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Abstract 
 

We propose a new class of key establishment schemes which are 
based on geometric generalizations of the classical Diffie-Hellman. 
The simplest of our schemes – based on the geometry of the unit 
circle – uses only multiplication of rational numbers by integers and 
addition of rational numbers in its key creation.  Its first computer 
implementation works significantly faster than all known 
implementations of Diffie-Hellman. Preliminary estimations show 
that our schemes are resistant to attacks. This resistance follows the 
pattern of the discrete logarithm problem and hardness of 
multidimensional lattice problems.   

 
Introduction 
 

In this paper we propose a new class of key establishment schemes which we 
refer to as Geometric Key Establishment (GKE).  Similarly to Diffie-Hellman ([5]), the 
GKE schemes do not assume that communicating parties share any kind of secret 
information prior to the act of key creation and distribution.  
 The GKE schemes are based on the mathematical concept of semigroup action 
and its modification – commuting double action. Cryptographic applications of the 
semigroup actions are well-known: Diffie-Hellman schemes are based on actions of the 
semigroup of integers (under multiplication) on finite groups.  More recent applications 
include two-sided multiplications in semigroups and groups ([8]), actions of semigroups 
of square integer matrices on finite commutative groups ([7]) and actions of braid 
semigroups on braid groups ([2]).1 
 Although general commuting double actions seem to be well-known in 
mathematics, we are unaware of any application of this concept in key establishment 
protocols.2 In the present work we construct two geometric key establishment schemes 
(GKE I and GKE II) which are based primarily on the concept. 
 Typically, Diffie-Hellman-like schemes involve time-consuming exponentiation 
procedures in finite fields or finite groups. Unlike this, GKE I and GKE II do not use any 
exponentiation. We bypassed exponentiation by replacing the semigroup actions on finite 
groups with actions (or commuting double actions) on infinite and even continuous 
groups. In particular, the simplest of our schemes is based on the action of the semigroup 
of integer square matrices on the unit cube, and, by design, uses only multiplication of 
real numbers by integers and addition of real numbers in its key creation.   
 First computer implementations of the cube-based schemes work with a much 
higher speed than all known implementations of Diffie-Hellman.  More precisely, the 
                                                 
1 An approach not based on Diffie-Hellman has been suggested by I. Anshel, M. Anshel, and D. Goldfeld 
in [1] and [3].   
2 The approach developed in [8] utilizes a particular case of two-sided action. The limitation of this 
approach consists in the requirement that the involved semigroups are commutative. 
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running time of GKE I (resp. GKE II) is proportional to N2 (resp. N3/2) with the 
assumption that multiplication of two numbers takes a constant time, where N is the size 
of the input.   

Preliminary estimations show that GKE I and GKE II are resistant to basic attacks. 
This resistance follows the pattern of the discrete logarithm problem. A more detailed 
study of GKE security is a work [4] joint with Professor Itkis of Boston University. 
 As we said above, our schemes rely on infinite geometric objects or, more 
precisely, on compact connected topological groups such as the unit circle or an n-
dimensional torus.  Of course, the schemes, as based on infinite geometric objects, are 
ideal in that sense that no real computing device can create or communicate keys as 
points of a geometric continuum. In order to implement GKE in a real device, we 
developed (based on the ordinary rounding of real numbers) a procedure of discretization 
of our ideal, continuous schemes. This procedure allows for creating an infinite family of 
real key establishment protocols. These real protocols seem to be cryptographically 
sound, which fact is by itself very inspiring.    
 Having been encouraged by obtaining a rich family of discretizations for GKE, 
we proceeded to generalization of the relationship between ideal and real key 
establishment schemes. As a result, we introduced a general concept of Rounded Key 
Establishment (RKE). This latter concept consists of an ideal continuous scheme and a 
family of its discretizations. One of surprising results of this generalization is a rigorous 
mathematical definition of key establishment, in which all existing Diffie-Hellman-like 
schemes fit perfectly. We have not been able to find any reference to similarly rigorous 
mathematical definition of key establishment in the literature.  
 We hope that, in addition to GKE I and GKE II, our concept of RKE will bring 
new interesting examples of key establishment schemes.  
 

The paper is organized as follows: 
 
In Section 1 we introduce key establishment paradigms based on commuting 

double actions.  Our main examples include all schemes based on semigroup and ring 
actions and, in particular, Diffie-Hellman scheme and its generalizations. Our examples 
will be used in the following sections for constructing our GKE I and GKE II schemes. 
 Section 2 is devoted to introduction and study of our first main example – 
Geometric Key Establishment I (GKE I). We start with a description of an ideal GKE I 
and then construct a family of its discretizations.   The main result of the section is 
Theorem 2.2, which asserts that these discretizations bring about a family of real key 
establishment protocols. We conclude the section with a numerical example 
demonstrating how the real GKE I protocols work. 
 Section 3 is devoted to introduction and study of our second main example –
Geometric Key Establishment II (GKE II). The section is structured similarly to Section 2. 
We start with a description of an ideal GKE II and then construct a family of its 
discretizations.   The main result of the section is Theorem 3.2, which asserts that these 
discretizations bring about a family of real key establishment protocols. We conclude the 
section with a numerical example demonstrating how the real GKE II protocols work. 
 In Appendix A we develop a conceptual framework for rounded key establishment 
(RKE). The basic key establishment scheme (Definition A.1) is quite trivial and, 
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apparently, is well known (although we have been unable to find appropriate references).  
However, having been written in the set-theoretic language, it allows for a simple 
conceptual definition of RKE.  This approach is common in modern mathematics: once 
an object is defined set-theoretically, it can further be enriched topologically, 
algebraically, and geometrically.  
 Appendix B consists of the proofs of main results – Theorem 2.2 and Theorem 3.2. 
  

Acknowledgements. The authors express their gratitude to Igor Mendelev for 
invaluable help in implementation of the first prototype of GKE and for performing the 
comparative analysis of GKE prototype with other key establishment systems. Our thanks 
are due to Professor Itkis of Boston University for extremely helpful comments and 
remarks on this manuscript. The authors wish to thank Professor Michael Anshel of City 
College of New York for very helpful references in the field of the semigroup-based 
cryptography. We would like to express our gratitude to Professor Shpilrain for giving us 
the opportunity to present this work at the “Algebraic Cryptography” section of Canadian 
Mathematical Society conference held in December 2004. 
 
Section 1. Key establishment schemes based on commuting double actions 
 

In this section we introduce a class of key establishment schemes which we refer 
to as commuting double action schemes. This class of schemes is based on the 
mathematical concept of commuting double action.  
 
Definition 1.1.  Let A, B, and X be sets. A quadruple of maps A×X→X, X×A→X and  
B×X→X, X×B→X (denoted respectively as: (a, x)→a(x), (x, a)→(x)a and (b, x)→b(x),  
(x, b)→(x)b ) is a commuting double action of A and B on X if: 
(1.1)      (a(x))b = (b(x))a 
for any x∈X and any a ∈ A, b∈ B. 
 
Commuting double action key establishment scheme 
 
Setup (non-secret parameters) 

• Sets A, B, and X 
• a commuting double action A×X→X, X×A→X and  B×X→X, X×B→X 

Protocol 
• Alice and Bob: choose a non-secret element x∈ X 
• Alice: choose a secret element a∈A  
• Bob: choose a secret element b∈B 
• Alice→Bob: mA=a(x)  
• Bob: compute SB= (mA)b = (a(x))b  
• Bob→Alice: mB= b(x) 
• Alice: compute SA= (mB)a = (b(x))a  

Common Secret   
    By Definition 1.1, SA = SB. 
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Remark. If the mA, SA , mB, SB are computed with some precision, then one has SA ≈ SB 
and additional exchange between Alice and Bob may be necessary. 
 

Now we consider examples of commuting double actions coming from 
semigroups and their actions on sets. 
Definition 1.2. A semigroup is a set A with an associative multiplication A×A → A, i.e. 

(ab)c=a(bc) 
for any a,b,c in A. 
 
Example 1. Let X be a semigroup (i.e., a set with an associative multiplication) and let 
A⊆X and B⊆X be any subsets. Then the maps A×X→X, X×A→X and B×X→X, 
X×B→X given respectively by: 

a(x) = (x)a = a⋅x and b(x) = (x)b = x⋅b 
constitute a commuting double action because (a(x))b =(a⋅x)⋅b =a⋅(x⋅b) = (b(x))a. 
 
Remark. A slightly more general example of two-sided multiplication in semigroups and 
groups was considered in ([8]).  
 
Definition 1.3. Let M be a semigroup and let X be a set.  A left action of M on X is a map 
M×X → X (to be denoted by (a, x) → a⋅x for any a ∈ A, x ∈ X) such that 
(1.2)                                                 a(bx) = (a⋅b)x 
for any elements a and b of M and any x∈X. A right action of a semigroup M on X is a 
map M×X → X (to be denoted by (x, a) → xa for any a∈M, x ∈ X) such that 
(1.3)                                                 (xa)b = x(a⋅b) 
for any elements a and b of M and any x∈X. 
 
Definition 1.4. Let M be a semigroup. Given two sets A and B and two pairs of maps ϕA, 
ϕ′A: A→ M and ϕB, ϕ′B: B→ M, we say that the quadruple (ϕA, ϕ′A, ϕB, ϕ′B) quasi-
commutes if  
(1.4)    ϕ′B(b)⋅ϕA(a) = ϕ′A(a)⋅ϕB(b) 

for all a∈ A and b∈ B. 
 
Lemma 1.5. Let M be a semigroup and let X, A, and B be sets. Fix a quasi-commuting 
quadruple of maps ϕA, ϕ′A: A→ M and ϕB, ϕ′B: B→M. Then: 
(a) For any left action M×X→X the following four maps A×X→X, X×A→X and  
B×X→X, X×B→X constitute a commuting double action of A and B on X:  
(1.5)                    a(x) =ϕA(a)x, b(x) =ϕB(b)x, (x)a =ϕ′A(a)x, (x)b =ϕ′B(b)x 
for any x∈X and any a∈ A, b ∈ B.  
(b) For any right action X×M→X the following four maps A×X→X, X×A→X and 
B×X→X, X×B→X constitute a commuting double action of A and B on X:  
(1.6)                    a(x) = xϕ′A(a), b(x) = xϕ′B(b), (x)a = xϕA(a), (x)b = xϕB(b) 
for any x∈X and any a∈ A, b ∈ B. 
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Proof. Prove (a). For any x∈X and any a∈ A, b ∈ B we have: 
 (a(x))b = ϕ′B(b)(ϕA(a)x)= (ϕ′B(b)⋅ϕA(a))x=(ϕ′A(a) ⋅ϕB(b))x= ϕ′A(a) (ϕB(b))x)= (b(x))a .  

This proves (a). Prove (b) now. 
(a(x))b = (xϕ′A(a))ϕB(b)= x(ϕ′A(a)⋅ϕB(b))= x(ϕ′B(b)⋅ϕA(a))= (xϕ′B(b))ϕA(a)= (b(x))a . 

This proves the lemma.    
 
Definition 1.6. Let M be a semigroup and let (α,α′) and (β,β′) be two pairs of elements of 
M. We say that these two pairs quasi-commute if  
(1.7)     β′⋅α=α′⋅β. 
More generally, given two families A={(αi,α′i), i=1,2,…, k}, B={(βj, β′j), j=1,2,…, l} of 
pairs of elements of M,  we say that A and B quasi-commute if  
(1.8)     β′j⋅αi= α′i⋅βj
for all i=1,2,…, k, j=1,2,…, l.  
 
The following example links Definitions 1.4 and 1.6 in the case when M is a ring.  
 
Example 2. Let M be a ring and let A={(αi, α′i) | i=1,2,…, k}, B={(βj, β′j) | j=1,2,…, l} 
be quasi-commuting families of pairs of elements in M. Define four maps ϕA, ϕ′A: k→M 
and ϕB, ϕ′B: l→M by the formula: 

(1.9) ϕA(a)= a∑
=

k

i 1
i⋅αi , ϕ′A(a)= a∑

=

k

i 1
i⋅α′i , ϕB(b)= b∑

=

l

j 1
j⋅βj , ϕ′B(b)= ∑ b

=

l

j 1
j⋅β′j  

for any a=(a1, a2,…, ak)∈ k, b=( b1, b2,…, bl )∈ l. 
 
Lemma 1.7. Let M be a ring and let A={(αi, α′i) | i=1,2,…, k}, B={(βj, β′j) | j=1,2,…, l} 
be two quasi-commuting families of elements of M. Then the quadruple of maps ϕA, 
ϕ′A: k → M and ϕB,ϕ′B: l → M defined by (1.9) quasi-commutes (in the sense of 
Definition 1.4). 
 
Proof. Define the map Ψ: k l → M by the formula  

Ψ(a,b)= ϕ′B(b) ⋅ϕA(a) - ϕ′A(a) ⋅ϕB(b) 
for any a ∈ k, b∈ l. In view of (1.4), our goal is to prove that Ψ=0. Indeed, Ψ is linear in 
a  and linear in b, that is: 

Ψ(a,b)= ∑ a
=

k

i 1
∑
=

l

j 1
ibj⋅Ψ( ei, fj) . 

On the other hand, let e1, e2, …, ek be the basis for k and f1, f2, …, fl be the standard basis 
for l. By definition, Ψ(ei, fj) = β′j⋅αi- α′i⋅βj=0 for all i and j by (1.7). Therefore, Ψ=0. 
 
Remark. A key establishment scheme utilizing a particular case of Example 2 (in the case 
when all αi, α′i, βj, β′j are certain powers of an element S∈M) was suggested in [7].  
 
Example 3 (Diffie-Hellman). In the notation of Definition 1.4 let M=A=B= , the set of all 
integers considered a semigroup under multiplication. Then raising elements of any group 
X into integer powers defines a commuting double action of M on X via: 

a(x)= (x)a=xa, b(x)=(x)b=xb  
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because (xa)b=xab .  
 

In what follows we denote by Mn( ) the set of integer n×n matrices. This is a ring under 
matrix addition and matrix multiplication. 
 Our first main example below will generalize all examples of semigroup actions 
constructed in [7]. 
Main Example I.  

• G is any group  
• n is any natural number  
• Gn denotes the n-th Cartesian power of G, i.e., the set of all n-tuples g=(g1,…,gn) 

of elements of G 
• Xn=[Gn] ⊆ Gn  is the set of all pairwise commuting tuples g=(g1,…,gn), i.e.,  

gi⋅gj= gj⋅gi 
 for i, j=1,2,…, n  

• Two families of quasi-commuting integer n×n matrices  
A={(αi, α′i) | i=1,2,…, k}, B={(βj, β′j) | j=1,2,…, l} 

• A map (not action!) Gn × Mn( ) → Gn  is given by the formula: (g,A) → gA 
for any A=(aij)∈Mn( ), g=(g1,…,gn)∈ [Gn], where gA is the A-th power of g: 

gA=(g'1,…,g'n),  
 where  

(1.10)      g'j=∏ g
=

n

1i
i
aij

 
 

Lemma 1.8. The assignment (g,A) → gA is a right action of Mn( ) on Xn=[Gn]: 
(1.11)     Xn × Mn( ) → Xn,  
i.e., for any A=(aij), B=(bij)∈ Mn( ) and any g∈Xn one has     
(1.12)      (gA)B=gAB . 
 
Proof.  It suffices to prove only (1.12). Indeed, using the fact that all gi

 commute with 
each other, we have by (1.10) for all j: 

((gA)B)j =∏ (g
=

n

1k

A)k
bkj

 =∏ (∏ g
=

n

1k =

n

1i
i
aij)k

bkj =∏ g
=

n

1i
i
cij, 

where  

cij=∑
=

n

1k

 
 aikbkj=(AB)ij.  

Therefore, ((gA)B)j=(gAB)j. This proves (1.12). The lemma is proved.   
 
Below we propose our second main example of a commuting double action.   

 
Main Example II.  

• G is a group.  
• m and n are natural numbers 
• Mm×n(G) denotes the set of m×n matrices g=(gij) with coefficients gij∈G 
• Xm×n=[Mm×n(G)] ⊆ Mm×n(G) is the set of all those elements g=(gij)∈Mm×n(G)  in 

which the entries pairwise commute, i.e.,  
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gij⋅gkl= gkl⋅gij 
 for all i, k=1, 2,…, m;  j, l=1, 2,…, n 

• Maps (not a com`muting double action!)  
Mm( ) ×Mm×n(G) → Mm×n(G), Mm×n(G)× Mm( )→ Mm×n(G)     
Mn( )×Mm×n(G) → Mm×n(G), Mm×n(G)× Mn( ) → Mm×n(G)     

given by (g)A=Ag = A(g), (g)B= gB =B(g), where Ag=(g'ij) , gB =(g''ij) are given by the 
formula: 

g'ij= ,      g''∏
=

m

ga
1k

kj

ik
ij=∏

=

n

gb
1k

ik

kj  

Lemma 1.9. These data define a commuting double action Mm( )×Xm×n → Xm×n and 
Xm×n× Mn( ) → X, i.e., (Ag)B= A(gB) for any A∈Mm( ),  B∈Mn( ), g∈Xm×n.   
 
Proof.  It is equivalent to the associativity of the matrix multiplication: 

(Ax)B=A(xB) 
for any m×m matrix A, any m×n matrix x, and n×n matrix B.  
 
 
 
 
Section 2. Geometric Key Establishment I 
 

In this section we present a key establishment scheme based on Main Example I 
and on the general right action key establishment scheme of Section 1. We will refer to it 
as geometric key establishment I (GKE I). First, we present the ideal GKE scheme (i.e., 
without any rounding).  
 
Ideal Geometric Key Establishment I (GKE I) Scheme 
 
Setup (non-secret parameters) 

• n is a natural number 
• Xn=[0,1)n is the semi-open n-dimensional cube, i.e., Xn is the n-th Cartesian 

power of the semi-open interval [0,1) of the real line. A point of Xn is an n-tuple 
g=(g1, g2,..., gn), where each gi ∈[0,1) 

• Two families of quasi-commuting integer n×n matrices  
 A={(αi, α′i) | i=1,2,…, k}, B={(βj, β′j) | j=1,2,…, l} 
• The right action Xn×Mn( )→ Xn is given by the formula 

(2.1)    (g,A) → {g⋅A} 
for any matrix a∈ Mn( ) and any g∈Xn, where for each vector x=(x1, x2,..., xn) of 
real numbers we use the notation {x}=({x1}, {x2},..., {xn}) 

 
Lemma 2.1.  For any a=(a1, a2,…, ak)∈ k, b=( b1, b2,…, bl )∈ l, and g∈ Xn one has 

{{g⋅ϕA(a)}⋅ϕ′B(b)}={g⋅ϕA(a)⋅ϕ′B(b)}={g⋅ϕB(b)⋅ϕ′A(a)}={{g⋅ϕB(b)}⋅ϕ′A(a)}, 
where ϕA(a), ϕ′A(a), ϕB(b) , and ϕ′B(b) are defined in (1.9).  
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Proof.  Taking the group G=[0,1) with the operation α*β={α+β} in Lemma 1.8 we obtain 

{{g⋅A}⋅B}={g⋅A⋅B} 

for any g∈ Xn and any A, B∈Mn( ). 
This and the quasi-commutation equation (1.4) prove the lemma.   

Protocol 

• Alice and Bob: choose a non-secret g∈ Xn 
• Alice: choose a secret a=(a1, a2,…, ak)∈ k  
• Bob: choose a secret b=( b1, b2,…, bl )∈ l 
• Alice→Bob: mA={g⋅ϕA(a)} 
• Bob: compute SB={mA⋅ϕ′B(b)}={{g⋅ϕA(a)}⋅ϕ′B(b)} 
• Bob→Alice: mB= {g·ϕB(b)} 
• Alice: compute SA= {mB⋅ϕ′A(a)}={{g⋅ϕB(b)}⋅ϕ′A(a)} 

Common Secret   
     By Lemma 2.1, SA = SB. 

In order to present the rounded GKE I, we need the following notation. 
 
Notation. For any real vectors y = (y1, y2, …, yn), z = (z1, z2, …, zn) the vector inequality 
y≤z is equivalent to n scalar inequalities: 

y1≤ z1, y2≤ z2, …, yn≤ zn. 
Also the inequality |y|<z means that y<z and -y<z. 
  Denote by Round(z) the standard rounding of a real number z to the closest 
integer. Also for any real number g∈[0,1) and any natural number P denote: 
  [g]P=(Round(gP))/P if Round(gP) < P,   
  [g]P=0                       if Round(gP) = P. 

For any natural n-tuple P = (P1, P2,..., Pn) and a real n-vector g=(g1, g2,..., gn) such 
that each gi ∈[0, 1), we define the P-rounding to a rational n-tuple [g]P by:  

[g]P=([g1]P1,[g2]P2,..., [gn]Pn). 
For an  n-tuple P = (P1, P2,..., Pn) of natural numbers denote P*=(1/P1,1/P2,...,1/Pn). 

 
Theorem 2.2. Let P, Q, and K be natural n-tuples. Then for any real n-vector g and any 
integer n×n matrices A =(aij), B =(bij), A′ =(a′ij) and B′ =(b′ij)  satisfying  A·B′ = B·A′ and 
Q*·|A′|≤ K*, P*·|B′|≤ K* one has: either at least one coordinate of [{[{g·A}]P·B′}]K equals 
0, or at least one coordinate of [{[{g·B}]Q·A′}]K equals 0, or   

|{[{g·A}]P·B′}-{[{g·B}]Q·A′}|< K*. 
Therefore, [{[{g·A}]P}·B′]K = [{[{g·A}]Q}·B′]K + ∆, where ∆ = (ε1/K1, ε2/K2,…, εn/Kn) 
and where each εi belongs to the set {–1, 0, 1}. In particular, the error vector ∆ can take 
3n

 values. 
  

For the proof of Theorem 2.2 see Appendix B. 
 
 
 
 

 8



                                                                  A. Berenstein, L. Chernyak, Geometric Key Establishment 
  

Rounded GKE I Scheme 
 
Setup (non-secret parameters):  

• a natural number n  
• natural n-tuples P,Q, and K as parameters of rounding  
• mutually commuting subrings A and B of Mn( ) 

Protocol 
• Alice and Bob: choose a non-secret g∈ Xn. 
• Alice: choose a secret a=(a1, a2,…, ak)∈ k such that Q*·|ϕ′A(a)|≤ K* 
• Bob: choose a secret b=( b1, b2,…, bl )∈ l such that P*·|ϕ′B(b)|≤ K* 
• Alice→Bob: mA=[{g·ϕA(a)}]P 
• Bob: compute SB=[{mA·b}]K=[{[{g·ϕA(a)}]P·ϕ′B(b)}]K 
• Bob→Alice: mB=[{g·ϕB(b)}]Q 
• Alice: compute SA=[{mB·ϕ′A(a)}]K=[{[{g·ϕB(b)}]P·ϕ′A(a)}]K 

Common Secret  
By Theorem 2.2, we have SA= SB + (ε1/K1, ε2/K2,…, εn/Kn), where each εi ∈{–1, 0, 1}. 
In particular, the difference between SA and SB can take at most 3n

 values. This 
difference can be eliminated in the follow-up communication of Alice and Bob. Thus, 
the shared secret is the vector SA. 
 

Remark. We express our gratitude to Gene Itkis for the idea to eliminate the difference 
between SA and SB using the follow-up communication of Alice and Bob.  
 
Security of Rounded GKE I 
 
Security of Rounded GKE I is based on hardness of the following is an analogue of the 
Discrete Logarithm Problem. 
 
Given:  

• a natural number n 
• a subset D of Mn( ) 
• a natural n-tuple P and g∈Xn=[0, 1)n 
• a vector x=[{g⋅A}]P  for some unknown A∈D 

Compute: A'∈D such that {g⋅A'}P = x 
  
Clearly, the larger is the set D the harder is the problem. However, there is a natural 
limitation on the size of D because of the requirement of quasi-commutation of matrices 
A and B. This and other GKE I – related problems will be analyzed in the work [4]. 
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Numerical example. We take in the setup as above: 
• n=2  
• P=(1018, 1018), K=(1010, 1010) as the parameters of rounding  
• M=(108, 108).   
• A=B= 2 and for a=(a0, a1)∈ 2 the 2×2 matrices ϕA(a), ϕ′A(a), ϕB(a), ϕ′B(a) are 

given by: 
                                                 a0      - a1  
 ϕA(a)= ϕ′A(a) = ϕB(a)= ϕ′B(a)=                            

                                                            a1         a0  
            As defined, these matrices satisfy the quasi-commutation equation (1.4). 
 

Public continuous parameter: g = (g1, g2) =(√2, √3).  

Protocol. Alice chooses a pair of secret integers (a0, a1) = (48176925, 18034725). Alice 
calculates the rounded vector  

y=(y1, y2)=([{g1a0 + g2a1}]P, [{- g1a1+ g2a0 }]P) . 
That is,  

 y=([{√2·48176925+√3·18034725}]P, [{-√2·18034725+√3·48176925 }]P)= 
([{68132460.728431422183990297539596+31237060.000532620547511774721314}]P, 
[{-25504952.688669116604000035676723+83444881.852435233704474767836253}]P) 

=(0.728964042731502072, 0.163766117100474732). 
Each coordinate y1, y2 of this y has exactly 18 digits because P=(1018, 1018). Alice 

sends this rounded vector y to Bob.  Independently Bob chooses a pair of secret integers 
(b0, b1) = (19082792, 27045821). Bob calculates the vector  

z=(z1, z2)=([{g1b0 + g2b1}]P, [{- g1b1+ g2b0 }]P) 
That is, 

z= ([{ √2·19082792 + √3·27045821}]P, [{-√2·27045821+ √3·19082792}]P) =   
([{26987143.254344799212512475172839 + 46844736.104413300451707772339473}]P,     
[{-38248566.863715063905876737732694 + 33052365.294268911065907204826118}]P) 

= (0.358758099664220248, 0.430553847160030467) 
and sends this vector z to Alice.   

Upon receiving the vector y from Alice, Bob calculates the rounded vector k=(k1, 
k2) by the formula: 

k =(k1, k2) = ([{ y1b0 + y2b1}]K, [{- y1b1+ y2b0 }]K) . 
That is, 

k=([{0.728964042731502072·19082792+0.163766117100474732·27045821}]K,  
[{-0.728964042731502072·27045821+ 0.163766117100474732·19082792}]K)=  

=([{13910669.202924365887545024+4429189.088964478616694972}]K, 
[{-19715431.015152556100441112+3125114.749276002412011744}]K)  

=(0.2918888445, 0.7341234463) 
Each coordinate k1, k2 of this k has exactly 10 digits because K=(1010, 1010). 

 
Upon receiving the vector z from Bob, Alice calculates the rounded vector 

k'=(k'1,k'2) by the formula: 
k'=(k'1, k'2)=([{z1·a0 + z2·a1}]K, [{- z1·a1+ z2·a0 }]K) . 

That is,   
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k' =([{ 0.358758099664220248·48176925 + 0.430553847160030467·18034725}]K,  
[{- 0.358758099664220248·18034725+ 0.430553847160030467·48176925}]K)  

=([{17283862.0606656640713774+ 7764920.231223180463966575}]K,  
[{- 6470103.6689668045121118 + 20742760.403090250806373975}]K) 

=(0.2918888445, 0.7341234463) 
Thus, the vector (0.2918888445, 0.7341234463) is the secret shared by Alice and Bob.   

Remark. Unlike in the general case of GKE, in this example Alice and Bob did not need 
any follow-up communication in order to establish the common secret out of k and k'. 
They know that k=k' because, on the one hand, Theorem 2.2 guarantees each coordinate 
of the difference k-k' can be either 0 or ±10-10 and, on the other hand, for  each coordinate 
of each vector k  and k' the 10th digit is neither 0 nor 9.  
 

Section 3. Geometric Key Establishment II 

In this section we present a key establishment scheme based on Main Example II 
and on the general commuting double action key establishment scheme of Section 1. We 
will refer to it as geometric key establishment II (GKE II).  
 First, we present the ideal GKE II scheme (i.e., without any rounding).  
 
Ideal Geometric Key Establishment II (GKE II) Scheme 
 
Setup (public parameters): 
• m and n are natural numbers  
• Xm×n=Mm×n([0,1)) is the set of all m×n matrices with coefficients in the semi-open 

interval [0,1). Each point of Xm×n is an m×n matrix g=(gij), where each gij ∈[0,1) 

For each real m×n matrix x=(xij) we use the notation {x}=({xij}), where {xij} stands for 
the fractional part of the real number xij. 

Lemma 3.1.  For any integer matrices A∈Mm( ), B∈Mn( ), and any g∈ Xm×n one has 
(3.1)     {{A⋅g}⋅B}={A⋅g⋅B}={A⋅{g⋅B}} . 
 
Proof. We will reduce the statement to Lemma 1.9. It suffices to show (similarly to the 
proof of Lemma 2.1) that the set G=[0,1) is a group. Indeed, we have already shown that 
in the proof of Lemma 2.1.This proves the lemma.   
 
Protocol 

• Alice and Bob: choose a non-secret g∈ Xm×n 
• Alice: choose a secret A∈ Mm( )  
• Bob: choose a secret B∈ Mn( ) 
• Alice→Bob: mA={A⋅g} 
• Bob: compute SB={mA⋅B}={{A⋅g}⋅B} 
• Bob→Alice: mB= {g⋅B} 
• Alice: compute SA={A⋅mB}={ A⋅{g⋅B}} 
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Common Secret   
By Lemma 3.1, SA = SB. 
In order to present the rounded GKE II, we need the following notation. 

 
Notation. For any real m×n matrices y = (yij) and z = (yij), the matrix inequality y ≤ z is 
equivalent to m×n scalar inequalities:  yij≤ zij for i=1,2,…,m; j=1,2,…,n. Also the 
inequality |y|<z means that y<z and -y<z. 
 For a natural m×n matrix P = (Pij) and a real m×n matrix g = (gij) such that each 
gij∈[0,1), define the P-rounding to a rational m×n matrix [g]P∈ Xm×n by the formula: 
[g]P=([gij]Pij),  
where [g]P is the same as in Rounded GKE I. For any natural m×n matrix P = (Pij) we 
denote P*= (1/Pij). 
 
Theorem 3.2. Let be P, Q, and K be natural m×n matrices. Then for any integer m×m 
matrix A and any integer n×n matrix B such that |A|⋅Q*≤ K*, P*⋅|B|≤ K* one has: either 
at least one coefficient of the matrix [{[{A⋅g}]P⋅B}]K equals 0, or at least one coefficient 
of the matrix [{A⋅[{g·B}]Q}]K  equals 0, or |{[{A⋅g}]P⋅B}-{A⋅[{g⋅B}]Q}|<K*. 
Therefore, [{[{A⋅g}]P⋅B}]K = [{A⋅[{g⋅B}]Q}]K+∆, where ∆ = (εij/Kij) and where each εij 

belongs to the set {–1, 0, 1}. In particular, the error matrix ∆ can take 3mn
 values. 

 
For the proof of Theorem 3.2 see Appendix B. 

 
 
Rounded GKE II Scheme 
 
Setup (public parameters):  

• natural numbers m and  n  
• natural m×n matrices P, Q, and K as parameters of rounding  

Protocol 
• Alice and Bob: choose a non-secret g∈ Xm×n  
• Alice: choose a secret A∈ Mm( ) such that |A|·Q*≤ K* 
• Bob: choose a secret B∈ Mn( ) such that P*·|B|≤ K* 
• Alice→Bob: mA=[{A·g}]P 
• Bob: compute SB=[{mA·B}]K=[{[{A·g}]P·B}]K 
• Bob→Alice: mB=[{g·B}]Q 
• Alice: compute SA=[{A·mB}]K=[{[A·{g·B}]P}]K 

Common Secret   
By Theorem 3.2, one has SA= SB + (εij/Kij), where each εij ∈{–1, 0, 1}. In particular, 
the difference between AA and SB can take at most 3m⋅⋅n

 values. This difference can be 
eliminated in the follow-up communication of Alice and Bob. Thus, the shared secret 
is the vector SA. 

 
The problem of security of Rounded GKE II follows the discussed above pattern of 
Rounded GKE I and will also be analyzed in [4]. 
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Numerical example. We take in the setup as above: 
• m=n=2  
• P=(Pij),  where each Pij=109, K=(Kij) where each Kij=105   
• M=(Mij),  where each Mij=103 

 
Public continuous parameter:  

                  √2      √3                                             
g = (gij) =                  
                  √5      √7  
 

Protocol. Suppose that Alice chooses a secret integer 2×2 matrix A: 
 

         123     456                                             
A =                     
         817    391  
 

Alice calculates the 2×2 matrix y=[{A⋅g}]  each element of which rounded to  9 decimal 
places: 

                      0.595265912   0.504847176  
y=[{A⋅g}] =  |                                                 
                       0.715059661      0.574272410 
 

and sends this 2×2 matrix y to Bob.  Suppose that at independently Bob chooses a secret 
integer 2×2 matrix B: 
 

         691     378                                             
B =                     
         529    109  
 

Bob calculates the 2×2 matrix z =[{g⋅B}]  each element of which rounded to 9 decimal 
places: 

           0.476448804     0.366264602                                             
z = [{g⋅B}]=                                                   

           0.725416006     0.620588401 
 

and sends this 2×2 matrix z to Alice.  Upon receiving the 2×2 matrix y from Alice, Bob 
calculates the 2×2 matrix k=[{y⋅B}] with the precision 5 decimal places after dot:  
     

                            0.39290   0.03885                                             
  k = [{y⋅B}]  =                                 
                            0.89633  0.88824   
 

Upon receiving the 2×2 matrix z from Bob, Alice calculates the 2×2 matrix k'=[{A⋅z}]  
with the precision 5 decimal places after dot: 
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                           0.39290   0.03885                                             
  k' =[{A⋅z}]  =                                 
                           0.89633  0.88824  
 

Remark. Unlike in the general case of GKE II, in this example Alice and Bob did not 
need any follow-up communication in order to establish the common secret out of k and 
k'. They know that k=k' because, on the one hand, Theorem 3.2 guarantees that each 
matrix coefficient of the difference k-k' can be either 0 or ±10-5 and, on the other hand, 
for each coefficient of each matrix k  and k' the 5th digit is neither 0 nor 9. 
 
 
 
Appendix A. General Key Establishment Scheme and its rounded versions 

 
We start with a natural generalization of Diffie-Hellman protocol. Apparently, 

this generalization is well known, but we have failed to find references.  Hence, we will 
take liberty to call it ‘basic key establishment scheme.’ 
 
Definition A.1. Let A, B and X, YA, YB, Z be sets. Let A×X→YA, B×YA→Z, and 
B×X→YB, A×YB → Z be a quadruple of maps (we denote them respectively by (a, x) → 
a(x), (b, y) → b(y), and (b, x) → b(x), (a, y') → a(y') for any elements a∈A, b ∈B, x∈X, 
y∈YA, y'∈YB).  We say that the quadruple is commuting if:  
(A.1)     a(b(x)) = b(a(x)) 
for any a∈A, b∈B,  x∈X.  

 
The basic key establishment scheme consists of the following setup and protocol. 

  
Basic key establishment scheme 
 
Setup: 
• sets A and B (of private parameters) 
• a set X (of shared parameters) 
• a set YA (of Alice’s transmittable elements) 
• a set YB (of Bob’s transmittable elements) 
• a set Z (of shared secret elements) 
• a commuting quadruple of maps A×X→YA, B×YA→Z, B×X→YB , A×YB →Z 

Protocol 
• Alice and Bob: choose a non-secret x∈ X 
• Alice: choose a secret element a∈A  
• Bob: choose a secret element b∈B 
• Alice→Bob: mA=a(x)  
• Bob: compute SB= b(mA) = b(a(x))  
• Bob→Alice: mB= b(x) 
• Alice: compute SA= a(mB) = a(b(x))  
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Common Secret   
    By Definition A.1, SA = SB. 
  
Remark.  The scheme is secure if the following problem is hard: given x ∈X and y∈YA, 
find a∈A such that y = a(x).  In the case of the original Diffie-Hellman scheme ([5]), this 
problem is known as the discrete logarithm problem.  
 

Of course, for the purpose of implementation of this basic scheme, it is natural to 
require that all the involved sets A, B, X, YA, YB, and Z are finite. In Sections 2 and 3 we 
presented a method for generation of a large family of finite key establishment schemes 
each of which represents a non-trivial approximation of the basic scheme. The richness of 
the family stems from its origin in an infinite or even continuous instantiation of the basic 
scheme. 
  Generalizing rounded schemes introduced in Sections 2 and 3, we propose here a 
general rounded key establishment (RKE) scheme. In the following definitions and 
results we need a mathematical concept of ‘metric space’. For the standard references, 
see e.g. [6].  
 
Definition A.2. A metric space is a pair (X, d), where X is a set and d:X×X → ≥0 is a 
distance function on X satisfying: 

• (symmetry) d(x, x')=d(x', x) for all x, x'∈X 
• d(x, x')=0 if and only if x=x' 
• (triangle inequality) d(x, x'') ≥ d(x, x') + d(x', x'') for all x, x', x''∈X 

 
Definition A.3. Let (X, d) and (Y, d) be metric spaces. Then a map F:X → Y is called 
metric if there exists a positive constant C such that d(F(x),F(x'))≤ C⋅d(x, x') for any x, 
x'∈X. More generally, given a function f:A → >0 , we say that a map A×X → Y (which 
we denote (a,x)→a(x)) is f-Lipschitz if  d(a(x),a(x'))≤ f(a)⋅d(x, x') for any x, x'∈X, a∈A.  
 
Definition A.4. Let (X, d) be a metric space. Let K be a discrete subset of X. Consider a 

map [⋅]: X → K (to be denoted by x → [x] ) such that for each x∈X the distance from x 
to [x] does not exceed the distance from x to any other point of K. We refer to any such 
map as K-rounding on (X, d). 

 
In what follows we will consider only infinite or even uncountable metric spaces.  

Definition A.5. Let (X, d) be a metric space. Let us consider an infinite ascending chain 
X1⊂ X2⊂ X3⊂ …⊂ Xk⊂… of discrete subsets (each inclusion is strict), and  let r={rk},  
k=1,2,…  be a decreasing sequence of positive real numbers converging to 0. Given an 

infinite family [⋅]k: X Xk of  Xk-roundings on (X, d) for k=1,2,… , we say that the 

family [⋅]k is r-saturated if d(x,[x]k)≤ rk for any point x and for each natural number k. 
 
Definition A.6. Let (X, d) be a metric space, x be a point of X, and r be a positive real 
number. Denote by B(x; r) the set of all points x'∈X such that d(x, x')<r. We refer to 
B(x;r) as the open ball of radius r centered at x. 

 15



                                                                  A. Berenstein, L. Chernyak, Geometric Key Establishment 
  

 
Definition A.7. Let (X, d) be a metric space, r={rk} be a sequence of positive real 
numbers, and N be a natural number. We say that an ascending chain X1⊂ X2⊂ X3⊂ …⊂ 
Xk⊂… of subsets of X is (r, N)-uniform if  

|B(x;rk)∩Xk|<N 
for every x∈ Xk and  each k=1,2,… .  

 
Informally speaking, (r,N)-uniform chains in X provide good approximations of 

points of X similarly to the way in which rational numbers provide good approximations 
of real numbers.     
 
Definition A.8. For a given (r, N)-uniform ascending chain X1⊂ X2⊂ X3⊂ …⊂ Xk⊂ … in 
a metric space (X, d) we say that two points k and k' of Xk are neighbors if d(k, k')<rk.  

By definition, any point k ∈ Xk has at most N neighbors. 
 
Theorem A.9. Let A, B, and X be sets, and A×X → YA, B×X→YB be maps. Let (YA, d), 
(YB, d), and (Z, d) be metric spaces, and let B×YA → Z be a g-Lipschitz map, A×YB → Z 

be a g′-Lipschitz map.  Also let [⋅]m: YA → (YA)m be an r-saturated rounding on (YA, d),  

[⋅]′m:YB → (YB)m be an r′-saturated family of roundings on (YB, d), and  [⋅]′′k:Z → ( Z)k 
be an r′′-saturated family of roundings on (YB, d) such that the ascending chain Z1⊂ Z2⊂ 
Z3⊂ …⊂ Zk⊂… is (3r′′, N)-uniform. Then for any commuting elements a∈A and b∈B 
such that g(b)<r′′k/(2rm), g'(a)<r′′k/(2r′m) (for some natural m, k) and any x∈X one has: 

[a([b(x)]′m)]′′k and [b([a(x)]m)]′′k are neighbors. 
 
Proof. By definition of saturated families of roundings, one has for any m: 

d(a(x),[a(x)]m)≤ rm, d(b(x),[b(x)]′m)≤ r′m . 
Therefore, for given m and k we have: 

d(b(a(x)), b([a(x)]m))≤ g(b)⋅d(a(x)), [a(x)]m) ≤ g(b)⋅ rm < r′′k /2,   
d(a(b(x)), a([b(x)]′m))≤ g′(a)⋅d(b(x)), [a(x)]′m) ≤g′(a)⋅ r′m < r′′k /2  . 

Denote z=(a(b(x))=(b(a(x)). Then d(z, b([a(x)]m))≤ r′′k /2, d(z, a([b(x)]m))≤ r′′k /2. 
Denote k1=[a([b(x)]′ m)]′′k and k2=[b([a(x)]m)]′′k. Note that   

d(k1, a([b(x)]′m))≤ r′′k, d(k2, b([a(x)]m))≤ r′′k . 
Then, by the triangle inequality,  

d(z, k1) ≤ d(z, a([b(x)]m))+d(k1, a([b(x)]m)) < r′′k/2 + r′′k =3r′′k/2 , 
d(z, k2) ≤ d(z, a([b(x)]m))+d(k2, b([a(x)]m)) < r′′k/2 + rk =3r′′k/2 . 

Finally, again by the triangle inequality,  
d(k1, k2) ≤ d(z, k1)+d(z, k2) <3r′′k/2+3r′′k/2=3r′′k 

That is, k1 and k2 are neighbors. Theorem A.9 is proved.  
 

Based on this general result we propose the following general rounded key 
establishment scheme. 
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Rounded key establishment (RKE) scheme: 
 
Setup 
• sets A and B of private parameters 
• a set X of shared parameters 
• infinite metric spaces (YA, d) and (YB, d) of  transmittable elements 
• an infinite metric space (Z, d) of shared secret elements 
• maps A×X→YA, B×X→YB, a g-Lipschitz map B×YA→Z, and a g′-Lipschitz map 

A×YB→Z such that the quadruple of these maps is commuting 

• an r-saturated family of roundings [⋅]m: YA→(YA)m on (YA, d) and an r′-saturated 

family of roundings [⋅]′m: YB→( YB)m on (YB, d) 

• an r′′-saturated family of roundings [⋅]′′k: Z→( Z)k on (Z, d) such that the 
ascending chain Z1⊂ Z2⊂ Z3⊂ …⊂ Zk⊂… is (3r′′,N)-uniform 

Protocol 
• Alice and Bob: choose a shared parameter x∈X  and natural numbers m, k 
• Alice: choose a private a∈A such that g'(a)< r′′k/(2r′m) 
•  Bob: choose a private b∈B such that g(b)<r′′k/(2rm)  
• Alice→Bob: mA=[a(x)]m 
• Bob: compute SB= [b(mA)]′′k= [b([a(x)]m)]′′k 
• Bob→Alice: mB= [b(x)]′m 
•  Alice: compute SA= [a(mB)]′′k = [a([b(x)]′m)]′′k

Common Secret   
    By Theorem A.9, SA and SB are neighbors. Therefore, after making at most N 

choices, and without revealing the elements they computed, Alice and Bob select SA as 
their shared secret.  

 
 

 
Appendix B. Proof of results of Sections 2 and 3 
  
Proof of Theorem 2.2. By definition, one has: 

 
[{g·A}]P={g·A} + θ1, {g·B}Q = {g·B} + θ2, 

where -½·P-1≤ θ1≤ ½·P-1  and -½·Q-1≤ θ2 ≤ ½·Q-1. Therefore,  
 

 [{g·A}]P·B′ = ({g·A}+θ1)·B′={g·A}·B′ +θ1·B′= {g·A}·B′ + E1, 
where E1=θ1·B′. Similarly,  

 
[{g·B}]Q·A′ = ({g·B}+θ2)·A′={g·B}·A′ +θ2·A′= {g·B}·A′ +E2 , 

where E2=θ2·A′. 
By the assumptions, one has: 

|E1| = |θ1·B′| ≤ ½·|P-1·B′|< ½·P-1·B′ ≤ ½·K-1, |E2| = |θ2·A′| ≤ ½·|Q-1·A′| < ½·Q-1·B′ ≤ ½·K-1. 
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In its turn, the inequality |E1|≤1/2·K-1 implies that either the vector {{g·A}P·B′}K  has a 
coordinate equal to 0 or:  

 
{[{g·A}]P·B′}= {{g·A}·B′ + E1}= {{g·A}·B′} + E1={g·A·B′} + E1 . 

 
Similarly, the inequality |E2|≤1/2·K-1 implies that either the vector {{g·B}Q·A′}K  has a 
coordinate equal to 0 or:  

 
{[{g·B}]Q·A′}= {{g·B}·A′ + E2}= {{g·B}·A′} + E2={g·B·A′} + E2 . 

Since A·B′= B·A′, one has {[{g·A}]P·B′}-{[{g·B}]Q·A′}= E1- E2. Finally note that     
 

|E1- E2| ≤ |E1| + |E2| < 1/2·K-1 +1/2· K-1 = K-1 
Theorem 2.2 is proved.   

Proof of Theorem 3.2. By definition, one has [{A⋅g}]P = {A⋅g}+θ1, [{g⋅B}]Q={g⋅B}+θ2, 
where θ1 and θ2 are real m×n matrices such that 

 
-½ P*≤ θ1≤ ½ P* and -½ Q*≤ θ2 ≤ ½ Q*. 

 
Therefore, ([{A⋅g}]P)⋅B=({A⋅g} + θ1)⋅B={A⋅g}⋅B + θ1⋅B= {A⋅g}⋅B+E1, where E1=θ1⋅B. 
Similarly, A⋅([{g⋅B}]Q)=A⋅({g⋅B}+θ2⋅Q-1)= A⋅{g⋅B}+A⋅θ2= A⋅{g⋅B}+E2 ,where E2= A⋅θ2. 
By the assumptions, one has: 

 
|E1| = |θ1⋅B| ≤ ½⋅|P*⋅B| < ½⋅K*, |E2| = |A⋅θ2| ≤ ½⋅|A⋅Q*| < ½⋅K*. 

 
In its turn, this implies that either at least one coefficient of the matrix [{[{A⋅g}]P⋅B}]K 
equals 0, or at least one coefficient of the matrix [{A⋅[{g·B}]Q}]K equals 0, or:  

 
{([{A⋅g}]P)⋅B}= {{A⋅g}⋅B+E1}= {{A⋅g}⋅B}+E1={A⋅g⋅B}+E1 . 

 
Similarly, the above implies that either at least one coefficient of the matrix 
[{A⋅[{g·B}]Q}]K  is 0 or: 

 
{A⋅([{g⋅B}]Q) }= {A⋅{g⋅B}+E2}={A⋅{g⋅B}}+E2={A⋅g⋅B}+E2 . 

Therefore 
{([{A⋅g}]P)⋅B}-{A⋅([{g⋅B}]Q)}= E1 - E2 . 

Finally note that     
|E1- E2| ≤ |E1| + |E2| < 1/2·K* + 1/2· K* = K*. 

Theorem 3.2 is proved.   
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