
Attacks on Bresson-Chevassut-Essiari-Pointcheval’s Group
Key Agreement Scheme for Low-Power Mobile Devices ?

Junghyun Nam, Seungjoo Kim, and Dongho Won

School of Information and Communication Engineering,
Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon-si,

Gyeonggi-do 440-746, Korea
{jhnam, skim}@ece.skku.ac.kr, dhwon@dosan.skku.ac.kr

Abstract. In this paper, we show that Bresson-Chevassut-Essiari-Pointcheval’s group key
agreement scheme does not meet the main security properties: implicit key authentication,
forward secrecy, and known key security. Also, we propose an improved version which fixes
the security flaws found in the scheme.

Keywords: Group key agreement, key authentication, forward secrecy, known key security.

1 Introduction

When one considers the broad range of wirelessly connected mobile devices used today, it
is clear that integrating such network-enabled devices into secure communication systems
is of essential importance. Recently, Bresson et al. [1] proposed a very efficient group key
agreement scheme well suited for a wireless network environment. The scheme consists of
three protocols: the setup protocol GKE.Setup, the remove protocol GKE.Remove, and the
join protocol GKE.Join. The main GKE.Setup protocol allows a set of mobile users (also called
clients) and a wireless gateway (also called server) to agree on a session key. The other
protocols of the scheme aim to efficiently handle dynamic membership changes of clients in
one wireless domain. In this paper, we demonstrate the insecurity of the GKE.Setup protocol
by presenting some active attacks against implicit key authentication, forward secrecy, and
known key security. Furthermore, we modify the scheme so that all these security goals can
be attained.

2 Brief Review of Bresson et al.’s Scheme

Arithmetic is in a finite cyclic group G = 〈g〉 of `-bit prime order q, where ` is a security
parameter. Both g and q are publicly known. There are three hash functions H : {0, 1}∗ →
{0, 1}`, H0 : {0, 1}∗ → {0, 1}`0 , where `0 needs not be equal to `, and H1 : {0, 1}`1 ×G →
{0, 1}`0 , where `1 is the maximal bit-length of a counter c used in the scheme.

2.1 Long-Term Keys

Let C denote the set of all potential clients, and let S denote the server. Before the protocol
is run for the first time, an initialization phase occurs during which:
? A revised version of this paper will appear in IEEE Communications Letters, under the title “A Weakness

in the Bresson-Chevassut-Essiari-Pointcheval’s Group Key Agreement Scheme for Low-Power Mobile
Devices”. This work was supported by Korea Research Foundation Grant (KRF-2004-003-D00392).



2 Junghyun Nam, Seungjoo Kim, and Dongho Won

1. Each client Ui ∈ C generates a pair of signing private/public keys (SKi, PKi) by running
the key generation algorithm of a signature scheme.

2. The server S sets its private/public keys to be (SKS , PKS) = (x, y), where x ∈R Z∗q
and y = gx.

2.2 The GKE.Setup Protocol

Let Gc ⊆ C be a set of clients who wish to share a session key with the server S. Let Ic

be the set of indices of the clients in Gc. The protocol executes in two rounds. In the first
round, S collects contributions from individual clients and then, in the second round, it
sends the group keying material to the clients. The actual protocol proceeds as follows:

1. Each client Ui ∈ Gc chooses a random xi ∈ Z∗q and computes

yi = gxi

αi = yxi .

Client Ui then signs yi to obtain signature σi and sends (yi, σi) to the server S.
2. For all i ∈ Ic, the server S verifies the signature σi and computes

αi = yx
i .

S then initializes the counter c to 0, and computes the shared secret value

K = H0(c‖{αi}i∈Ic)

and for all i ∈ Ic,
Ki = K ⊕H1(c‖αi).

The server S sends to each client Ui the values (c,Ki).
3. Upon receiving c and Ki, client Ui recovers the shared secret value K as

K = Ki ⊕H1(c‖αi).

Finally, both the server and the clients compute the same session key as:

sk = H(K‖Gc‖S).

3 Security Analysis

3.1 Implicit Key Authentication

The fundamental security requirement for a group key agreement protocol to achieve is
the property referred to as implicit key authentication. In protocols providing implicit key
authentication, each participant is assured that no one other than the intended parties can
learn the value of the session key.

To show that the GKE.Setup protocol does not provide implicit key authentication,
we consider two runs of the protocol which are executed in an either concurrent or non-
concurrent manner. We denote by Gc and G′c the sets of clients with respect to the first and
second runs, respectively. Assume that the adversary A participates as a client in the first



Title Suppressed Due to Excessive Length 3

run of the protocol (i.e., A ∈ Gc), but is intended to be excluded from the second run (i.e.,
A /∈ G′c ∪ {S}). Also assume that two client sets Gc and G′c are non-disjoint. The goal of
adversary A is to share the same key with the participants of the second run. To do so,
the adversary A gathers some information during the first run and uses that information
to impersonate some client in the second run. The detailed attack scenario is as follows:

1. In the first run of the protocol, the adversary A computes the shared secret value K
participating as a client. A then obtains H1(c‖αi) for all i ∈ Ic by computing

H1(c‖αi) = K ⊕K ⊕H1(c‖αi) = K ⊕Ki,

which can be done without knowing αi. The adversary A records H1(c‖αi) and (yi, σi)
for all i ∈ Ic.

2. In the first round of the second run, the adversary A (pretending to be Uj for some
Uj ∈ Gc∩G′c) replaces the message (y′j , σ

′
j) sent by Uj with (yj , σj) stored in the previous

step of this scenario. Because the server S thinks that (yj , σj) is from Uj , it will compute
the shared secret value K ′ as per protocol specification and will send to client Uj the
values c = 0 and

K ′
j = K ′ ⊕H1(c‖α′j),

with α′j computed as
α′j = yx

j .

3. In the second round of the second run, the adversary A records K ′
j which is transmitted

through an open channel. Now, from the values K ′
j and H1(c‖αj) (obtained in the first

step of this scenario), the adversary A can recover the shared secret value K ′ as follows:

K ′ = K ′ ⊕H1(c‖α′j)⊕H1(c‖αj) = K ′
j ⊕H1(c‖αj).

This equation holds, since α′j = αj and thus

H1(c‖α′j) = H1(c‖αj).

Finally, the adversary A can share the same session key sk′ = H(K ′‖G′c‖S) with all the
participants of the second run except Uj .

Consequently, implicit key authentication is not guaranteed in the protocol, as soon as
the adversary participates as a client in a protocol execution and is intended to be excluded
from another protocol execution with a non-disjoint set of clients.

3.2 Forward Secrecy

The perfect forward secrecy property says that earlier session keys are protected against loss
of some underlying information at the present time. As noted by the authors themselves,
the GKE.Setup protocol does not provide perfect forward secrecy; as soon as the long-term
private key x of the server is leaked, all the past session keys can be recovered since every
αi can easily be computed from yi and x.

However, it is claimed by the authors that the protocol achieves partial forward secrecy;
disclosure of the private signing keys of clients does not reveal anything about previous
session keys. In support of this claim, they argue that the long-term keys of the clients are



4 Junghyun Nam, Seungjoo Kim, and Dongho Won

used for implicit authentication only, and not for hiding the session key. But, this claim
is flawed. The attack below shows that if some client’s signing key is ever revealed, then
any previous session key can be computed by an active adversary. As a simple scenario,
we consider two runs of the protocol with the first one being completed before the second
one begins. Similarly as before, we denote the client groups with respect to the first and
second runs of the protocol by Gc and G′c respectively. Assume that the adversary A wants
to recover the session key established in the first run of the protocol in which she has not
participated. The attack is launched as follows:

1. In the first run of the protocol, the adversary A eavesdrops on the session recording the
transmitted messages (yi, σi) and

Ki = K ⊕H1(c‖αi)

for some i ∈ Ic.
2. Now, the adversary A participates as a client in the second run of the protocol. Because

we consider forward secrecy, we will assume that the private signing key SKj of some
other client Uj ∈ G′c is exposed to A.

3. In the first round of the second run, the adversary A proceeds much like a normal client
by sending the message (y′A, σ′A) to the server. In the same time period, the adversary
A (pretending to be the client Uj) replaces the message (y′j , σ

′
j) sent by Uj with

(yi, σ
′′
j ),

where σ′′j is the signature of yi (stored in the first step) under the private key SKj . Note
that the adversary A can sign any message of its choice on behalf of Uj .

4. Because the verification of signature σ′′j will succeed, the server S will compute α′j as

α′j = yx
i

and the shared secret value K ′ as per protocol specification. Then S will send to client
Uj the values c = 0 and

K ′
j = K ′ ⊕H1(c‖α′j).

5. Now, in the second round of the second run, the adversary A should be able to compute
the shared secret value K ′ since it participates as a group member. From K ′ and K ′

j ,
the adversary A can recover H1(c‖α′j) as follows:

H1(c‖α′j) = K ′ ⊕K ′ ⊕H1(c‖α′j) = K ′ ⊕K ′
j .

6. With this information H1(c‖α′j), the adversary A can recover the shared secret value K
of the first run of the protocol as follows:

K = K ⊕H1(c‖αi)⊕H1(c‖α′j) = Ki ⊕H1(c‖α′j),

since αi = α′j and thus H1(c‖αi) = H1(c‖α′j). Finally, A can compute the session key
sk = H(K‖Gc‖S).

Therefore, once an underlying key is exposed, there is nothing to prevent an adversary
with the key from accessing privileged information communicated in earlier sessions.



Title Suppressed Due to Excessive Length 5

3.3 Known Key Security

A protocol is said to provide known key security if compromising of session keys does not
allow a passive adversary to compromise keys of other sessions, nor an active adversary
to impersonate one of the protocol parties. In this subsection, we will extend our security
analysis of the protocol by presenting an active known key attack. We will assume two
sessions of the protocol with the same participants. Then the following attack is possible:

1. In the first run of the protocol, the adversary A eavesdrops on the session recording the
transmitted messages (yi, σi) and (c,Ki) for all i ∈ Ic. Since we consider known key
attack, we will assume that the session key K of this run is revealed to A.

2. In the first round of the second run, the adversary A replaces the message (y′i, σ
′
i) sent

by each Ui with (yi, σi) obtained in the previous step.
3. Since all the yi’s are replayed, the server S will compute the same session key as com-

puted in the first run of the protocol.

Therefore, at the end of this scenario, the server S will share with the adversary A the
key that has been shared by all participants of the first session of the protocol.

4 Improvement

To overcome the attacks and to provide perfect forward secrecy, the scheme is modified as
follows.

4.1 Long-Term Keys

During the initialization phase, each potential participant (including both the server and the
clients) generates the signing private/public keys (SK, PK) by running the key generation
algorithm of a signature scheme.

4.2 The Modified Setup Protocol

1. Each client Ui ∈ Gc chooses a random xi ∈ Z∗q and computes

yi = gxi .

Client Ui then signs yi to obtain signature σi and sends (yi, σi) to the server S, who
chooses a random xs ∈ Z∗q and computes ys = gxs .

2. For all i ∈ Ic, the server S verifies the signature σi and computes

αi = yxs
i .

Then S initializes the counter c to 0, and computes the shared secret value

K = H0(c‖{αi}i∈Ic)

and for all i ∈ Ic,
Ki = K ⊕H1(c‖αi).

The server S signs the message c‖{Ki}i∈Ic‖ys to obtain signature σs and broadcasts
(c, {Ki}i∈Ic , ys, σs) to the clients.



6 Junghyun Nam, Seungjoo Kim, and Dongho Won

3. Upon receiving (c, {Ki}i∈Ic , ys, σs), each client Ui verifies the signature σs, computes

αi = yxi
s ,

and then recovers the shared secret value K as

K = Ki ⊕H1(c‖αi).

Finally, both the server and the clients compute the same session key as:

sk = H(K‖Gc‖S).

The clients stores c and ys for future use in the other protocols for member removal and
addition.

The modification to the remove and join protocols is straightforward.
In the modified version, each αi is derived as a function of the ephemeral random values

xs and xi contributed by both the server S and the client Ui. Thus, each run of the improved
protocol computes a unique αi and H1(c‖αi) even if yi is replayed by the adversary. This
prevents the adversary from attacking our modified protocol against the main security
properties. As for computational costs, the modified version is as efficient as the original
protocol except that it additionally requires one signature generation for the server and one
signature verification for a client.

5 Conclusion

We have presented a security analysis of Bresson et al.’s group key agreement scheme [1].
The analysis has led us to pinpoint critical security flaws in the main protocol of the scheme.
We have also presented a modified version of the scheme which satisfies all the security
properties: key authentication, forward secrecy, and known key security. The attacks given
in this paper demonstrate again the necessity that active adversaries are to be considered
carefully in designing a protocol for key agreement, especially in a group setting.

References

1. E. Bresson, O. Chevassut, A. Essiari, and D. Pointcheval, “Mutual authentication and group key agree-
ment for low-power mobile devices,” Computer Communications, vol. 27(17), 2004, pp. 1730–1737. A
preliminary version appeared in Proc. of the 5th IFIP-TC6/IEEE International Conference on Mobile
and Wireless Communications Networks (MWCN ’03).


