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Abstract

Error correcting codes and matroids have been widely used in the study of ordinary secret
sharing schemes. In this paper, we study the connections between codes, matroids, and a special
class of secret sharing schemes: multiplicative linear secret sharing schemes. Such schemes
are known to enable multi-party computation protocols secure against general (non-threshold)
adversaries.

Two open problems related to the complexity of multiplicative LSSSs are considered in this
paper.

The first one deals with strongly multiplicative LSSSs. As opposed to the case of multi-
plicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into
a strongly multiplicative LSSS for the same access structure with a polynomial increase of the
complexity. We prove a property of strongly multiplicative LSSSs that could be useful in solving
this problem. Namely, using a suitable generalization of the well-known Berlekamp-Welch de-
coder, we show that all strongly multiplicative LSSSs enable efficient reconstruction of a shared
secret in the presence of malicious faults.

The second one is to characterize the access structures of ideal multiplicative LSSSs. Specif-
ically, we wonder whether all self-dual vector space access structures are in this situation. By
the aforementioned connection, this in fact constitutes an open problem about matroid theory,
since it can be re-stated in terms of representability of identically self-dual matroids by self-dual
codes. We introduce a new concept, the flat-partition, that provides a useful classification of
identically self-dual matroids. Uniform identically self-dual matroids, which are known to be
representable by self-dual codes, form one of the classes. We prove that this property also holds
for the family of matroids that, in a natural way, is the next class in the above classification:
the identically self-dual bipartite matroids.
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00866.
§Ruhr-University Bochum. gregor.leander@ruhr-uni-bochum.de

1



1 Introduction

Two open problems on multiplicative linear secret sharing schemes are studied in this paper. Our
results deal with the connections between linear codes, representable matroids, and linear secret
sharing schemes. Some facts about these connections are recalled in Section 1.2, while basic notions
on matroid theory are given in Section 5.1. The reader is referred to [25, 35] for general reference
books on matroid theory and to [6,22,32,33] for more information about the relation between secret
sharing schemes and matroids.

1.1 Multiplicative Linear Secret Sharing Schemes and General Secure Multi-

Party Computation

In a K -linear secret sharing scheme (K -LSSS) on the set P = {1, . . . , n} of players, the share of
every player i ∈ P is a vector in some vector space over the finite field K , and it is computed as a
fixed linear function of the secret value k ∈ K and some other randomly chosen elements in K .

More formally, every sequence Π = (π1, . . . , πn, πn+1) of surjective linear mappings πi : E → Ei,
where E and Ei are vector spaces of finite dimension over K and En+1 = K , defines a K -linear
secret sharing scheme Σn+1(Π) on the set P = {1, . . . , n} of players. For every vector x ∈ E, the
values (πi(x))1≤i≤n are shares of the secret value k = πn+1(x) ∈ K . The access structure Γn+1(Π)
of this scheme, that is, the family of qualified subsets, consists of all subsets A ⊆ P such that⋂

i∈A kerπi ⊆ ker πn+1.
Linear secret sharing schemes are usually defined in a more general way by considering that

the vector space En+1 corresponding to the secret value is not necessarily equal to K . We do not
consider such LSSSs in this paper.

The complexity of an LSSS Σ is defined as λ(Σ) =
∑n

i=1
dim Ei ≥ n, which corresponds to the

total number of field elements that are distributed. The schemes with complexity λ(Σ) = n are
called ideal . For every finite field K and for every access structure Γ, there exists a K -LSSS for
Γ [16]. The minimum complexity of the K -LSSSs with access structure Γ is denoted by λK(Γ). If
there exists an ideal K -LSSS for Γ, that is, if λK(Γ) = n, we say that Γ is a K -vector space access

structure.
Linear secret sharing schemes were first considered, only in the ideal case, in [5]. General linear

secret sharing schemes were introduced by Simmons [31], Jackson and Martin [17], and Karchmer
and Wigderson [18] under other names such as geometric secret sharing schemes or monotone span
programs.

In an LSSS, every linear combination of the shares of different secrets results in shares for
the same linear combination of the secret values. Because of that, LSSSs are used as a building
block of multi-party computation protocols. Nevertheless, if we require protocols computing every
arithmetic circuit, a similar property is needed for the multiplication of two secrets, that is, the
LSSS must be multiplicative.

We illustrate the multiplicative property of LSSSs by analyzing the Shamir’s (k, n)-threshold
scheme [30]. In this scheme, the secret s ∈ K and the shares si ∈ K , where i = 1, . . . , n, are
the values of a random polynomial with degree at most k − 1 in some given points. The secret
is recovered by Lagrange interpolation. If n ≥ 2k − 1, the product ss′ of two secret values is
a linear combination of every 2k − 1 values ci = sis

′
i. This linear combination is obtained by

interpolating the product of the two random polynomials that were used to distribute the shares.
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This multiplicative property of the Shamir’s scheme is used in [4,9,10,13] and many other works to
construct multi-party computation protocols that are secure against a threshold-based adversary.

To obtain efficient multi-party computation protocols for a general adversary structure, a gen-
eralization of the multiplicative property of the Shamir’s scheme to general linear secret sharing
schemes is proposed in [11].

Specifically, in a multiplicative linear secret sharing scheme over the finite field K (or K -MLSSS
for short), every player i ∈ P can compute, from his shares si, s

′
i of two shared secrets s, s′ ∈ K , a

value ci ∈ K such that the product ss′ is a linear combination of all the values c1, . . . , cn. We say
that a linear secret sharing scheme is strongly multiplicative if, for every subset A ⊆ P such that
P − A is not qualified, the product ss′ can be computed using only values from the players in A.

Observe that the Shamir’s (k, n)-secret sharing scheme is multiplicative if and only if n ≥ 2k−1,
and it is strongly multiplicative if and only if n ≥ 3k − 2. An access structure is said to be Q2,
or Q3, if the set of players is not the union of any two, or, respectively, three, unqualified subsets.
In general, as a consequence of the results in [11, 15], an access structure Γ can be realized by a
multiplicative LSSS if and only if it is Q2, and Γ admits a strongly multiplicative LSSS if and only
if it is Q3.

Cramer, Damg̊ard and Maurer [11] presented a method to construct, from every K -MLSSS Σ
with Q2 access structure Γ, an error-free multi-party computation protocol secure against a passive
adversary which is able to corrupt any set of players B /∈ Γ and computing every arithmetic circuit
C over K . The complexity of this protocol is polynomial in the size of C, log |K |, and λ(Σ). They
proved a similar result for an active adversary. In this case, the resulting protocol is perfect with
zero error probability if the LSSS is strongly multiplicative, with a Q3 access structure Γ.

One of the key results in [11] is a method to construct, from every K -LSSS Σ with Q2 access
structure Γ, a multiplicative K -LSSS Σ′ with the same access structure and complexity λ(Σ′) =
2λ(Σ). That is, if µK(Γ) denotes the minimum complexity of all K -MLSSSs with access structure
Γ, the above result means that µK(Γ) ≤ 2λK(Γ) for every finite field K and for every Q2 access
structure Γ.

Therefore, in the passive adversary case, the construction of efficient multi-party computation
protocols can be reduced to the search of efficient linear secret sharing schemes. Specifically, a
multi-party computation protocol computing every arithmetic circuit C over K and secure against
a passive adversary which is able to corrupt any set of players B /∈ Γ can be efficiently constructed
from every LSSS whose access structure Γ′ is Q2 and Γ′ ⊆ Γ.

This is not the situation when an active adversary is considered, because it is not known whether
it is possible to construct, for every Q3 access structure Γ, a strongly multiplicative LSSS whose
complexity is polynomial on the complexity of the best LSSS for Γ.

Nevertheless, the active adversary case is also solved in [11] if an exponentially small error
probability is allowed. A construction is given in [11] for the active adversary case that efficiently
provides, from every LSSS with Q3 access structure Γ, a multiparty computation protocol with
exponentially small error probability, secure against an active adversary which is able to corrupt
any set of players not in Γ.

1.2 Codes, Matroids, and Secret Sharing Schemes

Consider Q = {1, . . . , n, n + 1} and Pi = Q − {i} for every i ∈ Q. This notation will be used all
through the paper. From now on, vectors appearing in matrix operations will be considered as
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one-row matrices.
Let E be a K -vector space with dim E = k and let Π = (π1, . . . , πn, πn+1) be a sequence of

surjective linear mappings πi : E → K , that is, non-zero vectors in the dual space E∗. We are going
to suppose always that these vectors span E∗. Observe that Π can be seen as a linear mapping
Π: E → Kn+1 and, once a basis of E is fixed, it can be represented by the k × (n + 1) matrix
M = M(Π) such that Π(x) = xM for all x ∈ E. Observe that rank(M) = k and that the i-th
column of M corresponds to the linear form πi.

The matrix M is a generator matrix of an [n + 1, k ] linear code C = C(Π). The columns of
M define a K -representable matroid M = M(Π) on the set of points Q. This matroid depends
only on the code C, that is, it does not depend on the choice of the generator matrix M . In this
situation, we say that M is the matroid associated to the code C and also that the code C is a
K -representation of the matroid M. Observe that different codes can represent the same matroid.

Greene’s Theorem [14], which relates the weight enumerator of a code to the Tutte polynomial of
its associated matroid, is the best known result about that connection between codes and matroids.
Several works have appeared afterwards on that subject [1, 7, 8, 12].

In addition, the code C defines an ideal linear secret sharing scheme Σi(Π) for every i ∈ Q.
The codewords of C are precisely the vectors of Kn+1 of the form (π1(x), . . . , πi(x), . . . , πn+1(x))
with x ∈ E and, for every i ∈ Q, they can be seen as distributions of shares for the secret value
πi(x) ∈ K among the players in Pi = Q − {i}. Observe that the access structure Γi(Π) of the
scheme Σi(Π), which is a K -vector space access structure, consists of all subsets A ⊆ Pi such
that πi ∈ 〈πj : j ∈ A〉. Therefore, A ⊆ Pi is a minimal qualified subset in that structure if and
only if A ∪ {i} is a circuit of the matroid M(Π). As a consequence, the access structures Γi(Π)
are determined by the matroid M(Π). This connection between ideal secret sharing schemes and
matroids, which applies to non-linear schemes as well, was discovered by Brickell and Davenport [6]
and has been studied afterwards by several authors [2, 21, 22, 32]. It plays a key role in one of the
main open problems in secret sharing: the characterization of the access structures of ideal secret
sharing schemes.

Actually, non-ideal linear secret sharing schemes can also be represented as linear codes. In the
general case, several columns of the generator matrix are assigned to every player.

Error correction in linear codes is related to an important property of secret sharing schemes:
the possibility of reconstructing the shared secret value even if some shares are not correct.

The different notions of duality that are defined for codes, for matroids and for access structures
are closely related.

Let N be a parity check matrix for the code C = C(Π). That is, N is an (n − k + 1) × (n + 1)
matrix with rank(N) = n − k + 1 and MN> = 0, where N> denotes the transpose of N . The
matrix N is a generator matrix of an [n + 1, n− k + 1] linear code C⊥, which is called the dual code

of the code C. The code C is said to be self-dual if C⊥ = C. In this case, 2k = n + 1 and MM> = 0
for every generator matrix M .

If the linear code C defines a (not necessarily ideal) LSSS with access structure Γ on the set
P of players, then the dual code C⊥ defines an LSSS for the dual access structure Γ∗ = {A ⊆ P :
P − A /∈ Γ}. As a consequence of this fact, λK(Γ∗) = λK(Γ) for every access structure Γ and for
every finite field K .

The matroid N associated to the dual code C⊥ is the dual matroid of the matroid M corre-
sponding to C, that is, the family of bases of N = M∗ is B(M∗) = {B ⊆ Q : Q − B ∈ B(M)},
where B(M) is the family of bases of M. Moreover, for every i ∈ Q, if Γi and Γ′

i are the ac-
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cess structures on the set Pi that are determined, respectively, by the matroids M and M∗, then
Γ′

i = Γ∗
i . Therefore, the dual of a K -representable matroid is also K -representable and the same

applies to K -vector space access structures.
Observe that the matroid M associated to a self-dual code is identically self-dual, that is,

M = M∗. Nevertheless, it is not known whether every representable identically self-dual matroid
can be represented by a self-dual code.

Duality plays an important role in the study of the multiplicative property of LSSSs. First of
all, an access structure Γ is Q2 if and only if Γ∗ ⊆ Γ. This fact and the aforementioned relation
between duality in codes and LSSSs are the key points in the proof of the bound µK(Γ) ≤ 2λK(Γ)
given in [11]. In addition, all ideal LSSSs defined by self-dual codes are multiplicative and, hence,
their access structures are such that µK(Γ) = λK(Γ).

2 Our Results

2.1 On Strongly Multiplicative Linear Secret Sharing Schemes

The first open problem we consider in this paper deals with the efficient construction of strongly
multiplicative LSSSs. As we said before, no efficient general reductions are known for it at all,
except for some upper bounds on the minimal complexity of strongly multiplicative LSSSs in terms
of certain threshold circuits. That is, the existence of a transformation that renders an LSSS
strongly multiplicative at the cost of increasing its complexity at most polynomially is an unsolved
question.

We shed some light on that problem by proving a new property of strongly multiplicative
LSSSs. Using a suitable generalization of the well-known Berlekamp-Welch decoder for Reed-
Solomon codes, we show (Theorem 1) that all strongly multiplicative LSSSs allow for efficient
reconstruction of a shared secret in the presence of malicious faults. In this way, we find an
interesting connection between the problem of the strong multiplication in LSSSs and the existence
of codes with efficient decoding algorithms.

Theorem 1. Let s = (s1, . . . , sn) be a full vector of shares for a secret s ∈ K , computed according

to a strongly multiplicative K -LSSS with access structure Γ on n players. Let e denote the all zero

vector, except where it states the errors that a set of players A 6∈ Γ have introduced in their respective

shares. Define c = s + e. Then the secret s can be recovered from c in time poly(n, log |K|).

2.2 On Ideal Multiplicative Linear Secret Sharing Schemes

The characterization of the access structures of ideal MLSSSs is the second open problem that
is studied in this work. That is, we are interested in determining which Q2 vector space access
structures can be realized by an ideal MLSSS or, equivalently, for which Q2 access structures there
exists a finite field K with µK(Γ) = λK(Γ) = n.

This is a case of the more general problem of determining the cases in which the factor 2 loss
in the construction of MLSSSs given in [11] is necessary. That is, to find out in which situations
the bound µK(Γ) ≤ 2λK(Γ) can be improved.

The (k, n)-threshold structures with n ≥ 2k − 1 are examples of access structures that can be
realized by an ideal LSSS. Other examples are obtained from self-dual codes. If the linear code
C(Π) is self-dual, then the ideal LSSSs Σi(Π), where i ∈ Q, are multiplicative. Therefore, for every
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i ∈ Q, the vector space access structure Γi = Γi(Π) is such that µK(Γi) = λK(Γi) = n. Observe
that these access structures are self-dual, that is, Γ∗

i = Γi.
On the other hand, there exist examples of Q2 access structures Γ such that λK(Γ) = n for

some finite field K but do not admit any ideal MLSSS over any finite field. The arguments that
are used to prove this fact do not apply if a self-dual vector space access structure is considered.
An infinite family of such examples is given in Section 5.

Self-dual access structures coincide with the minimally Q2 access structures, that is, with the
Q2 access structures Γ such that every substructure Γ′ ( Γ is not Q2. The results in this paper,
and the fact that no counterexample has been found, lead us to state the following open problem.
One of the objectives of this paper is to move forward in the search of its solution.

Open Problem 1. Determine whether there exists, for every self-dual K -vector space access struc-

ture Γ, an ideal multiplicative L -LSSS, where L is some finite extension of K .

Since µK(Γ) ≤ 2λK(Γ) for every Q2 access structure Γ, to study this open problem seems to
have a limited practical interest. Nevertheless, its theoretical interest can be justified by several
reasons.

First, due to the minimality of the Q2 property, self-dual access structures are an extremal
case in the theory of MLSSSs. Moreover, self-duality seems to be in the core of the multiplicative
property. For instance, the construction in [11] providing the bound µK(Γ) ≤ 2λK(Γ) is related to
self-dual codes, and hence to ideal MLSSSs for self-dual access structures.

Besides, the interest of Problem 1 is increased by the fact that it can be stated in terms of an
interesting open problem about the relation between matroid theory and code theory. Namely, by
studying how the connection between codes, matroids, and LSSSs applies to multiplicative LSSSs,
we prove in Section 5 that Open Problem 1 is equivalent to the following one.

Open Problem 2. Determine whether every identically self-dual K -representable matroid can be

represented by a self-dual linear code over some finite extension of K .

Finally, we think that the results and techniques in this paper, and the ones that possibly
will be found in the future research on that problem, can provide a better understanding of the
multiplicative property and may be useful to find new results on the existence of efficient strongly
multiplicative LSSSs. In particular, the study of the characterization of the access structures of
ideal strongly multiplicative LSSSs, which should be also attacked by using matroid theory, may
lead to interesting advances on that problem. For instance, one can observe a remarkable difference
in the strong multiplicative case: the minimality of the Q3 property does not imply any important
matroid property comparable to self-duality.

We say that a matroid is self-dually K -representable if it can be represented by a self-dual
code over the finite field K . Every self-dually representable matroid is identically self-dual and
representable. The open problem we consider here is to decide whether the reciprocal of this fact
is true.

The uniform matroids Uk,n and the Z2-representable matroids are the only families of matroids
for which it was known that all identically self-dual matroids are self-dually representable. It has
been proved recently that this property also holds for the identically self-dual matroids on at most
eight points [26].

There exist several methods to combine some given matroids into a new one. The 2-sum, whose
definition is recalled in Section 6, is one of them. We show in Section 6 that the 2-sum of two
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self-dually representable matroids is equally self-dually representable and that Problem 2 can be
restricted to indecomposable matroids, that is, matroids that are not a nontrivial 2-sum of smaller
matroids.

To take the first steps in solving Problem 2, we introduce the concept of flat-partition of a
matroid, which is defined in Section 6. On one hand, we use the flat-partitions to characterize in
Proposition 6.5 the indecomposable identically self-dual matroids. On the other hand, the number
of flat-partitions provide a useful classification of identically self-dual matroids. The identically
self-dual matroids that do not admit any flat-partition are exactly the uniform matroids Uk,2k,
which, as we said before, are self-dually representable.

We prove in Theorem 2 that all identically self-dual matroids with exactly one flat-partition
are self-dually representable as well. These matroids are precisely the identically self-dual bipartite
matroids. In a bipartite matroid , the set of points is divided in two parts and all points in each
part are symmetrical. The access structures defined by these matroids are among the bipartite

access structures, which were introduced in [27]. As a consequence of the results in [27], bipartite
matroids are representable. Bipartite matroids have been independently studied in [23, 24], where
they are called matroids with two uniform components.

Bipartite access structures are also interesting for their applications because they appear in a
natural way in situations in which the players are divided into two different classes. They are closely
related to other families of access structures that have practical interest as well: the hierarchical
access structures [34] and the weighted threshold access structures [3, 30].

Theorem 2. Every identically self-dual bipartite matroid can be represented by a self-dual linear

code over some finite field. Equivalently, every self-dual bipartite vector space access structure can

be realized by an ideal MLSSS over some finite field.

Therefore, the bipartite matroids form another family of matroids for which all identically self-
dual matroids are self-dually representable. Most of the identically self-dual matroids in this family
are indecomposable. So, the existence of self-dual codes that represent them could not be derived
from other matroids that were known to be self-dually representable.

3 Multiplicative Linear Secret Sharing Schemes

Some definitions and basic results about multiplicative linear secret sharing schemes are given in
the following.

We begin by recalling some notation and elementary facts about bilinear forms. If α, β : E → K

are linear forms, α ⊗ β denotes the bilinear form α ⊗ β : E × E → K defined by (α ⊗ β)(x,y) =
α(x)β(y). These bilinear forms span the vector space of all bilinear forms on E, which is denoted
by E∗ ⊗ E∗ and has dimension k2, where k = dim E. Actually, if {e1, . . . , ek} is a basis of E∗,
then {ei ⊗ ej : 1 ≤ i, j ≤ k} is a basis of E∗ ⊗ E∗. Since E∗∗ = E, the vector space of the
bilinear forms on E∗ is E ⊗ E, which is spanned by {x ⊗ y : x,y ∈ E}. Finally, observe that
(E ⊗ E)∗ = E∗ ⊗ E∗. This is due to the fact that every bilinear form α ⊗ β ∈ E∗ ⊗ E∗ induces a
linear form α ⊗ β : E ⊗ E → K , determined by (α ⊗ β)(x ⊗ y) = α(x)β(y).

If Σ = Σn+1(π1, . . . , πn, πn+1) is an LSSS and A ⊆ Pn+1, we write ΣA for the natural restriction
of Σ to the players in A, that is, the scheme defined by the linear mappings ((πi)i∈A, πn+1). The
next definition deals with general (not necessarily ideal) LSSSs.
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Definition 3.1. Let Σ = Σn+1(π1, . . . , πn, πn+1) be a K -LSSS with access structure Γ = Γn+1(Π).
The scheme Σ is said to be multiplicative if, for every i ∈ Pn+1 = {1, . . . , n}, there exists a bilinear

form φi : Ei × Ei → K such that (πn+1 ⊗ πn+1)(x1,x2) =
∑n

i=1
φi(πi(x1), πi(x2)) for every pair of

vectors x1,x2 ∈ E. We say that Σ is strongly multiplicative if the scheme ΣPn+1−A is multiplicative

for every A ⊆ Pn+1 with A /∈ Γ.

It is not difficult to check that the access structure of a multiplicative LSSS must be Q2. Equally,
strongly multiplicative LSSSs only exist for Q3 access structures.

Let Σ = Σn+1(Π) be an ideal LSSS. Every bilinear form φ : K×K → K is of the form φ(x, y) =
λxy for some λ ∈ K. Therefore, Σ is multiplicative if and only if there exist values λi ∈ K such
that πn+1 ⊗ πn+1 =

∑n
i=1

λi(πi ⊗ πi). Equally, Σ is strongly multiplicative if and only if, for every
A /∈ Γn+1(Π), there exist values λi,A ∈ K such that πn+1 ⊗ πn+1 =

∑
i∈Pn+1−A λi,A(πi ⊗ πi). The

values λi or λi,A form the recombination vector introduced in [11].
Since the bilinear forms πi ⊗ πi can be seen as vectors in (E ⊗ E)∗, we can consider the

LSSS Σµ
n+1

(Π) = Σn+1(π1 ⊗ π1, . . . , πn ⊗ πn, πn+1 ⊗ πn+1), which has access structure Γµ
n+1

(Π) =
Γn+1(π1⊗π1, . . . , πn⊗πn, πn+1⊗πn+1). That is, A ∈ Γµ

n+1
(Π) if and only if πn+1⊗πn+1 is a linear

combination of the vectors {πi ⊗ πi : i ∈ A}.

Lemma 3.2. Let Σ = Σn+1(Π) be an ideal LSSS. Then the following properties hold.

1. Γµ
n+1

(Π) ⊆ Γn+1(Π).

2. Σ is multiplicative if and only if Γµ
n+1

(Π) 6= ∅.

3. Σ is strongly multiplicative if and only if (Γn+1(Π))∗ ⊆ Γµ
n+1

(Π).

Proof. Let A ⊆ Pn+1 be a subset with A ∈ Γµ
n+1

(Π). Then there exist λi ∈ K such that πn+1 ⊗
πn+1 =

∑
i∈A λi(πi ⊗ πi). By taking a vector x ∈ E with πn+1(x) = 1, we obtain values λ′

i ∈ K

such that πn+1 =
∑

i∈A λ′
iπi, which implies that A ∈ Γn+1(Π). The other statements follow from

the previous observations.

4 Reconstruction of a Secret in the Presence of Errors

In every LSSS with a Q3 access structure Γ, unique reconstruction of the secret from the full set
of n shares is possible, even if the shares corresponding to an unqualified set A /∈ Γ are corrupted.
Nevertheless, it is not known how to do that efficiently. In this section we prove Theorem 1, which
implies that, if the LSSS is strongly multiplicative, there exists an efficient reconstruction algorithm.

We only consider here the ideal LSSS case. Proofs extend easily to the general case, at the cost
of some notational headaches.

First we review the familiar case of Shamir’s secret sharing scheme, where t + 1 or more shares
jointly determine the secret, and at most t shares do not even jointly contain any information about
the secret. Exactly when t < n/3, unique reconstruction of the secret from the full set of n shares
is possible, even if at most t shares are corrupted. This can be done efficiently, for instance by the
Berlekamp-Welch decoding algorithm for Reed-Solomon codes, as we explain in the following.

Let p be a polynomial of degree at most t, and define p(0) = s. Let s be the vector with
si = p(i), i = 1, . . . , n, and let e be a vector of Hamming-weight at most t. Write c = s + e.
Given c only, compute non-zero polynomials F and E with deg(F ) ≤ 2t and deg(E) ≤ t, such that
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F (i) = ci · E(i), for i = 1, . . . , n. This is in fact a system of linear equations in the coefficients of
F and E, and it has a nontrivial solution. Actually, for every polynomial E such that E(i) = 0
whenever the i-th share is corrupted, that is, ci 6= si, the polynomials F = pE and E are a solution
to the system. Moreover, from Lagrange’s Interpolation Theorem, all solutions are in this form.
Therefore, for all F , E that satisfy the system, it holds that E(i) = 0 if the i-th share is corrupted.
The corrupted shares are then deleted by removing all ci with E(i) = 0 from c. All that remains
are incorrupted shares, that is, cj = sj , and there will be more than t of those left.

Below we present an efficient reconstruction algorithm for the more general situation where the
secret is shared according to a strongly multiplicative LSSS with a Q3 access structure Γ. We do
this by appropriately generalizing the Berlekamp-Welch algorithm. Note that such generalizations
cannot generally rely on Lagrange’s Interpolation Theorem, since LSSSs are not in general based
on evaluation of polynomials. Technically, our generalization bears some similarity to the decoding
algorithm proposed by Pellikaan [28].

Strong multiplication was first considered in [11] and was used to construct efficient multi-party
computation protocols with zero error probability in the active adversary model. More precisely it
is used in the Commitment Multiplication Protocol to ensure that commitments for a, b and c are
consistent in the sense that ab = c with zero probability to cheat.

We now prove Theorem 1. Let Π = (π1, . . . , πn, πn+1) be a sequence of linear forms πi : E → K

such that Σ = Σn+1(Π) is a strongly multiplicative LSSS with Q3 access structure Γ = Γn+1(Π).
Consider also the scheme Σµ = Σµ

n+1
(Π) = Σn+1(π1 ⊗ π1, . . . , πn ⊗ πn, πn+1 ⊗ πn+1). From

Lemma 3.2, the access structure of this scheme, Γµ = Γµ
n+1

(Π), is such that Γ∗ ⊆ Γµ.

Take a basis for E and the induced basis of E ⊗ E. Let M and M̂ be the matrices associated,
respectively, to the schemes Σ and Σµ. Observe that, if k = dim E, the matrix M has k rows and
n + 1 columns while M̂ has k2 rows and n + 1 columns.

If u,v ∈ Km, then u ∗ v denotes the vector (u1v1, . . . , umvm). Observe that

(x ⊗ y)M̂ = ((πi ⊗ πi)(x ⊗ y))1≤i≤n+1

= (πi(x)πi(y))1≤i≤n+1

= (xM) ∗ (yM)

for every pair of vectors x,y ∈ E.
Consider s′ = (s1, . . . , sn, sn+1) = xM . Then s = (s1, . . . , sn) is a full set of shares for the secret

sn+1 = πn+1(x). Let A ⊆ Pn+1 be a non-qualified subset, that is, A /∈ Γ. Let e = (e1, . . . , en) be a
vector with ei = 0 for every i /∈ A. Write c = (c1, . . . , cn) = s + e. Given only c, the secret sn+1 is
recovered efficiently as follows.

Let N̂ and N be the matrices that are obtained, respectively, from M̂ and M by removing the
last column. Observe that c = xN + e. Consider the system of linear equations

{
ŷN̂ = c ∗ (yN)
πn+1(y) = 1

where the unknowns are the k2 coordinates of the vector ŷ ∈ E ⊗ E and the k coordinates of
the vector y ∈ E. We claim that this system of linear equations always has a solution and that
sn+1 = (πn+1 ⊗πn+1)(ŷ) for every solution (ŷ,y). Therefore, the secret sn+1 can be obtained from
c by solving that system of linear equations.
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This is argued as follows. Note that (ŷ,y) is a solution if and only if (ŷ− x⊗ y)N̂ = e ∗ (yN).
Since A /∈ Γ, there exists a vector z ∈ E such that πn+1(z) = 1 while πi(z) = 0 for every
i ∈ A. Observe that (x ⊗ z, z) is a solution for every vector z ∈ E in that situation. Indeed,
e ∗ (zN) = 0, because zN is zero where e is non-zero. Let (ŷ,y) be an arbitrary solution and

consider (ŷ−x⊗y)M̂ = (t1, . . . , tn, tn+1). Then (t1, . . . , tn) are shares of the secret tn+1 according
to the LSSS Σµ. Since (t1, . . . , tn) = e ∗ (yN), we get that ti = 0 for every i ∈ Pn+1 − A and,
hence, tn+1 = 0 because Pn+1 − A ∈ Γ∗ ⊆ Γµ. Finally, (πn+1 ⊗ πn+1)(ŷ − x ⊗ y) = tn+1 = 0 and
(πn+1 ⊗ πn+1)(ŷ) = (πn+1 ⊗ πn+1)(x ⊗ y) = πn+1(x)πn+1(y) = sn+1.

A positive application of Theorem 1 is as follows. Using a strongly multiplicative LSSS, the
Commitment Multiplication Protocol (CMP) from [11] is directly a verifiable secret sharing scheme
(VSS). This saves a multiplicative factor n in the volume of communication needed, since the
general reduction from VSS to CMP is not needed in this case.

5 Ideal multiplicative linear secret sharing schemes, self-dual lin-

ear codes and identically self-dual matroids

The aim of this section is to explain in detail the connections between ideal multiplicative linear
secret sharing schemes, self-dual linear codes and identically self-dual matroids. We prove the
equivalence between Open Problem 1 and Open Problem 2.

5.1 Matroid Theory definitions

First of all, we recall some definitions and basic facts about matroids. There exist many different
equivalent definitions of matroid. The one we present here is based on the concept of basis.

Definition 5.1. A matroid M = (Q,B) consists of a finite set Q together with a family B of

subsets of Q such that:

1. B is nonempty, and

2. for every B1, B2 ∈ B and i ∈ B1 − B2, there exists j ∈ B2 − B1 such that (B1 − {i}) ∪ {j} is

in B.

The set Q is the ground set of the matroid M and the sets in B are called the bases of M. All
sets in B have the same number of elements, which is r(M), the rank of M.

The concept of matroid is an abstraction of the relations of linear dependence among a finite set
of vectors in a vector space. Actually, an important class of matroids, the representable ones, are
defined from sets of vectors in a vector space. Consider a sequence of vectors Π = (π1, . . . , πn, πn+1)
in a K -vector space F and suppose that those vectors span F . The sequence Π defines a matroid
M = M(Π) = (Q,B), where Q = {1, . . . , n, n + 1} and {i1, . . . , ik} ∈ B if and only if {πi1 , . . . , πik}
is a basis of F . The matroids that can be defined in this way are called K -representable.

A subset X ⊆ Q is said to be independent if there exists a basis B ∈ B with X ⊆ B. The
dependent subsets are those that are not independent. A circuit is a minimally dependent subset
and the maximally independent subsets coincide with the bases. A point i ∈ Q is called a loop if
{i} is a dependent subset and a coloop is a point i ∈ Q such that i ∈ B for every basis B ∈ B.

The rank of X ⊆ Q, which is denoted by r(X), is the maximum cardinality of the subsets of X
that are independent. Clearly, r(M) = r(Q). We say that X ⊆ Q is a flat if r(X ∪ {i}) > r(X)
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for every i /∈ X. The flat cl(X) = {i ∈ Q : r(X ∪ {i}) = r(X)} is called the closure of X. If X is
a flat, every maximally independent subset B ⊆ X is called a basis of the flat X.

If M is a matroid on the set Q, with family of bases B, then B∗ = {Q − B : B ∈ B} is the
family of bases of a matroid M∗ on the set Q, which is called the dual of M. A self-dual matroid
is isomorphic to its dual while an identically self-dual matroid is equal to its dual.

5.2 Ideal linear secret sharing schemes, linear codes and matroids

Let E be a vector space with dim E = k over a finite field K and consider a sequence Π =
(π1, . . . , πn, πn+1) of linear forms in E∗. Recall that we are assuming that those vectors span E∗.
As we saw before, Π defines a [n + 1, k] linear code C = C(Π) that consists of the codewords of
the form (π1(x), . . . , πn(x), πn+1(x)) for some x ∈ E. The matroid M = M(Π) is the matroid
associated to the code C, which is said to be a K -representation of M.

In addition, the sequence Π defines an ideal secret sharing scheme Σi(Π) on the set of players
Pi = Q − {i} for every i ∈ Q = {1, . . . , n, n + 1}. Observe that the access structure Γi(Π) of the
scheme Σi(Π), which is a K -vector space access structure, is determined by the K -representable
matroid M = M(Π). Actually, A ⊆ Pi is in Γi(Π) if and only if r(A ∪ {i}) = r(A), where we are
considering the rank function of M. Then A ⊆ Pi is a minimal qualified subset of Γi(Π) if and only
if A ∪ {i} is a circuit of M. Therefore, we can write Γi(Π) = Γi(M). The access structures that
can be defined in this way from a matroid are called matroid-related. One of the most important
results in secret sharing is that the access structure of every ideal (not necessarily linear) secret
sharing scheme is matroid-related [6].

Moreover, a connected matroid M is uniquely determined by any one of the access structures
Γi(M). A matroid is said to be connected if every two points lie on a common circuit. An
access structure Γ on a set of players P is connected if every player is in a minimal qualified
subset. As a consequence of [25, Proposition 4.1.2], for every i ∈ Q, the access structure Γi(M) is
connected if and only if the matroid M is connected. A connected matroid is determined by the
circuits through a single point. Then every connected matroid M is univocally determined by any
one of the access structures Γi(M). Therefore, if Γ is a connected vector space access structure
with Γ = Γn+1(Π) = Γn+1(Π

′), then the matroids M(Π) and M(Π′) are identical and, hence,
Γi(Π) = Γi(Π

′) for every i ∈ Q.
Let M and N be, respectively, a generator matrix and a parity check matrix for the code C =

C(Π). Recall that the matrix N is the generator matrix of the dual code C⊥ and, hence, MN> = 0.
A [n+1, k ] linear code C is said to be self-dual if C⊥ = C. In this case, 2k = n+1 and every generator
matrix M is also a parity check matrix. We say that a linear code C with generator matrix M is
almost self-dual if there exists a non-singular diagonal matrix D = diag(λ1, . . . , λn, λn+1) such that
MD is a parity check matrix. Of course, the equality 2k = n+1 holds for almost self-dual codes as
well. Clearly, the matrices M and MD represent the same matroid. Therefore, the matroid M(Π)
associated to an almost self-dual code C(Π) is identically self-dual, and hence the access structures
Γi(Π) are self-dual.

5.3 Equivalence between the two problems

We prove in the following that Open Problem 1 and Open Problem 2 are equivalent.
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Lemma 5.2. Let Π = (π1, . . . π2k) be a sequence of linear forms in E∗ such that the matroid M(Π)
is identically self-dual and connected. In the space S(E) of the symmetric bilinear forms on E, the

set of vectors {πj ⊗ πj : j ∈ Q − {i}} is linearly independent for every i ∈ Q.

Proof. Suppose that the set {πj ⊗πj : 1 ≤ j ≤ 2k−1} is linearly dependent. Then we can suppose
that

π1 ⊗ π1 =
2k−1∑

i=2

λi(πi ⊗ πi). (1)

The access structure Γ1(Π) is self-dual and connected. Then there exists a minimal qualified subset
A ⊆ P1 such that 2k ∈ A. We can suppose that A = {r + 1, . . . , 2k − 1, 2k}. Since Γ1(Π) is
self-dual, P1−A = {2, . . . , r} is not qualified. Then there exists a vector x ∈ E such that π1(x) = 1
and πi(x) = 0 for every i = 2, . . . , r. Therefore, from equation (1), π1 =

∑
2k−1

i=r+1
(λiπi(x))πi, a

contradiction with the fact that A is a minimal qualified subset of the access structure Γ1(Π).

Corollary 5.3. Let Π = (π1, . . . , π2k) be a sequence of linear forms in E∗ such that the matroid

M(Π) is identically self-dual and connected. The code C(Π) is almost self-dual if and only if

dim〈π1 ⊗ π1, . . . , π2k ⊗ π2k〉 = 2k − 1.

By taking into account that a non-connected matroid can be divided in connected components,
the equivalence between Open Problems 1 and 2 is an immediate consequence of the following two
propositions.

Proposition 5.4. Let M be an identically self-dual representable connected matroid with ground

set Q = {1, . . . , 2k} and let Γ2k(M) be the access structure induced by M on the set P2k. Then

Γ2k(M) can be realized by an ideal multiplicative K -LSSS if and only if M can be represented by

an almost self-dual code C over the field K.

Proof. Suppose that M is represented, over the finite field K, by an almost self-dual code C = C(Π).
Let M = M(Π) be a generator matrix of this code and let D = diag(λ1, . . . , λ2k−1, λ2k) be the non-
singular diagonal matrix such that MD is a parity check matrix of C. Then

∑
2k
i=1

λi(πi⊗πi) = 0 and,
hence, Σ2k(Π) is an ideal multiplicative K -LSSS with access structure Γ2k(M). Conversely, suppose
that there exists an ideal multiplicative K -LSSS Σ2k(Π) with access structure Γ2k(M). Consider
the matrices M = M(Π) and D = diag(λ1, . . . , λ2k−1,−1), where π2d⊗π2k =

∑
2k−1

i=1
λi(πi⊗πi). By

Lemma 5.2, D is a non-singular matrix. Then M and MD are, respectively, a generator matrix and
a parity check matrix of the code C(Π). Therefore, C(Π) is an almost self-dual code representing
the matroid M over the finite field K .

Proposition 5.5. Let M be an identically self-dual matroid that is represented, over the finite field

K , by an almost self-dual code. Then M can be represented by a self-dual code over some finite

extension of K .

Proof. Let C be an almost self-dual code over a finite field K . Let M be a generator matrix and D =
diag(λ1, . . . , λ2k−1, λ2k) the non-singular diagonal matrix such that MD is a parity check matrix.
Consider, in an extension field L ⊃ K , the diagonal matrix D1 = diag(

√
λ1, . . . ,

√
λ2k−1,

√
λ2k).

Then the matrix M1 = MD1 is a generator matrix of a self-dual code C1. The matroids associated
to C and to C1 are equal.
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5.4 Known families of self-dually representable matroids

There are several families of matroids for which it is known that all identically self-dual matroids
are self-dually representable.

The uniform matroids are the first example. A uniform matroid Uk,n is identically self-dual
if and only if n = 2k. The access structure Γ2k(Uk,2k) is the threshold structure Γk,2k−1, which
can be realized by an ideal multiplicative K-LSSS for every finite field K with |K | ≥ 2k. Namely,
the Shamir’s polynomial scheme. Therefore, the matroid Uk,2k can be represented by an almost
self-dual code over finite field K with |K | ≥ 2k.

The second family is formed by the Z2-representable matroids. For any of these matroids
M, there exists a unique Z2-representation. That is, there exists a unique linear code C over
Z2 whose associated matroid is M. If M is an identically self-dual Z2-representable matroid,
the codes C and C⊥ are Z2-representations of M and, hence, C = C⊥. Therefore, all identically
self-dual Z2-representable matroids are self-dually Z2-representable. For instance, an identically
self-dual binary matroid M on the set Q = {1, . . . , 8} is obtained from the eight vectors in the set
{(v1, v2, v3, v4) ∈ Z4

2 : v1 = 1}. All access structures that are obtained from M are isomorphic to
the access structure defined by the Fano Plane by considering the points in the plane as the players
and the lines as the minimal qualified subsets [20]. Therefore, this access structure can be realized
by an ideal multiplicative Z2-LSSS.

Finally, all identically self-dual matroids with rank at most four, that is, on at most eight points
are self-dually representable [26].

5.5 Efficiently constructing multiplicative linear secret sharing schemes

We present here an alternative description of the method given in [11] to construct, from every K-
LSSS Σ with Q2 access structure Γ, a K-MLSSS Σ′ with the same access structure and complexity
λ(Σ′) = 2λ(Σ). We are going to consider only the ideal case, but the construction can be easily
adapted to any LSSS. This alternative description shows that the construction in [11] is closely
related to self-dual codes and, hence, to ideal MLSSSs with self-dual access structures.

Even though the method in [11] applies to any finite field, in this alternative description we
have to suppose that the characteristic of K is different from 2. Let Σ = Σn+1(π1, . . . , πn, πn+1) be
an ideal K-LSSS with Q2 access structure Γ. Let M be the k× (n+1) matrix associated to Σ, that
is, a generator matrix of the corresponding code. Let N be the parity-check matrix of this code.
Then N is a (n− k +1)× (n+1) matrix such that MN> = 0. Consider now the (n+1)× 2(n+1)
matrix

M̃ =

(
M M

N −N

)

Observe that M̃ is a generator matrix of an almost self-dual code. In fact, the diagonal matrix

D =

(
In+1 0

0 −In+1

)

is such that M̃(M̃D)> = M̃DM̃> = 0. Therefore, M̃ is the matrix of an ideal K-MLSSS Σ̃ =
Σ2n+2(γ1, . . . , γ2n+1, γ2n+2), where γj ∈ (Kn+1)∗ corresponds to the j-th column of M̃ . Of course,
the access structure of Σ̃ is self-dual.
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We describe next how a non-ideal K-MLSSS Σ′ for Γ can be obtained from Σ̃. Consider E =
ker γ2n+2 ⊆ Kn+1, the linear mapping φn+1 : E → K defined by φn+1(x) = γn+1(x) and, for every
j = 1, . . . , n, the linear mappings φj : E → K2 defined by φj(x) = (γj(x), γn+1+j(x)). Then the
K-LSSS Σ′ = Σn+1(φ1, . . . , φn, φn+1) is multiplicative and its complexity is λ(Σ′) = 2n. Since
Γ∗ ⊆ Γ, it has access structure Γ. Actually, this is essentially the same construction as in [11].

5.6 A family of counterexamples

We present next an infinite family of Q2 (but not self-dual) vector space access structures Γn+1(Π)
that do not admit any ideal MLSSS. The proof exploits the fact that some of the access structures
Γi(Π) are not Q2. Observe that this is not possible if the access structure Γn+1(Π) is self-dual.

For every given integer k ≥ 3, consider the set of players P = {1, . . . , 2k − 1} and the subsets
X1 = {1, . . . , k − 1} and X2 = {k, . . . , 2k − 2}. Consider on P the access structure Γ whose
minimal qualified subsets are X1, X2, and all subsets A ⊆ P with |A| = k and Xi 6⊆ A. By
using the techniques in [27], it can be proved that Γ is a K -vector space access structure if the
finite field K is large enough. Specifically, given two different subspaces V1, V2 ⊆ E∗, where
E = Kk and dim Vi = k − 1, we can find vectors π1, . . . , πk−1 ∈ V1, and πk, . . . , π2k−2 ∈ V2, and
π2k−1 ∈ E∗ − (V1 ∪ V2), and π2k ∈ V1 ∩ V2 such that Γ = Γ2k(Π) = Γ2k(π1, . . . , π2k−1, π2k). For
instance, if the characteristic of K is large enough, the columns of the matrix

M3 =




1 0 1 0 1 1
1 1 0 0 2 0
0 0 1 1 3 0




provide the sequence Π for the case k = 3, while for k = 4 we can consider the matrix

M4 =




1 1 1 1 1 1 1 1
1 2 3 0 0 0 −2 0
1 4 9 −1 −2 −3 4 0
0 0 0 1 4 9 −5 0


 .

Clearly, the access structure Γ is Q2. We claim that, for every Π with Γ = Γ2k(Π), the linear
secret sharing scheme Σ2k(Π) is not multiplicative. Suppose that, on the contrary, there exist a
sequence Π such that π2k ⊗ π2k =

∑
2k−1

i=1
λi(πi ⊗ πi). Since the induced substructure Γ(P − j) =

{A ∈ Γ : A ⊆ P − j} on the set P − j is not Q2, we get that λj 6= 0 for every j = 1, . . . , 2k − 1.
Therefore, π2k−1 ⊗ π2k−1 is a linear combination of the bilinear forms (πi ⊗ πi)i6=2k−1 and, hence,
the scheme Σ2k−1(Π) is multiplicative. Because of the election of the vectors πi, it is clear that
X1 ∪ {2k}, X2 /∈ Γ2k−1(Π), and hence this access structure is not Q2, a contradiction with the fact
that Σ2k−1(Π) is multiplicative. Notice that, since Γ is connected, the access structure Γ2k−1(Π) is
determined by Γ, that is, it does not depend on the choice of Π.

6 Flat-partitions and sum of matroids

We present in the following the definition and some properties of the 2-sum of two matroids. More
information about this operation can be found in Chapters 7 and 8 of [25]. A matroid is said to be
indecomposable if it is not the 2-sum of smaller matroids. The aim of this section is twofold. First,
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we prove that, to solve Open Problem 2, it is enough to consider indecomposable identically self-dual
matroids and, second, we present a useful characterization of such matroids. This characterization
is based on flat-partitions of matroids, a concept that is introduced here. It will be used also to
classify the identically self-dual matroids.

Let M1 and M2 be matroids on the sets Q1 and Q2, respectively. Let B1 and B2 be their
families of bases. Suppose that Q1∩Q2 = {p} and that p is neither a loop nor a coloop of Mi. The
2-sum of M1 and M2 at the point p, which will be denoted by M = M1 ⊕2 M2, is the matroid
with ground set Q = (Q1 ∪ Q2) − {p} whose family of bases is B = B′

1 ∪ B′
2, where

• B′
1 = {B1 ∪ C2 ⊆ Q : B1 ∈ B1, C2 ∪ {p} ∈ B2},

• B′
2 = {C1 ∪ B2 ⊆ Q : C1 ∪ {p} ∈ B1, B2 ∈ B2}.

It is not difficult to check that B satisfies the axioms in Definition 5.1 and that r(M) = r(M1) +
r(M2) − 1. The matroid M = M1 ⊕2 M2 is connected if and only if both M1 and M2 are
connected [25, Proposition 7.1.20]. Observe that, if M2 is the uniform matroid U1,2, then M1 ⊕2

U1,2
∼= M1. This is said to be a trivial 2-sum. A connected matroid is said to be indecomposable

if it is not isomorphic to any nontrivial 2-sum of matroids.

Proposition 6.1. The matroid M = M1⊕2M2 is identically self-dual if and only if both M1 and

M2 are identically self-dual.

Proof. Since M∗ = M∗
1 ⊕2 M∗

2 [25, Proposition 7.1.20], the 2-sum of two identically self-dual
matroids is identically self-dual.

Suppose now that M is identically self-dual. Consider two bases of M, one of the form B1 =
B1 ∪ C2 ∈ B′

1, and the other one of the form B2 = C1 ∪ B2 ∈ B′
2. By checking the cardinalities of

the four sets of the form (Q − Bi) ∩ Qj , it is clear that Q − B1 ∈ B′
2 and Q − B2 ∈ B′

1.
We prove that, for instance, M1 is identically self-dual. Let B1 be a basis of M1 with p /∈ B1,

and let B be a basis of M of the form B = B1 ∪C2 ∈ B′
1. Then Q−B = C1 ∪B2 ∈ B′

2, Therefore,
Q1 −B1 = C1 ∪ {p} is a basis of M1. Analogously, Q1 −B1 is a basis of M1 if B1 is a basis of M1

with p ∈ B1.

Let M be a matroid on a set of points Q and let (X1, X2) be a partition of Q. We say that
(X1, X2) is a flat-partition of M if X1 and X2 are nonempty flats of M. Indecomposable identically
self-dual matroids are characterized in Proposition 6.5 in terms of their flat-partitions. The next
three lemmas are needed to prove that result.

Lemma 6.2. Let M be a connected matroid and let (X1, X2) be a flat-partition of M. Then

r(X1) + r(X2) > r(M) and r(Xi) > 1 for i = 1, 2.

Proof. If M is connected and ∅ 6= X ( Q, then r(X)+r(Q−X) > r(M) [25, Proposition 4.2.1].

A cyclic flat of a matroid is a flat that is a union of circuits. It is easy to show that X is a
cyclic flat of a matroid on Q if and only if Q − X is a cyclic flat of the dual matroid [25, Exercise
2.1.13]. In addition, the closure of any circuit is a cyclic flat. Applying these ideas to identically
self-dual matroids gives the following lemma.

Lemma 6.3. Let M be an identically self-dual matroid with ground set Q and let C be a circuit

of M with 0 < r(C) < r(M). Then
(
cl(C), Q− cl(C)

)
is a flat-partition of M. As a consequence,

r(C) ≥ 2 if M is connected.

15



Lemma 6.4. Let M be a connected identically self-dual matroid and let (X1, X2) be a flat-partition

of M. Take k = r(M) and ri = r(Xi). Then

1. |B ∩ X1| ≤ r1 and |B ∩ X2| ≤ r2 for every basis B of M, and

2. |X1| = k + r1 − r2 and |X2| = k + r2 − r1.

Proof. Let B ⊆ Q be a basis of M. Since ri is the maximum cardinality of an independent subset
in Xi, it is clear that |B ∩ Xi| ≤ ri. The second statement is a direct consequence of the fact that
r∗(X) = |X| − r(M) + r(Q − X) for every matroid M and for every subset X ⊆ Q, where r∗(X)
is the rank of X in the dual matroid [25, Proposition 2.1.9].

The next proposition provides a characterization of indecomposable identically self-dual ma-
troids in terms of their flat-partitions.

Proposition 6.5. Let M be a connected identically self-dual matroid. If M = M1 ⊕2 M2, where

r(Mi) ≥ 2, then (X1, X2) = (Q1 − {p}, Q2 − {p}) is a flat-partition of M with r(X1) + r(X2) =
r(M)+1. Moreover, if there exists a flat-partition (X1, X2) of M with r(X1)+ r(X2) = r(M)+1,
then there exist two connected identically self-dual matroids M1, M2, with r(Mi) = r(Xi) and

ground sets Qi = Xi ∪ {p}, such that M = M1 ⊕2 M2. As a consequence, M is indecomposable if

and only if there is no flat-partition (X1, X2) of M with r(X1) + r(X2) = r(M) + 1.

Proof. Suppose that M = M1 ⊕2 M2, where r(Mi) ≥ 2. Then the matroids M1 and M2

are connected and identically self-dual. Consider Xi = Qi − {p} and suppose that there exists
x ∈ X2 ∩ cl(X1). By Lemma 6.3, {x, p} is an independent set of M2, and hence there exists a
C2 ⊆ X2 such that x ∈ C2 and C2 ∪ {p} is a basis of M2. Then B1 ∪ C2 is a basis of M if B1 is
a basis of M1. But x ∈ cl(X1) = cl(B1), a contradiction. Therefore, (X1, X2) is a flat-partition of
M and, clearly, r(X1) + r(X2) = r(M) + 1.

We prove now that the matroid M is a nontrivial 2-sum if there exist a flat-partition (X1, X2)
with r(X1)+r(X2) = r(M)+1. Take ri = r(Xi). Consider a point p /∈ Q and Qi = Xi∪{p}. From
Lemma 6.2, r1 ≥ 2 and, from Lemma 6.4, r1 − 1 ≤ |B ∩X1| ≤ r1 for every basis B of M. Consider
the matroid M1 = (Q1,B1), where B1 ⊆ Q1 is in B1 if and only if |B1| = r1 and there exists a
basis B of M with B ∩ X1 = B1 − {p}. It is not difficult to check that B1 satisfies the axioms in
Definition 5.1. Equally, consider the matroid M2 = (Q2,B2) that is defined symmetrically. The
proof is concluded by checking that M = M1 ⊕2 M2.

Once we have obtained a characterization of indecomposable identically self-dual matroids,
our next goal is to prove that, when trying to solve Open Problem 2, we can restrict ourselves
to indecomposable matroids. The next proposition deals with the representability of the sum of
matroids. It is a direct consequence of [25, Proposition 7.1.21], but we give here its proof because
it will be useful to prove Proposition 6.7.

Proposition 6.6. Let M = M1⊕2M2 be a nontrivial 2-sum of two identically self-dual matroids.

Then M is K -representable if and only if both M1 and M2 are K -representable.
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Proof. Suppose that M1 and M2 are K -representable. We can suppose that M1 and M2 are
represented, respectively, by matrices of the form

M1 =




a1,1 · · · a1,m−1 0
...

...
...

ar1−1,1 · · · ar1−1,m−1 0

ar1,1 · · · ar1,m−1 1




and

M2 =




1 b1,2 · · · b1,n

0 b2,2 · · · b2,n

...
...

...
0 br2,2 · · · br2,n




where ri = r(Mi), |Q1| = m, |Q2| = n, and the point p ∈ Q1 ∩ Q2 correspond to the last column
of M1 and the first column of M2. Then the matrix

M =




a1,1 · · · a1,m−1 0 · · · 0
...

...
...

...
ar1−1,1 · · · ar1−1,m−1 0 · · · 0

ar1,1 · · · ar1,m−1 b1,2 · · · b1,n

0 · · · 0 b2,2 · · · b2,n

...
...

...
...

0 · · · 0 br2,1 · · · br2,n




is a K -representation of the 2-sum M = M1 ⊕2 M2.
We prove now the converse. Take X1 = Q1 − {p} = {a1, . . . , am−1} and X2 = Q2 − {p} =

{b2, . . . , bn}. From Proposition 6.5, (X1, X2) is a flat-partition of M with r(X1)+r(X2) = r(M)+1.
If M is K -representable, there exists a sequence Π = (α1, . . . , αm−1, β2, . . . , βn) of linear forms
αi, βj ∈ E∗ = (Kk)∗, where k = r(M), such that M = M(Π). Consider the subspaces V1, V2 ⊆ E∗

defined by V1 = 〈α1, . . . , αm−1〉 and V2 = 〈β2, . . . , βn〉. Clearly, dim(Vi) = r(Xi) and dim(V1∩V2) =
1. Let π ∈ E∗ be a nonzero vector such that V1∩V2 = 〈π〉 and consider Π1 = (α1, . . . , αm−1, π) and
Π2 = (π, β2, . . . , βn). Then M1 = M(Π1) and M2 = M(Π2), where the linear form π correspond
to the point p for both M1 and M2.

Proposition 6.7. Let M1 and M2 be two matroids that are represented over a finite field K by

almost self-dual codes. Then the 2-sum M = M1 ⊕2 M2 can be represented over K by an almost

self-dual code. Moreover, if M1 and M2 are self-dually K -representable, the sum M is self-dually

L -representable, where L is an extension of K with [L : K] ≤ 2.

Proof. Let C1 and C2 be almost self-dual codes that represent M1 and M2 over K , and let M1

and M2 be generator matrices of these codes. We can suppose that these matrices have the same
form as the ones appearing in the proof of Proposition 6.6. Then we construct in the same way
a matrix M that is a K -representation of the sum M and, besides, is a generator matrix of an
almost self-dual code.
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If C1 and C2 are self-dual codes, the matrix




a1,1 · · · a1,m−1 0 · · · 0
...

...
...

...
ar1−1,1 · · · ar1−1,m−1 0 · · · 0

ar1,1 · · · ar1,m−1 b1,2

√
−1 · · · b1,n

√
−1

0 · · · 0 b2,2

√
−1 · · · b2,n

√
−1

...
...

...
...

0 · · · 0 br2,1

√
−1 · · · br2,n

√
−1




is an L -representation of M, where L = K(
√
−1), and, besides, is the generator matrix of a self-dual

code.

From the previous results and taking into account that a self-dually K -representable matroid is
self-dually L -representable whenever L is an algebraic extension of K , we get that Open Problems 1
and 2 are equivalent to the following one.

Open Problem 3. To determine whether all indecomposable identically self-dual K -representable

matroids can be represented by a self-dual linear code over some finite extension of K .

That is, we can restrict ourselves to indecomposable matroids when trying to solve Open Prob-
lem 2.

The 2-sum of matroids is related to a well-known method to compose access structures. Let
Γ1 and Γ2 be connected access structures on two disjoint sets P 1 and P 2 and consider a player
p ∈ P 1. The qualified subsets in the composed access structure Γ = Γ1[Γ2; p] on the set of players
P = (P 1 − {p}) ∪ P 2 are the subsets A ⊆ P 1 − {p} with A ∈ Γ1 and the subsets A ⊆ P such that
A∩P 2 ∈ Γ2 and (A∩P 1)∪{p} ∈ Γ1. Suppose that there exist matroids M1 and M2, with ground
sets Q1 and Q2, respectively, such that Q1 ∩ Q2 = {p}, and Γ1 = Γq(M1) for some q ∈ Q1 − {p},
and Γ2 = Γp(M2). Then the composition Γ1[Γ2; p ] is related to the 2-sum at the point p of the
matroids M1 and M2. Namely, Γ1[Γ2; p ] = Γq(M1 ⊕2 M2).

It follows from Propositions 6.1 and 6.6 that the composition Γ = Γ1[Γ2; p ] of two self-dual
K -vector space access structures is also a self-dual K -vector space access structure. Besides, from
Proposition 6.7, if both Γ1 and Γ2 are self-dual access structures admitting an ideal multiplicative
K -LSSS, the same applies to the composed access structure Γ.

7 All identically self-dual bipartite matroids are representable by

self-dual codes

7.1 Identically self-dual bipartite matroids

It is not hard to see that the uniform matroid Uk,2k does not admit any flat-partition. As a direct
consequence of Lemma 6.3, every non-uniform identically self-dual matroid admits a flat partition.

As said before, every identically self-dual uniform matroid Uk,2k can be represented by a self-
dual code C over every finite field K with |K | ≥ 2k. By the above observation, this means that the
answer to Open Problem 2 is affirmative for the identically self-dual matroids that do not admit
any flat-partition.
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A natural question arising at this point is whether the same occurs with the identically self-dual
matroids that admit exactly one flat-partition. Proposition 7.2 shows that these matroids coincide
with the identically self-dual bipartite matroids.

Let k, r1 and r2 be integers such that 1 < ri < k < r1 + r2. Take Q = {1, . . . , n, n + 1} and
a partition (X1, X2) of Q with |Xi| ≥ ri. We define the matroid M = M(X1, X2, r1, r2, k) by
determining its bases: B ⊆ Q is a basis of M if and only if |B| = k and |B ∩ Xi| ≤ ri for i = 1, 2.
Every matroid of this form is said to be bipartite. Observe that (X1, X2) is a flat-partition of M
with r(Xi) = ri.

The access structures defined by these bipartite matroids were first considered in [27], where
the authors proved that they are vector space access structures, that is, they admit an ideal LSSS.
As a consequence of the results in [27], for every bipartite matroid M and for every prime p, there
exists a finite extension K of Zp such that M is representable over K .

Theorem 2, which is proved in the following, extends this result of [27] by showing that, addi-
tionally, the identically self-dual bipartite matroids are self-dually representable. This is done by a
refinement of the approach of [27] based on techniques from Algebraic Geometry.

From Propositions 6.5, 7.1, and 7.2, an identically self-dual bipartite matroid of the form M =
M(X1, X2, r1, r2, k) is indecomposable whenever r1 + r2 − k > 1. Therefore, we found a new large
family of self-dually representable matroids and, hence, a new large family of self-dual vector space
access structures that admit an ideal MLSSS.

Proposition 7.1. Let M = M(X1, X2, r1, r2, k) be a bipartite matroid. Then M is identically

self-dual if and only if |Q| = 2k and |X1| = k + r1 − r2.

Proof. The dual of M is the bipartite matroid M∗ = M(X1, X2, r
∗
1, r

∗
2, k

∗), where r∗1 = |X1|−k+r2

and r∗2 = |X2| − k + r1, and k∗ = |Q| − k.

Proposition 7.2. Let M be a connected identically self-dual matroid. Then M is bipartite if and

only if it admits exactly one flat-partition.

Proof. We prove first that (X1, X2) is the only flat-partition of an identically self-dual bipartite
matroid M = M(X1, X2, r1, r2, k). Let (Y1, Y2) be a flat-partition of M. We can suppose that
|Y1| ≥ k = r(M). If |Y1 ∩Xi| ≥ k − rj for all {i, j} = {1, 2}, there exists B ⊆ Y1 such that |B| = k
and |B∩Xi| ≤ ri for i = 1, 2. Since Y1 does not contain any basis of M, we get |Y1∩X1| < k−r2 or
|Y1∩X2| < k−r1. Without loss of generality, we assume that |Y1∩X2| < k−r1. Then |Y1∩X1| > r1

because k ≥ |Y1 ∩ X1| + |Y1 ∩ X2|. In addition, k + r2 − r1 = |Y1 ∩ X2| + |Y2 ∩ X2| implies that
|Y2 ∩X2| > r2. Observe that, for i = 1, 2, every subset of ri points in Xi is independent, and hence
Xi ⊆ Yi because Yi is a flat that contains a basis of Xi. Therefore, (X1, X2) = (Y1, Y2).

Suppose now that (X1, X2) is the only flat-partition of M. We prove that M is the bipartite
matroid M(X1, X2, r1, r2, k) with ri = r(Xi) and k = r(M). From Lemma 6.2, 1 < ri < k < r1+r2

while, from Lemma 6.4, |B ∩Xi| ≤ ri for i = 1, 2 if B is a basis of M. We only have to prove that
every subset B ⊆ Q with |B| = k and |B ∩ Xi| ≤ ri for i = 1, 2 is a basis of M. Suppose that, on
the contrary, there exists such a subset B that is not a basis. Then there exists a circuit C ⊆ B.
The proof is concluded by showing that (cl(C), Q− cl(C)), which is a flat-partition by Lemma 6.3,
is different from (X1, X2). If, for instance, cl(C) = X1, we have C ⊆ B ∩ X1, and hence |C| ≤ r1.
Since C is a circuit, r(C) < r1 = r(X1), a contradiction.

19



7.2 Proof of Theorem 2

This section is devoted to the proof of Theorem 2, which is divided into several partial results.
Our proof uses a special class of evaluation codes that is described in the following. Consider

the quotient ring K[x, y]/I of the ring K[x, y] (the polynomials on two variables over the finite field
K ) modulo the ideal I spanned by the polynomial xy. The ring K[x, y]/I is a vector space over K .
Consider a subspace E ⊂ K[x, y]/I with dim E = k. Given 2k points p1, . . . , p2k ∈ X = {(x, y) ∈
K2 : xy = 0}, consider, for every i = 1, . . . , 2k, the linear form πi : E → K defined by πi(f) = f(pi).
The sequence Π = (π1, . . . , π2k) defines a linear code C(Π), whose codewords are of the form
(f(p1), . . . , f(p2k)) for some f ∈ E. Consider the subspace Ê = 〈fg : f, g ∈ E〉 ⊂ K[x, y]/I and
the linear mapping Π̂ : Ê → K2k defined by Π̂(h) = (h(p1), . . . , h(p2k)).

Lemma 7.3. If the matroid M(Π) associated with C(Π) is connected and identically self-dual, then

C(Π) is almost self-dual if and only if rank(Π̂) = 2k − 1.

Proof. Consider the linear mapping Ψ: E ⊗ E → K2k defined by

Ψ(f ⊗ g) = ((π1 ⊗ π1)(f ⊗ g), . . . , (π2k ⊗ π2k)(f ⊗ g)).

Clearly, Ψ(f ⊗ g) = (fg(p1), . . . , fg(p2k)), and hence the linear mappings Ψ and Π̂ have the same
image. Therefore, rank(Π̂) = rank Ψ = dim〈π1 ⊗ π1, . . . , π2k ⊗ π2k〉. The proof is concluded by
applying Corollary 5.3.

Let M = M(X1, X2, r1, r2, k), where 1 < ri < k < r1 + r2, be an identically self-dual bipartite
matroid with ground set Q = {1, . . . , 2k}. Our goal is to prove that, for some finite field K, there
exist a subspace E ⊂ K[x, y]/I and points p1, . . . , p2k ∈ X such that the code C(Π) is almost
self-dual and represents the matroid M.

Consider s1 = k − r2 and s2 = k − r1. From Proposition 7.1, |Xi| = ri + si. Suppose that
X1 = {1, . . . , r1 + s1} and X2 = Q − X1. Take ni = ri + si and t = r1 + r2 − k = ri − si. Observe
that B ⊆ Q is a basis of M if and only if |B| = k and s1 ≤ |B ∩ X1| ≤ r1.

For a field K , let E ⊂ K[x, y]/I be the subspace formed by the polynomials of the form

a0 + a1(x + y) + · · · + at−1(x
t−1 + yt−1)

+ btx
t + · · · + br1−1x

r1−1

+ cty
t + · · · + cr2−1y

r2−1.

That is, E is the subspace of K[x, y]/I spanned by

{1, x + y, . . . , xt−1 + yt−1, xt, . . . , xr1−1, yt, . . . , yr2−1}.

Observe that dim E = k. Given n1 distinct values α1, . . . , αn1
∈ K − {0}, and n2 distinct values

β1, . . . , βn2
∈ K − {0}, consider the points p1, . . . , p2k ∈ X given by pi = (α−1

i , 0) if 1 ≤ i ≤ n1 and
pn1+j = (0, β−1

j ) if 1 ≤ j ≤ n2.
For every integer n ≥ 1, consider the symmetric polynomials on n variables Sn,i = Sn,i(x1, . . . , xn),

where i = 1, . . . , n, defined by (x − x1)(x − x2) · · · (x − xn) = xn + Sn,1x
n−1 + Sn,2x

n−2 + · · · +
Sn,n−1x + Sn,n.

Lemma 7.4. If Sn1,i(α1, . . . , αn1
) = Sn2,i(β1, . . . , βn2

) = 0 for every i = 1, . . . , t−1, then rank(Π̂) ≤
2k − 1.
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Proof. The subspace Ê ⊂ K[x, y]/I is spanned by

{1, x + y, . . . , xt−1 + yt−1, xt, . . . , x2r1−2, yt, . . . , y2r2−2}.

Then dim Ê = t + 2r1 − t − 1 + 2r2 − t − 1 = 2k + t − 2. Therefore, rank(Π̂) ≤ 2k − 1 if and only
if dim ker Π̂ ≥ t − 1, that is, if and only if there exist a linearly independent set of polynomials
{h1, . . . , ht−1} ⊂ Ê such that h`(pi) = 0 for every ` = 1, . . . , t − 1 and for every i = 1, . . . , 2k.

Consider the polynomials

f1(x) = (x − α1) · · · (x − αn1
) = xn1 + atx

2s1 + · · · + an1−1x + an1

and
f2(y) = (y − β1) · · · (y − βn2

) = yn2 + bty
2s2 + · · · + bn2−1y + bn2

,

and also the polynomials

g1(x) = xn1f1(1/x) = 1 + atx
t + · · · + an1

xn1

and
g2(y) = yn2f2(1/y) = 1 + bty

t + · · · + bn2
yn2 .

In addition, we take

h1(x, y) = g1(x) + g2(y) − 1 = 1 + atx
t + · · · + an1

xn1 + bty
t + · · · + bn2

yn2 ,

and, for every ` = 2, . . . , t − 1,

h`(x, y) = x`−1g1(x) + y`−1g2(y)

= x`−1 + y`−1 + atx
t+`−1 + · · · + an1

xn1+`−1 + bty
t+`−1 + · · · + bn2

yn2+`−1.

Clearly, {h1, . . . , ht−1} ⊂ Ê is a linearly independent set of vectors and h`(pi) = 0 for every
` = 1, . . . , t − 1 and for every i = 1, . . . , 2k.

Lemma 7.5. If a subset B ⊂ Q is a basis of the matroid M(Π), then B is a basis of the bipartite

matroid M = M(X1, X2, r1, r2, k) we are considering.

Proof. Clearly, if f ∈ E is such that f(pi) = 0 for every i ∈ Q, then f = 0. This implies that the
rank of the matroid M(Π) is equal to k = dim E. In addition, it is not difficult to check that, for
i = 1, 2, the rank of the set Xi in the matroid M(Π) is equal to ri. Therefore, every basis B of
M(Π) satisfies |B| = k and |B ∩ Xi| ≤ ri for i = 1, 2.

Lemma 7.6. If B is a basis of M with |B∩X1| = r1 or |B∩X2| = r2, then B is a basis of M(Π).

Proof. Let B be a basis of M with |B ∩ X1| = r1. Without loss of generality, we can suppose
that B = {1, . . . , r1, n1 + 1, . . . , n1 + s2}. This set is a basis of M(Π) if there does not exist any
f ∈ E − {0} such that f(pi) = 0 for every i ∈ B. Consider f ∈ E with f(pi) = 0 for every i ∈ B.
Then f is a polynomial of the form

f(x, y) = a0 + a1(x + y) + · · · + at−1(x
t−1 + yt−1)

+ btx
t + · · · + br1−1x

r1−1

+ cty
t + · · · + cr2−1y

r2−1.
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If 1 ≤ i ≤ r1,

0 = f(pi) = f(α−1

i , 0) = a0 + a1α
−1

i + · · · + at−1(α
−1

i )t−1

+ bt(α
−1

i )t + · · · + br1−1(α
−1

i )r1−1.

Then, the coefficients ai, bj are all 0. If 1 ≤ j ≤ s2,

0 = f(pn1+j) = f(0, β−1

j )

= ct(β
−1

j )t + · · · + cr2−1(β
−1

j )r2−1

= (β−1

j )t(ct + · · · + cr2−1(β
−1

j )s2−1).

This implies that ct = · · · = cr2−1 = 0.

Assume now that the field K contains all n1-th roots of unity, and fix the values α1, . . . , αn1
to

be these roots. Observe that Sn1,i(α1, . . . , αn1
) = 0 for every i = 1, . . . , t − 1.

Lemma 7.7. For every basis B of the matroid M = M(X1, X2, r1, r2, k), there exists a polynomial

δB on n2 variables over K such that B is a basis of M(Π) if and only if δB(β1, . . . , βn2
) 6= 0.

Proof. Consider the generator matrix M of the code C(Π) that is obtained by taking the basis

{1, x + y, . . . , xt−1 + yt−1, xt, . . . , xr1−1, yt, . . . , yr2−1}

of the subspace E ⊂ K[x, y]/I. For a basis B of the matroid M, consider the square submatrix
MB formed by the columns corresponding to the elements in B. Obviously, B is a basis of M(Π)
if and only if det(MB) 6= 0. Consider

δB(β1, . . . , βn2
) =




n2∏

j=1

βr2−1

j


det(MB),

which is clearly a polynomial on the variables β1, . . . , βn2
.

The proof of Theorem 2 is concluded by proving that, in some finite field K containing the n1-th
roots of unity, there exist n2 different elements β1, . . . , βn2

∈ K−{0} such that Sn2,i(β1, . . . , βn2
) = 0

for every i = 1, . . . , t − 1 and δB(β1, . . . , βn2
) 6= 0 for every basis B of the matroid M.

Consider now the (infinite) field F = K, the algebraic closure of K, and the algebraic variety M
in the space Fn2 defined by

M = {(y1, . . . , yn2
) ∈ Fn2 : Sn2,i(y1, . . . , yn2

) = 0 for every i = 1, . . . , t − 1}.

As a consequence of [29, Lemma 9.4], the variety M is irreducible if the characteristic of F is large
enough. This fact is proved in [29] for a field with characteristic zero, but the proof can be easily
adapted to our case if the characteristic of our field is large enough. For every basis B of the
matroid M, consider in Fn2 the algebraic variety

VB = {(y1, . . . , yn2
) ∈ Fn2 : δB(y1, . . . , yn2

) = 0}.
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Lemma 7.8. There exists a point (β1, . . . , βn2
) ∈ M such that βj 6= 0 for every j = 1, . . . , n2 and

(β1, . . . , βn2
) /∈ VB for every basis B of the matroid M = M(X1, X2, r1, r2, k).

Proof. For every j = 1, . . . , n2, consider the algebraic variety Vj ⊂ Fn2 defined by the equation
yj = 0. We want to prove that there exists a point in M that is not in any of the varieties VB

nor Vj . By applying an elementary result in Algebraic Geometry (see [19], for instance), since
M is irreducible, it is enough to prove that M is not a subset of any of those varieties. Let θ
be a primitive n2-th root of unity. It is clear that the point (γ1, γ2, . . . , γn2

) = (1, θ, . . . , θn2−1)
is in M and it is not in any of the varieties Vj . Observe that (γσ1, γσ2, . . . , γσn2

) ∈ M for ev-
ery permutation σ on the set {1, . . . , n2}. We claim that, for every basis B of M, there ex-
ists a permutation σ such that (γσ1, γσ2, . . . , γσn2

) /∈ VB. Let B be a basis of M and take `
with 0 ≤ ` ≤ t such that |B ∩ X1| = s1 + ` and |B ∩ X2| = r2 − `. By changing the or-
der of the values αi, we can assume that B ∩ X1 = {1, . . . , s1 + `}. Consider the sequence
Π = (π1, . . . , π2k) of linear forms that is obtained from the values (α1, . . . , αn1

), which are the
n1-th roots of unity reordered in some specific way, and (β1, . . . , βn2

) = (γ1, γ2, . . . , γn2
). From

Lemma 7.6, {π1, . . . , πs1
, πn1+1, . . . , πn1+r2

} is a basis of E∗ and {π1, . . . , πs1
, . . . , πs1+`} is a lin-

early independent set of vectors. By repeatedly applying Steinitz’s Exchange Theorem, we obtain
a basis of E∗ of the form {π1, . . . , πs1

, . . . , πs1+`, πj1 , . . . πjr2−`
}, where {j1, . . . , jr2−`} ⊂ X2. There-

fore, there exists a basis B′ of the matroid M(Π) with B′ ∩ X1 = B ∩ X1. Observe that the
polynomial δB′ can be obtained from the polynomial δB by a suitable permutation of the variables.
Since δB′(γ1, . . . , γn2

) 6= 0, there exists a permutation σ with δB(γσ1, γσ2, . . . , γσn2
) 6= 0.

Let α1, . . . , αn1
∈ F be the n1-th roots of unity, and let β1, . . . , βn2

∈ F be the values whose
existence is assured by Lemma 7.8. Since F is the algebraic closure of Zp for some prime p, there
exists a finite extension K of Zp containing all the elements αi and βj . At this point, the proof
of Theorem 2 is concluded by considering the sequence Π = (π1, . . . , π2k) of linear forms that is
obtained from α1, . . . , αn1

and β1, . . . , βn2
. Clearly, M(Π) = M(X1, X2, r1, r2, k) by Lemmas 7.5

and 7.7, and the code C(Π) is almost self-dual by Lemmas 5.2, 7.3, and 7.4.
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