term z*
in the NNF of ¢ satisfies the following relation

A= 27 (-2) 3 W ). (2)

u=w

Consider now u with sup(u) € I'‘: then sup(w) € A and hence sup(v) C
sup(u) € A for all v < w. By rewriting (2) into

Ay = 2—n(_2)n—wt(ﬁ)—1 Z Wf(v) (3)

v=u

and by using the definition of A-resilient functions, we obtain that A, = 0 for
all u such that sup(u) € I't.

Note that there is one-to-one mapping between the coefficients A\, equal to
zero and the resiliency (see (3)). Namely let f be A-resilient and assume that
there exists a zero coefficient A, from the NNF of g with sup(u) € [AL]T then f
is (AUsup(@))-resilient. As a consequence, the numerical degree of the function
is equal to max{|A|: A € [A+]T}. O

Remark 5. From the previous proof, it is easy to derive that for A-CI functions
f the coefficients ), of the NNF of g are nonzero if sup(u) € I't and also if
sup(u) € [A+]T when W;(0) # —W; ().

3.3 Nonlinearity

In this section we improve the divisibility results on the Walsh coefficients of
resilient functions which leads to an upper bound on the nonlinearity. Let f,
be the (n — wt(v))-variable function formed from f for which z; = 0 if v; = 1.
The divisibility result by Sarkar and Maitra [SMO0O] can be generalized in the
following way:

Theorem 4. Let f be a A-resilient function on Fy. Then the Walsh coefficients
of [ satisfy the following divisibility conditions:

Wi(v) =0 mod 28+ where sup(v) € I' and
t3(v) = min{wt(w) : w < v, sup(w) € I'"}.

Proof. In [CS02] the following relation has been proven:

N Wi u) = 2°1 W (0) = 27 — 290 (). ()

u=v



Choose v € I'", hence for any u 3 v we have u € A thus Wy (u) = 0. Then the
relation (4) reduces to Wy (v) = 2" — 2@H")+ 1yt (f,), which proves the result for
v € I'” because wt(v) = t3(v).

We will not consider the trivial case when I'~ = {P}. We proceed further
by induction on the weight of v. Let v € I' \ I'". Then from relation (4) we
have W (v) = 27 — 20HO)Ht(f,) — > uzw Wy (u). By the hypothesis Wy (u) =0
mod 2+ for any u X v and u € I'. Because t3(v) is increasing for decreasing
weight of v, it follows that t3(u) > t3(v) for all u < v,u € I', which completes
the induction step and the proof. a

Remark 6. Note that t3(v) > t; = t + 1 for v with sup(v) € I', therefore we
have a stronger result comparing to the divisibility of 2!*2 proven in [SM00] for
t-resilient functions, since some of the coeflicients are divisible by a higher power
of 2.

Now we extend the result of Carlet and Sarkar in [CS02], namely Wy(v) = 0
mod 2172 L5

Theorem 5. Let f be a A-resilient function on F3. Then the Walsh coefficients
of [ satisfy the following divisibility conditions:

Wi(v) =0 mod 2@+ =G
where sup(v) € I' and with parameters t3(v) (as defined in Theorem 4) and
t4(v) = max{|A| : A € Deg™, A C sup(u) with u < v, sup(u) € '~ }.

Proof. In [CS02], the following relation has been proven
> W) = 27 IW (0) = 27 = 22O (£, (5)

u=v

Let f be a A-resilient function. If sup(v) € I'~, then for any v 2 v we have
u € A thus Wy(u) = 0. Hence (5) reduces to Wy(v) = 27 — 2w+t (f,).
Applying McEliece’s [MS] theorem for cyclic codes on f,, we obtain that wt(f,) =

n—tg(v)—1

0 mod QL fa(v) J, since t3(v) = wt(v) and t4(v) = deg(f,). This proves the
result for v with sup(v) € I'".

ﬂ,—tg(u)—lJ

Let sup(v) € I'\I'~. By the hypothesis W;(u) =0 mod QtS(u)Hﬂ falw)
for any u 2 v and sup(u) € I'. Since t4(u) is increasing with respect to wt(u) we

n—tg(u)—1
obtain that W;(u) =0 mod 2t3(u)+1+[ sonl for any u 2 v and sup(u) € I
Note that by Remark 4 the degree of f, is less or equal to t4(v). Rewrite (5) in
the form Wy (v) = 2" — 20+ yt(f,) — > uzw Wy(u). To conclude the proof

note that ¢3(u) is decreasing with respect to wt(u) and that t4(v) > deg(f,). O
Remark 7. The parameters t3(v) and t4(v) satisfy an inequality similar to the
Siegenthaler’s inequality.

t3(v) + ta(v) < m.
Thus Theorem 5 improves the result from Theorem 4 when t3(v) and/or t4(v)
are smaller.
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Ezample 4. Consider again the function of Example 1. By definition of I'~ and
Degt (see Example 3), the parameters t3(v) = 2 and t4(v) = 1 for all v € I
Consequently, the Walsh values of the function are divisible by 8.

The divisibility results of the Walsh coefficients for A-resilient functions result
in bounds on the nonlinearity of these functions. Since the proof is similar to
the one of [CS02], we only state the theorem.

Theorem 6. Let f be a A-resilient function on FJ. Denote

Ll = MaXsyp(v)el {t?)(v) +1+ \‘%J } )

Ly = mingyp(v)er {t3 (v)+1+ {%J } and let nlmax(n) be the mazimum

possible nonlinearity for n-variable functions. Then

If nis even and L1 > 5§ — 1, then Ny < on—l gl

Ifn is even and Ly < % — 1, then Ny < 2n~1 —23-1 _ 2k2,

If n is odd and 2"~! — 251 < nlmax(n), then Ny <271 — 201,

If n is odd and 2"~ — 211 > nlmax(n), then Ny is less than or equal to the
highest multiple of 2X2 which is not greater than nlmax(n).

™o o~

3.4 Constructions of A-Resilient Functions

Lemma 2. If f is a A-resilient function on FY, then g(z) = f(z) ® 1 and
h(z) = f(x1 ®cr,...,Tn D cy) where c € FY are A-resilient.

Proof. The theorem follows immediately from the definition of A-resiliency and
the fact that Wy(w) = Wi (w) = —Wy(w) for all w € F3. O

The Constructions of Siegenthaler and Camion et al.

Theorem 7. Let f1 and fo be two A-resilient functions on FY. The function f
on FOHL defined by

f@i, .. @ng1) = Tnpr fi(@n, o, 20) & (LD zpgr) fo(T1, ..., Tn)

is A-resilient, where A = AW P({n + 1}). PFurthermore, if w € I' and for
any w < w it holds that Wy, (u) + Wy, (u) = 0 then f is A-resilient, where
A = AU P(sup(w)).

Proof. Let X = (A1,...,An) and A = (X, App1). The Walsh coefficients of f
satisfy the following relation:

Wr(A) =W (N) + (D) Wp, (V). (6)

If X\ satisfies sup(\) € A, then sup(X) € A. Since f; and fy are A-resilient
functions it follows (from (6)) that Wy (A) = 0.

If \ satisfies sup()\) € A we have the following two cases:
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— sup(A\) € AW P({n + 1}), for which it is already proven that W;(\) = 0.
— sup(A) € P(sup(w)) for some w € I'. We have now that \,;; = 0 and thus
We(A) = W (A) + Wy, (X) =0 since A < w.

O

Remark 8. We extend Siegenthaler’s result [S84] that states “if f; and fo are ¢-
resilient then f is t-resilient” by showing that if f; and fo are A-resilient, then f
is A-resilient. Similarly, we generalize the result of Camion et al. [CCCS92] which
states “if also for all v such that wt(v) =t + 1 holds that Wy, (v) + Wy, (v) = 0,
fis (t + 1)-resilient”, because we show that if f; and fo are A-resilient then f
is A-resilient.

The following construction can be seen as a special case of the previous one.

Lemma 3. Let f1 be a A-resilient function on F3. Then the functions

fl@, o wnp1) = fi(zr, . 20) © 0004
9@,y Togr) = fi(@r, %) © g1 (fr(@e, 0 20) © fi(z1 © 1,00 2, © 1))

are AW P({n + 1})-resilient functions on Fy™" and the function
h(z1,. s xns1) = fi(21,. 0, 20) @ Tyt

is a (AW P({n+1}))UP({1,...,n})-resilient function on FyT*,
Proof. First rewrite the functions in the form

f@e, . mng1) = filme, o 20) (T © 1) @ fr(Tn, -0, Tn) T
g1, Tne1) =[x, ) (@1 D)@ fr(z1 B L, 2y @ Dy
h(.’IJh. . 7$n+1) = fl(.fl,‘l, e ,xn)(xn+1 @ 1) @ (f1<.'1,‘1,. . .,J}n) @ 1>$n+1~

Now applying Theorems 2 and 7 the results follow. ad

The following corollary can be derived from Theorem 3.

Corollary 1. Let f(z) = w -z be a linear function on FY and wt(w) = d, i.e.,
without lost of generality we can suppose that f(x) = x1 ® ... D xq. Then f(x)
is (UL, P({1,...,n}\ {i}))-resilient function.

Proof. Note that A = (U%,P({1,...,n} \ {i})) could be rewritten as A =
P{d+1,...,n})w{A: AC{1,...,d}}. It is easy to see now that {1,...,d} ¢ A
and hence f is (d — 1)-resilient. Also in accordance with Theorem 2 we have
{i}eIt fori=1,...,d. O
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Direct Sum and Secondary Constructions.

Theorem 8. Let f; be a Aq-resilient function on F5' and fa be a Ag-resilient
function on F5? then the direct sum

foByt x 2 (2,y) = flz,y) = fi(z) @ fa(y)

is a (A = AyWALWS)-resilient function on F3 "2 where S = {0, {1}, -, {n1},
{nl +1}7 7{n2+n1}}'

Proof. For A = (A1, \2), where A; € F5* and Ao € F5?, the Walsh coefficient
equals to Wr(A1, A2) = Wy, (A1) Wy, (A2). For each A = (A1, A2) with sup(A) € A,
at least one of \; satisfies sup(\;) € A;, since all elements of S have weight
maximum one. a

Remark 9. The classical theorem says that for the direct sum of a t;-resilient
function and ts-resilient function yields a (¢ + t2 + 1)-resilient function [ZZ97],
which is reflected here by the set A.

The following lemma shows how to construct new A’-resilient functions from
a given A-resilient function where A’ C A. This theorem is an extension of
Theorem 3 from [C97a).

Lemma 4. Consider a Boolean function f on FY which is A-resilient. If there
exists a subspace W and a subset A" C A such that Us "W =0 for all A e A’
and the restriction of f to W is equal to the constant c, then the function f’
obtained from f by replacing the constant ¢ by the constant c® 1 for all elements
of W+ is Al-resilient.

Proof. Recall that by equation (1) for v € Uy we have ZweWL(—l)H”‘I = 0.
Thus the Walsh value of v € U4 can be computed as follows:

Wiw) = 3 (-p/@rees

zEFy

- 2: @4)ﬂm+vz+ E: vqjﬂ@+vz

zeWL g WL

= Y (s

zgWL

= Y (/e

zgW L

Z (71)f’(z)+v~:r+ Z (71)f'(x)+v-z

zeWL zgW L
= Wf/ (’U)

O

The following construction is a generalization of the change of basis construc-
tion.
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Lemma 5. Let A be a set containing less than n elements. Then any Boolean
function f on Fy which has at least n linearly independent vectors w € Fy such
that Wg(w) = 0 can be transformed into a A-resilient function.

Proof. For a nonsingular matrix D, it holds that g(z) = f(D~'z) if and only
if Wy(w) = Wy(Dw). Taking n linearly independent vectors which have zero
Walsh value as rows of D, leads to the construction of a A-resilient function. 0O

The Maiorana-MacFarland and Partial-Spread Constructions.

Theorem 9. Let ¢ be a function from Fy™" into F% and let g be an arbitrary
Boolean function on F3~", then the function f defined by

Fy x Fy™" — Fy i (z,y) = f(z,y) =z ¢(y) @ 9(y)

is A-resilient with A = {A : Jy € Fy™", such that sup(¢(y)) C A}¢. Moreover,
if ¢ is injective (resp. takes each value exactly 2 times), the function is plateaued
with amplitude 2" (resp. 2"+1).

Proof. Calculate the Walsh spectrum of the function (see [C97a])

Wi(uwo)= > (-1)7e@rsbteutye —gr 3" (st
z€Fy, yeFy ™" yEP—1(u)

where u € F5 and v € F;™". As a consequence, Wy(u,v) = 0 if there exists no y
such that ¢(y) = u. O

Remark 10. This construction always leads to P({r + 1,...,n}) C A because
¢ is a mapping from F5~" into Fj. It is clear that the higher the weight of the
elements in the image of ¢ are, the higher the values ¢; and |A| are.

In [C97a], Carlet showed how to construct resilient functions using the construc-
tion of bent functions in the class PS,, (a subclass of the Partial-Spreads class
introduced in [D74]). We generalize this construction for A-resilient functions.

In this construction, the field F4 is identified with the field Fon. The dot
product via this identification is equal to Trp,, (zy), where Trp,, is the trace
map from Fan to Fy. The notion of resiliency depends on the choice of the dot
product on Fan. For an even characteristic, there exists a dual basis {aq, ..., a,}
such that Trg,, (zy) = Y i, x;y; = « - y. Recall that for each linear mapping
¢ : Fon — Fom there exists a mapping ¢* : Fom — Fan (called the adjoint) such
that for every z € Fom,y € Fan one has that Trp,.,, (xd(y)) = Trp,. (yo*(x)) or
in other words = - ¢(y) = y - ¢*(x).

Theorem 10. Let g be a Boolean function on Fom, ¢ a linear mapping from
Fon into Fom and a € Fam such that a + ¢(y) # 0,Vy € Fan. Then the Boolean
function f which is defined by

Fom X Fan — Fy : (2,y) = f(z,y) =g<a+x¢(y)> +b-y,
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with b € Fon 1s A-resilient with
A={A:3z € Fom, such that sup(¢™(z)+b) C A}°.

Proof. We refer to [C97a] for the computation of the Walsh transform for f in
('U/7 U) c FQm X anl

Wy (u,v)

Z (_1)9(2)+(b+v)~y+2(a+¢(y))‘u
z€Fgm , y€Fgn
= Y (1) G )y
z€Fom , y€Fon

= T (c1EE G (g ()

z€Fom yEFon

_9n Z (71)g(z)+u~(a2).

zE€Fom
¢* (uz)+v+b=0

If (u,v) € A, then the set {z € Fam : ¢*(uz) +v+b = 0} is empty. Consequently
W (u,v) is equal to 0 for all (u,v) € A. O

Remark 11. Note that P({1,---,m}) C A. The higher the weight of the ele-
ments of D is, the higher t5 (corresponding to the order of resiliency) and |4|
are.

3.5 Relations with Codes and Orthogonal Arrays

The following construction shows a relation between A-resilient functions and
linear [n, k, d]-codes, which is a generalization of a result from [WD97].

Lemma 6. Let G be a generator matriz of an [n,k,d]-code C and let f be a
balanced function on Fy. Define A, = P({1,...,n}\sup(u))W{A: A Csup(u)}
forw € C. Then f(xGT) is a (Nyec Ay)-resilient function.

Proof. Denote F : F3 — F% as the function x — xGT. We use the relation,
derived in [DGV94,GS02], between the Walsh coefficients of fo F and the Walsh
coefficients of f and [,, o F', where [,, o F' denotes the linear combination of the
components of F' defined by w:

Wior(v) =27 Y Wi(w)Wi,or(v), Vv eTFy. (7)

w G]F’;

Note that the function [, 0 F = w-2GT = wG-z is linear and thus by Corollary 1
ly o Fis a Ay-resilient function, where v = wG is a codeword of C. Now (7)
concludes the proof. a

Remark 12. Because {A : |A] < d — 1} C Nuec Ay, Lemma 6, generalizes
the property that the function f(xG7T) is at least (d — 1)-resilient as proven in
[WD97].
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Based on a connection between k-CI functions and (M, n, 2, k) orthogonal arrays
we show an analogous relation between A-CI functions, (M, n, 2, A)-orthogonal
arrays. We first introduce a generalization of the definition of orthogonal array
in the new metric:

Definition 3. An orthogonal (M,n,q,A) array is an M x n matriz V with
entries from a set of q elements, strength A which is a decreasing monotone set
and index . Any set A € At of columns of V contains all q'A! possible row
vectors exactly p = Mq~ 14l times.

For A = {A : |A| < k}, this definition coincides with the definition of (M, n, g, k)
orthogonal array. As shown in [CCCS92], the extended truth table of a k-CI
function f on F% forms an (M,n,2 k) orthogonal array, where the extended
truth table is defined as the wt(f) xn table with rows determined by the elements
x for which f(z) = 1. A natural generalization in the new metric is given in the
next theorem.

Theorem 11. A Boolean function f on F§ is A-CI if and only if its extended
truth table is an orthogonal (M,n,2, A) array.

3.6 Example of Modified Combination Generator

We give some concrete examples of the modified combination generator as ex-
plained in the introduction.

1. Suppose the generator consists of 5 LFSRs of lengths 61, 63, 21, 31, and 33
respectively. Let the security parameter for the (fast) correlation attack be
equal to 60. Consequently in order to be secure against the (fast) correlation
attack, we need a combination function which is resilient with respect to the
3rd, 4th 5th and also the 37444 37415t LFSR, i.e. a A resilient function
with A = {{3,4},{3,5}}. The function f(x1,...,25) = Zox324T5PT12223PB
T1T4 D T3T5 D 1 D o satisfies this property. Remark that this function
has degree 4 and nonlinearity 10. High degree and high nonlinearity are
important properties for resisting other attacks like for instance Berlekamp-
Massey attack [M69], algebraic attack [CMO03] and best affine approximation
attack [DXS91].

2. The function f(x1,...,25) = x1T223 B 124 D 225 @ w3 is a A-resilient
function with A = {{1,2},{1,4},{1,5},{2,4},{2,5}, {4, 5}}. Moreover, the
function has degree 3 and maximum nonlinearity 12. The LFSRs of the
corresponding modified combination generator with security parameter 60
should have for instance lengths 21, 23, 61, 25, and 27 respectively.

When we consider the same models of combination generators in the classical
theory, the combination function should be in both cases 2-resilient in order
to resist (fast) correlation attacks. Following Siegenthaler’s inequality, the cor-
responding function has degree less than or equal to 2. Note that now using
A-resilient functions the choice of the lengths of the LFSRs may not be uniform,
which is the case when we use t-resilient functions. This also allows to relax the
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requirements to the rest of the parameters like nonlinearity, algebraic degree, etc.
Moreover, by Carlet-Sarkar’s result on the divisibility of the Walsh coefficients,
the maximum Walsh value is greater or equal than 16, resulting in a nonlinearity
less than or equal to 8.

These examples are just illustrative and need to be scaled up in order to be
used in reality. However, it already shows the advantages of considering resiliency
with respect to specified monotone sets since the strong trade-offs between re-
siliency and degree, resiliency and nonlinearity can be avoided.

4 Functions Satisfying Propagation Characteristics with
Respect to A-sets

Analogously to the definitions of A-resilient and A-correlation immune (CI)
function, we define functions which satisfy the propagation characteristic of de-
gree A; and of order Ay (PC(A;) of order As), the propagation characteristic of
degree A; (PC(A4)), and the strict avalanche criteria of order Ay (SAC(Az)),
where A, Ay, Ay are monotone decreasing sets.

Definition 4. For two monotone decreasing sets A1 and As the function f
satisfies PC(A;1) of order A, iff for every w, such that sup(w) € A \ {0}
the function f(x) @ f(z ® w) is Ay-CL If Ay = 0, the function f is said to be
PC(A4y). If Ay = {A:|A| =1}, the function f satisfies SAC(Az).

Again if A; = {A: |A| < ¢} and Ay = {B : |B| < k} the definitions of PC(A;)
function of order Ay and PC(¥) function of order k, PC(A;) function and PC(¢)
function; SAC(Az) function and SAC(k) function coincide. The property bal-
ancedness of f(z) ® f(z @ w) implies for the autocorrelation r¢(w) = 0.

4.1 A Relation with A-Resilient Functions

We generalize the well-known relation p+t < n—1 between the order of resiliency
t and the degree of propagation p of a Boolean function on Fy as proven in
[2Z00,ChPa02].

Theorem 12. For a A;-resilient function on F§ which satisfies PC of degree
Ay holds that Ay NI =0 and Ay N 5 = 0.

Proof. The Wiener-Khintchine theorem establishes a relation between the squared
Walsh and autocorrelation coefficients of a function in Fj [PVV+91]:

rp(w) =27 3 W)X (~1)".
z€Fy

Based on it, the following relation, with respect to any linear subspace V', was
derived in [CCCFO1]:

S rs(u) = ﬁ S W), (8)

zeVL
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Let A be an arbitrary element of Ay \ {0}. Note that the coefficient 7;(0) is equal
to 2™. Now applying the definition of PC of degree Ay we obtain

S rp(w) = rp(0) =27 = W}' S Wy(@)?.

u€Ua zeUx

Thus
U127 = ) We(@)’ = ) Wea)

erj €U e

As a consequence A° ¢ A; or also A ¢ I'f* because otherwise the right side of the
equation above would be zero. This holds for all A € Ay and thus A, N I =
(), which is equivalent to Ay C Af. This in turn is equivalent to I's- C I,
equivalent to A; C Ay and finally equivalent to A; N I~ = 0. a

4.2 Linear Structures

Next we derive a condition for the existence of linear structures for a A;-resilient
function which satisfies PC(As). A linear structure of a function is an element
a € FY for which f(z) ® f(x @ a) is a constant. Linear structures should be
avoided, for example, in order to resist differential attacks [B93].

Theorem 13. Let f be a A;-resilient function on FY that satisfies PC(Az). If
there exists a non-empty element A € AJ N [AL]*, then all b with sup(b) = B,
B eIy and A C B are linear structures of f.

Proof. Let A € Af N[A{]*. From (8) for V = Ua and the assumption, we
deduce that there exists z, such that sup(z) = A° € I'] and Wy(x)? = 2"|Ux|
since Wy(y) =0Vy € Uz, y # = (sup(y) € A1). Next we apply (8) for V = Ug,
where B € Iy and A C B:

2

Wi(x)?.
U] d

r7(0) +7p(b) =

zeUg

Because U é cU j, there are two possibilities:

1. sup(x) C Uz, which leads to r;(b) = 2™
2. sup(z) ¢ Ui, which leads to r¢(b) = —2".

The fact that |rs(b)| = 2" implies that b is linear structure of f. O

The following theorem gives a condition on the existence of linear structures for
functions which satisfy PC(A). The proof is similar to the one of Theorem 13.

Theorem 14. Let f be a Boolean function on FY that satisfies PC(A). If there
exists an element x € FY\ {0} such that sup(z) € At for A € A* which satisfies

|U

Wy(z) = 2" A , then all b with sup(b) = B and B € I'", A C B are linear
structures of f.
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4.3 Algebraic Degree

First note that the functions satisfying PC(P(P)) are the perfect nonlinear
functions (bent functions of characteristic two). From the definition of resiliency,
we deduce that for a Boolean function on F§ which satisfies PC(A;) of order
Ag, the functions f(x) @ f(z @ w) are Ag-resilient for all w € A; \ {0}. By
Theorem 1, the functions f(z) ® f(z & w) are balanced for all w € Ay \ {0} on
any of the subspaces a + Ua, where A € A7,

The following theorem generalizes the bound on the degree d of a function
on F% satisfying the SAC(k) property [PVV+91], namely d <n —k — 1.

Theorem 15. If f satisfies SAC of order A then all coefficients a,, from the
ANF of f with sup(u) € I'* are equal to zero. Moreover, for all sets A € I'* :
|A| > 1.

Proof. Assume that a, = 1 for u such that sup(u) € I'*t or equivalently sup () €
A. The function fz will have maximum degree wt(u) which contradicts the
PC(1) property. Note that a function of maximum degree has a non-zero auto-
correlation spectrum [PVV+491].

The condition |A| > 1 for all A € I'" comes from the fact that a linear
function does not satisfy PC(1). O

Corollary 2. For functions satisfying PC(A1) of order Ay, where V A € T3~ :
|A| > 1, the ANF coefficients a,, of f with sup(u) € I's- are equal to zero.

4.4 Constructions

The set of functions which satisfy PC(A;) of order Ay are globally invariant
under the complementation of any of its coordinates, composition with any per-
mutation on {1,...,n} which keeps A;, Ay invariant, and the addition of any
affine function. We first generalize the change of basis construction.

Theorem 16. Let A be a set containing less than n elements. Then any Boolean
function f on FY which has at least n linearly independent vectors w such that
rr(w) = 0 can be transformed into a function that satisfies the PC criterion of
degree A.

In [NNO03], many coding theoretic notions are generalized in this new setting. A
generalization of the linear [n, k, d]-code is called an error-set correcting code. We
slightly change the original notation here and call an A-code C a code of length
n and for which codewords z satisfy sup(z) € I', where I' = A€. The generator
matrix of the code C can be defined by using the matrix M of a Monotone Span
Program.

Definition 5. [KW93] A Monotone Span Program (MSP) M is defined by the
quadruple (F, M, e,v), where F is a finite field, M is a matriz (with m rows and
d < m columns) over F, ¢ : {1,...,m} — {1,...,n} is a surjective functions
and € = (1,0,...,0) is a fired non-zero vector, called target vector. The size of
M is the number of rows and is denoted as size(M).
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The properties that matrix M (from the MSP M) posses are in one-to-one
correspondence with a monotone increasing set I'. In this case it is said that M
computes I

Definition 6. [NN03] An MSP is called A-non-redundant (denoted by A-rMSP)
when v € ker(MT) <= v #0 and sup(v) € I' (I' = A°).

It is shown in [NNO3] how the generator matrix of an A-code can be deduced
from the results in [V97].

Theorem 17. Let M be a A-rMSP computing I' and let M+ be the matriz of
the dual M=+ MSP computing I'". Then a generator matriz G of an A-code is
given by G = (M+)T.

The best known and general construction for PC(¢) functions of order k is due
to Kurosawa and Satoh [KS97]. This construction uses linear codes. It was later
generalized by Carlet [C97b] who also takes nonlinear codes into account. We
present a further generalization.

Theorem 18. Let g be an arbitrary function on F§ and Q) be an s X t-matriz.
Define Ay on {1,...,t} and Ay on {t+1,...,t + s}. Let My be a matriz in
Ay-rMSP computing I'y and Mi- be the matriz in A{-rMSP computing I'f-. Let
My be a matriz in Ay-rMSP computing I'y and Ms- be the matriz in Ay -rMSP
computing I's-. Let G1 = (Mi-)T be the generator matriz of a Ay-code and let
Gy = (M35)T be the generator matriz of a As-code. Define the function f on
F5t* as follows:

f(xla”'axsvyla"'ayt) = [‘rlv"'vxs]Q[ylv‘“»yt]TGag(xlv"wms)'

Set Q = GY G then the function f satisfies PC(Ay) of order Ay, where Ay =
Af‘ (] Aé‘ and Ak = Al H‘JAQ.

Proof. Analogous to the proof in [KS97] it is easy to see that if the matrix @
satisfies the following two conditions then f satisfies PC(Ay) of order Ay:

— sup(Qa) ¢ Ay, for any a € F, a # 0 and sup(a) € Ay,
— sup(bQ) ¢ Ay for any b € F5, b # 0 and sup(b) € Ay.

Next we verify that Q = G3 G satisfies both conditions. Indeed by Definition 6
Gia = (Mi-)Ta # 0 if sup(a) € Af and thus by Theorem 17 sup(Qa) =
sup(G¥(Gia)) ¢ A;. Analogous bGE = bMjs- # 0 if sup(b) € Ay and thus
sup(bQ) = sup((bG1)G1) ¢ Az. These checks conclude the proof. O

Remark 13. Let Ap = {A:|A| <k} and A, = {B : |B| < {}, then A} = {B:
|B| <n—1-¢}. So, it is easy to verify that A, C A7 (in this case) corresponds
tok+/¢<n-1.

Constructions of functions satisfying propagation characteristics that are not
based on codes have been proposed by Gouget [G04]. We now give two examples
of them.
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Theorem 19. Let f be a Boolean function on Fg"“ defined by

f:Fy xFy xFy — Fy:

where g is an arbitrary function on FY. If g(1) = 1, then f is balanced. The
function f satisfies the properties:

1. PC(A) with A= {{1,--- ,2n}, Ay,..., A}, where A; = {1,...,2n+1}\{i}.
2. PC(A1) of order As with the property that A W Ay = A.

Proof. We refer to [G04] for the proof of the balancedness of f. In order to proof
the first part of the theorem, we compute the derivative of f with respect to
(a,b,c) € FY x FY x Fa:

Da,b,cf(w7yvz):Z(g(w)@g(w@a))@c(g(w@a)@ylEB@yn@bl@@bn)
Gzby B Dby) Da-y®b-zda-b.

It is easy to check that if sup(a, b, c) C A, the derivative Dy . f(2,y, z) becomes
a linear function in the y-variables. This also means that Dy f(z,y,2) is a
balanced function.

For the second part of the proof, let A € Ay and B € As such that AUB € A.
Then the derivative with respect to B of the function obtained by fixing the
variables corresponding to A is again a function which will linearly depend on
Y. O

The next construction from [G04] is a generalization of the construction of Honda
et al. and can reach a high degree [HSIK97].

Theorem 20. Let f be a Boolean function on F5 defined by
fiFy xF 5t xFy — Fy:
(z,y,2) = fi(z) @ fa(y) ® f3(2) Dz - d(y) B 2(21 B -+ S 2p),

where f1, fa, f3 are functions on FS,FS_S_l and Fy respectively. The function ¢
is a mapping from T35~ into F§. Then f satisfies the propagation criterion of
order

A={{0.01 02 st w A w {0, {n}} fu{aiw {0, (1} },

where Ay and Ag are defined on {1,...,s} and {s+1,...,n — 1} respectively,
if and only if ¢ satisfies the properties:

1. the function x - ¢(y) is balanced if and only if sup(x) € Ay;
2. the function ¢(y) ® ¢(y ® x) is different from the all-zero and the all-one
function for all x such that sup(z) € As.
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Proof. Let compute the derivative of f with respect to the triple (a,b,c) €
Fy x Fy—s~1 x Fy:

Diape)f(x,y,2) = Dafi(z) ® Dpfa(y) ® Defs(z) @z (d(y) © oy © b)) @
a-plydb)@z(a1 @ - Das) Pe(x1 D - BT Dar B+ B as).

Note first that when wt(a) = 1 the derivative is a linear function in z, hence
{13, {2},.. . {s}}wP({s+1,....n=1})w{0,{n}} € A.

On the other hand, when wt(a) = 0 and sup(b) € A, the second con-
dition ensures that the derivative is balanced independently of wt(c). Thus
Asw{0,{n}} € A,. Therefore combining both observations (and taking into ac-

count the monotone decreasing property) we derive that {{V), {1},1{2},..., {5}}@
As {@,{n}}} € A. Last notice that when wt(b) = 0 and sup(a) € A; the

first condition ensures that the derivative is balanced. So, we have also that
A1 9 {0,{n}} € A which completes the proof. O

5 Conclusions and Open Problems

In this paper we have shown that many classical notions, constructions and
results from the theory of cryptographic properties of Boolean functions can
be extended to a more general setting: t-resiliency and PC properties can be
represented as A-resiliency or PC properties with respect to A, where A = {A :
|A] < t}. Instead of working with numbers, we work with sets, which give us
more flexibility in satisfying incompatible requirements as shown in Sect. 3.6. We
have also defined analogous notions for the algebraic and the numerical degree
of a Boolean function. Then we have proven equivalent results to most of the
known inequalities in this new setting. It is much easier to adjust the parameters
of a function, when one works with sets compared to numbers. When a trade-off
needs to be achieved between parameters of a function, we can easily reduce a set
(e.g., A) with some of its elements in order to satisfy the condition, comparing
to the previous case where we need to reduce the number (e.g., t to t — 1 for
example) discarding all sets of a fixed cardinality (e.g., with cardinality ).

This approach gives more insight and better understanding in the behaviour
of a Boolean function. More precisely, it allows us to determine which structural
properties contributes to different known results like for instance the Siegen-
thaler’s inequality. Future work will investigate if these insights lead to new
constructions of ¢-resilient functions (functions satisfying PC properties) by go-
ing over special monotone set resilient function (PC functions).

We leave as an open question whether such functions exist for any A. In the
theory of Secret Sharing Schemes (SSS), a scheme (or equivalently a monotone
increasing set) is called ideal if each player has a share of minimal size. But it
is known that for “many” monotone sets there is no ideal scheme, i.e., there is
no finite field in which the SSS is ideal. For Boolean functions we consider only
this ideal case, since every coordinate (input) in the function is considered as
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a player’s share. Thus in the binary field there are monotone sets I" for which
there does not exist a corresponding MSP (equivalently SSS). We do not know a
relation between MSPs and A-resilient functions, but it seems likely that there
exist sets A for which there does not exist a corresponding A-resilient function.
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