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Abstract

The Unbalanced Oil and Vinegar scheme (UOV) is a signature
scheme based on multivariate quadratic equations. It uses m equations
and n variables. A total of v of these are called “vinegar variables”. In
this paper, we study its security from several points of view. First, we
are able to demonstrate that the constant part of the affine transforma-
tion does not contribute to the security of UOV and should therefore
be omitted. Second, we show that the case n > 2m is particularly
vulnerable to Grobner basis attacks. This is a new result for UOV
over fields of odd characteristic. In addition, we investigate a modifi-
cation proposed by the authors of UOV, namely to chose coefficients
from a small subfield. This leads to a smaller public key. But due to
the smaller key-space, this modification is insecure and should there-
fore be avoided. Finally, we demonstrate a new attack which works
well for the case of small v. It extends the affine approximation attack
from Youssef and Gong against the Imai-Matsumoto Scheme B for odd
characteristic and applies it against UOV. This way, we point out seri-
ous vulnerabilities in UOV which have to be taken into account when
constructing signature schemes based on UOV.
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1 Introduction

1.1 Public Key Cryptography in General

Public key cryptography is used in e-commerce systems for authentication
(electronic signatures) and secure communication (encryption). In terms of
key distribution, public key cryptography has significant advantages over
secret key cryptography. Moreover, efficient signature schemes cannot be
obtained by secret key schemes. The security of widely used public key
algorithms relies on the difficulty of a small set of problems from algebraic
number theory. The RSA scheme relies on the difficulty of factoring large
integers, while the difficulty of solving discrete logarithms provides the basis
for the ElGamal and Elliptic Curve schemes [MvOV96]. Given that the
security of these public key schemes rely on such a small number of problems
that are currently considered hard, research on new schemes that are based
on other classes of problems is worthwhile. Such work provides a greater
diversity and avoids the risk that the information society joints all its “crypto
eggs” in one basket.

In addition, important results on the potential weaknesses of existing
public key schemes are emerging. Techniques for factorisation and solving
discrete logarithm continually improve. Polynomial time quantum algo-
rithms can be used to solve both problems [Sho97]; fortunately, quantum
computers with more than 7 bits are not yet available and it seems unlikely
that quantum computers with 100 bits will be available within the next
10-15 years. Nevertheless, this stresses the importance of research into new
algorithms for asymmetric encryption and signature schemes that may not
be vulnerable to quantum computers.

1.2 Multivariate Cryptography

One way to achieve more variety in asymmetric cryptology are schemes
based on the problem of solving Multivariate Quadratic equations (M Q-
problem), e.g., see [MI88, Pat96a, Pat96b, CGP01, KPG99, Moh99, CGP03,
YC04, KS04]. These schemes use the fact that the M Q-problem, i.e., finding
a solution z € F” for a given system of m polynomial equations in n variables
each

vi = pi(r1,...,7)

Y2 = pa(T1,...,7n)

Ym = pm(l'l’"')xn)?
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for given y1,...,ym € F and unknown z1,...,z, is difficult, namely N'P-
complete (cf [GJ79, p. 251] and [PG97, App.] for a detailed proof)). In the
above system of equations, the polynomials p; have the form

n
pim, . wn) = > Yagkwire+ Y Bigrs + o,
1<j<k<n =1

for 1 <i <myl <j <k <nandag,Bij,7%;r €F (constant, linear,
and quadratic terms). This polynomial-vector P := (p1,...,pm) forms the
public key of these systems. Moreover, the private key consists of the triple
(S,P',T) where S € AGL,,(F), T € AGL,,(F) are affine transformations and
P’ € MQ,, m is a polynomial-vector P’ := (p},...,p),) with m components;
each component is a polynomial in n variables z,...,z/ . Throughout this
paper, we will denote components of this private vector P’ by a prime .
In contrast to the public polynomial vector P € MQ,, ,,, the private poly-
nomial vector P’ does allow an efficient computation of x/, ..., 2}, for given
Yis. o,y At least for secure M Q-schemes, this is not the case if the public
key P alone is given. The main difference between M Q-schemes lies in their
special construction of the central equations P’ and consequently the trap-
door they embed into a specific class of M Q-problems. We refer to [KPGO03]
for an overview of the different proposed schemes. Note that most of them
are already broken e.g., [Pat95, KS99, GC00, FJ03, CDF03, WBP04]. We
describe in this paper some new results on the cryptanalysis of the Un-
balanced Oil and Vinegar scheme which is still considered to be secure for
certain choices of parameters.

1.3 Outline and Achievement

We start with an explanation of the Unbalanced Oil and Vinegar scheme
(UOV). Second, we outline in Sect. 3.1 why the constant part of the initial
affine transformation can be omitted as it does not contribute to the overall
security of UOV. In Sect. 3.2, we give a short description of the Shamir and
Kipnis attack against the (balanced) oil and vinegar scheme together with its
extension on the unbalanced case. Then we show how this attack breaks the
scheme proposed in [KPGO03, Sect. 14, ex. 4]. Moreover, we show that the
case n > 2m is particularly vulnerable to Grébner basis attacks (Sect. 3.3).
This way, we improve a result of Courtois et al. who were able to defeat the
cases n > 4m [CGMT02] — and to some extent also n > 3m. However, for
their most efficient attack to work, they need an even characteristic. The
attacks demonstrated in this paper do not have this restriction. Finally, we
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extend the attack from Youssef and Gong [YGO01] against the Scheme B from
Imai and Matsumoto [IM85] against Unbalanced Oil and Vinegar scheme —
both for even and odd characteristic in Sect. 3.4. The algorithm presented
in [YGO1] only works for the even case. We conclude with Section 4.

2 Oil and Vinegar Signature Schemes

In 1997, Jacques Patarin suggested a scheme called “Oil and Vinegar” for
public key cryptography [Pat97]. This scheme uses multivariate quadratic
polynomial equations over small finite fields as public key and similar poly-
nomials as the private keys.

In Oil and Vinegar Schemes, the trapdoor is achieved by a special struc-
ture of multivariate quadratic polynomials p,. Let o € N be the number of
oil variables and v € N the number of vinegar variables. We have n = o+ v.
Moreover, we have m = o and o = v (or also n = 2m) for the case of Oil
and Vinegar Schemes.! The private polynomials p; for 1 < i < m can be
represented by

(2, .. 2h) = 2y Lini (2, .. 2)) + .o+ 2l Lin (2, .. 7)) +

+Af (2, )
= > vkt Y Bk +af,

1<j<v 1<k<n

1<k<n
for Lin’; j linear, Af’; affine or — more general — for 1 <i<m,1<j <w
and 1 <k <n and afpﬁ;,kv%{,j,k € F. Here the vinegar variables z,..., 2}
may be quadratically combined while oil variables z_ ,,...,z;, do not mix
with oil variables.

The trapdoor consists of an affine transformation S € AGL,(F) that
mixes the oil and vinegar variables, i.e., (z,...,2),) = S(x1,...,x,) leads
to an affine relation between the public variables x; and the private variables
x}. In order to obtain a solution for such a system, the legitimate user fixes
all vinegar variables to random values. This way, he obtains a (random)
linear equation in the oil variables which can be solved with ordinary Gauss
elimination.

Generally speaking, the (unbalanced) oil and vinegar scheme is designed
for a signature scheme. It is not suitable for encryption because of the

1The above notation clearly has some redundancies. The problem in this context is
that different papers about these schemes use very different notation. With the above
settings, we use a kind of “generalised notation” which suits most of them.
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parameter v, which should be chosen too high for an appropriate security
level. To sign a message M € F™, we perform the following steps:

1. Assign random variables aq, ..., a, to all the vinegar variables.

2. After substituting the random values, the system M = P’(a) becomes
linear. Solve this linear system for the remaining m variables aq, ..., a,
of a by Gaussian elimination. If the linear system is singular, return
to the first step and try with new random vinegar variables.

3. Map the solution a to the signature z by z = S~1(a).

Verifying the signature x € F™ is just the evaluation of x by the public
system P. An attacker wants to forge signature on a given message M =
(M, ..., My,), needs to solve the system:

My = pi(z1,...,2p)

M, = Pm(fUla cee 7xn)

In general, this is an M Q-problem and therefore difficult to solve.

As the original Oil and Vinegar scheme was broken in [KS98|, Kipnis
et al. extended it to the so-called “Unbalanced Oil and Vinegar” signature
scheme [KPG99] (see also the extended version [KPGO03]). For an Unbal-
anced Oil and Vinegar Scheme (UOV), we have v > o (or equivalently
n > 2m). According to [KPG99, KPGO03], this case is considered to be se-
cure if the number of vinegar variables is not too “close” to the number of
oil variables. In symbols: v % o.

3 Cryptanalysis

3.1 Attacking the Constant Part of UOV

We first show that the affine transformation S in the oil and vinegar scheme
should be replaced by a linear transformation. This observation can be easily
generalised to any multivariate cryptographic system which uses one or two
affine transformations to hide an internal structure (e.g., enTTS [YCO04]), cf
App. A for a more detailed description of the generalisation.

Consider the affine transformation S € AGL,,(F), which can be uniquely
represented by an invertible matrix Mg € F**™ and a vector ms € F", i.e.,
S(x) = Mgz + mg for all z € F". Moreover, we can uniquely rewrite S
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as S(z) = (¢ + ms) o (Mgz) where 2’ denotes the output of Mgz and o
represents the composition of functions. We now express the public key P
as a composition of the private key (P, S):

P = PoS
= P o[(z' +ms)o (Mgz)]
= [P'o(z' +ms)| o (Msx)
= P'o (Msx)

for some system of equations P”. As (2’ 4+ my) is a transformation of degree
1, it does not change the overall degree of P”, i.e., as P’ consists of equations
of degree 2 at most, so will P”. In addition, due to its construction, (Mg, P")
forms a private key for the public key P. Moreover, the private key equations
P’ were random equations. The transformation (' + ms) does not change
the internal structure of P’.

Therefore, we can conclude that the use of an affine instead of a linear
transformation does not enhance the overall security of the (unbalanced) oil
and vinegar schemes. In fact, we can draw a similar conclusion for all such
systems — as long as it is possible to replace the equation P’ by an equation
of similar shape. This is always the case if P’ allows a constant, non-zero
term and also non-zero linear terms. The corresponding observation for
HFE has been made by Toli [Tol03].

Remark: It is also possible to extend this observation to other multivari-
ate cryptographic systems, such as enTTS. See App. A for a discussion. In
this context, we want to point out that C* systems such as Sflash [CGP03]
are immune against this observation as it is not possible to embed a constant
into the private polynomial.

3.2 The Kipnis and Shamir Attack

After this initial observation, we move on to the attack of Kipnis and Shamir
against the Balanced Oil and Vinegar scheme. The main idea in this attack
is to separate the oil and the vinegar variables, which enables the attacker
to access an isomorphic copy of the private key. This way, an attacker can
forge arbitrary signatures. The attack is very efficient for all v < m. We
describe the attack here for v = m and thus 2m = n.

We take only the quadratic terms of the private P’ and the public P
equations into account. In odd characteristic, we can uniquely represent the
private key equations (resp. public key equations) by z'P/z (resp. z'"P,2’)
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for 0 < i < m, where PZ-’ and P; are symmetric matrices (here t denotes
transposition). For even characteristic, the unique symmetric matrices P/ +
P* and P, + P! where P} and P; are upper-triangular matrices belonging to
F™*™ are considered. For simplicity, we denote these matrices again by P/
and P;.

Note that because of the special structure of the private equations P’,
the matrices PZ»’ for 1 <7 < m have the form:

/ 0 Ai
where 0, A;, B;, C; are submatrices of dimension m x m. Because P = P’o S,
we obtain

B, C;
It is clear that each P{ maps the subspace z,,+1 = -+ = T2y, (0il subspace)
to the subspace 1 = -+ = x,,, = 0 (vinegar subspace). If P]{ is invertible,

we can then conclude that each P{P;‘l maps the oil subspace to itself.
Consequently the image of the oil subspace under S, called the subspace O, is
a common eigenspace for each Pin_l with 1 <4 < j < m. In [KS98, Sect. 4],
Shamir and Kipnis describe two very efficient algorithms for computing the
common eigenspace O of a set of transformations. Picking a subspace V for
which O 4V = F™ allows us to separate the oil and the vinegar variables.
This way, we obtain an isomorphic copy of the private key (P, S).

In [KPG99, Sect. 4], an extension based on a probabilistic approach of
the previous attack is described which also works for v > m (or n > 2m)
with complexity O(q"~™ tm?*) = O(¢" 2™~ Im?).

Application against the Parameters from [KPGO03, Sect. 14] In
order to avoid the birthday paradox, [KPG99, Sect. 8] describes a modifica-
tion of UOV which fixes the linear terms of the public equations depending
on the message M. This way, it is no longer possible to obtain a collision for
different messages M7 # Ms and the same public key, as this public key now
also depends on the message M. We consider this construction to be secure
and therefore refer to [KPG99, Sect. 8] for a detailed description. However,
its application in [KPGO03, Sect. 14], Example 4 is flawed. In order to derive
a smaller public key, the authors use the trick of restricted coefficients (cf
[KPGO03, Sect. 10]). In a nutshell, all coefficients in the affine transformation
S and the system of private polynomials P’ are not chosen from the field
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F but from a strictly smaller subfield F. This way, the public key P will
only have coefficients from F as P = P’ o S and subfields are closed under
addition and multiplication. Thus, we derive a public key which is a factor
of (log |F|/log |F|) smaller than the original key.

In Example 4, the authors of [KPG03] propose F = GF(16), F = GF(2),
m = 16, v = 32/48 and obtain a public key with 2.2kB/4 kB — this is 4
times smaller than without this trick. However, we can apply the attack from
the [KPG99, Sect. 4] (see above) against the UOV system over F = GF(2).
This is possible as the Kipnis-Shamir attack does not take linear terms into
account but only quadratic terms. The crucial point is that the linear terms
are from GF(16) while the quadratic terms are from a subfield isomorphic
to GF(2). As soon as we derived an isomorphic copy of the private key
(P,S) over GF(2), we can translate it to GF(16) and are now in the same
position as a legitimate user. In particular, we can do all computations
necessary to translate the linear parts of the public key (over GF(16)) to the
corresponding private key (now, also over GF(16)). As we have ¢ = 2, the
attack complexity is 23271671164 = 232 or 248-16-1 164 = 247 and therefore
far less than the claimed security level of 264,

Remark: Although the algorithms from [CGMTO02] achieve a lower run-
ning time, they are not applicable in this case: they are only able to solve
a given instance of an M Q-problem. For this attack, we need the fact that
we actually derive a valid private key of the UOV-system.

3.3 Attacks using Grobner Basis Algorithms

The article of Daum, Felke, and Courtois [CDF03] outlines a way of attack-
ing HFE with Grobner Basis algorithms. The attack works for m < n, i.e.,
less equations than variables. The idea is to add n—m linear equations. This
way, the number of variables can be reduced to m. On the other hand, a
system with n variables and m equations is expected to have ¢~ solutions
on average. Therefore, adding a total of n — m linear equations will lead to
one solution on average. Repeating this experiment a few times (e.g., 6, cf
Fig. 1), we will find at least one solution.

In our experiments, we fixed n — m variables to random values from
F instead of adding n — m linear equations. From a mathematical point
of view, both ideas are equivalent, as the transformation S already gives
a random system of degree 1 equations. In a first step, we computed the
average number of tries for a series of experiments where n takes values from
10 to 24, and v goes from 1 to n — 1. Figure 1 shows that we need only a
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few tries for a given system of equations until we find a solution. In more
than 60% of the cases, we obtain a solution with the first random fixing of
variables, after that the number of necessary tries converts quickly to zero.

Percent of number of runs for q=2
0.6
057 |
0.4+ \\

ercen \
p 0.3] \

0.2 \
0.1

Figure 1: Occurrence of number of runs.

In a second step, we investigated the time complexity of the attack for
fixed m and varying v. From experiments, we could conclude that the
time complexity increases exponentially with increasing v. This fact can be
understood intuitively by the observation that for increasing v, the scheme
becomes more random, which makes it more difficult to solve. However, as
the number of solutions increases by ¢?, i.e., exponentially, the probability
of finding one out of these ¢¥ solution becomes higher, too.

In particular, we investigated the logarithmic time complexity (T) for
varying the number of equations m for the two values v = 2m, v = 3m
in characteristics ¢ = 2,q = 3 and ¢ = 16. The corresponding graphs
can be shown in figures 2, 3, and 4. In Table 1, we computed the line
that approximately fitted the points from our experiments for the extended
Grobner attack on UOV.

From these experiments, we conclude that the number m of equations
should be higher than 38 for characteristic 2 and higher than 24 for charac-
teristic 3 both for n > 2m and n > 3m in order to obtain a security level
greater than 264 In this paper, we do not predict the behaviour of the curve
for ¢ = 16 as the graph does not clearly convert to a straight line. To see its
behaviour for m > 8 — and therefore, to make predictions, we would need
to run more experiments. Unfortunately, the current computational power
available does not permit this.

These lowerbounds on the minimum number of equations are much
higher than the bounds proposed in [KPGO03| and later in [CGMT02]. All

experiments in this section were carried out with MAGMA and used its
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Table 1: Equations representing the time complexity of the extended
Grobner Attack

‘ v q Equation ‘ Base ’
v=2m | q=2 | -17.5341.62m | 3.07
v=3m | ¢q=2 |-16.664+1.60m | 3.03
v=2m | q=3 |-23.1742.74m | 6.68
v=3m | q=3 | -21.8542.67Tm | 6.36
v=2m | ¢g=16 | -21.1444.82m | 28.20
v=3m | ¢g=16 | -21.89+5.03m | 32.63

Log time for v=2*m, q=2, and varying m Log time for v=2*m, g=2, and varying m

T4

Figure 2: Graphs for logarithmic time in function of m with v = 2m, resp.
3m, and g = 2

implementation of Faugere’s algorithm F4 [Fau99]. Given the fact that his
algorithm Fj5 [Fau02] has a far better running time, we expect the attack
to be even more efficient with this method. Unfortunately, we do not have
access to an actual implementation of it.

3.4 Exploiting the Existence of Affine Subspaces

This attack extends the attack of Youssef and Gong [YGO1] against the Imai
and Matsumoto Scheme B [IM85]. It exploits the fact that a cryptosystem
can be approximated by several affine equations. The original attack was
designed for fields of even characteristic. The attack described in this section
is generalised to all characteristics.

In a nutshell, the attack assembles several points belonging to the same
affine subspace W. Having w points x1,...,%, € F" for which UOV is
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Log time for v=2*m, q=3, and varying m Log time for v=3*m, g=2, and varying m

12 e
-

129 -

109
109

10 105 11 lilr.r.IS 12 125 13 10 10.5 11 l:rlﬁs 12 125 13

Figure 3: Graphs for logarithmic time in function of m with v = 2m, resp.
3m, and ¢ = 3

Log time for v=2*m, q=16, and varying m Log time for v=3*m, q=16, and varying m
15 g
P / o] //
10 ~
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5]
5]
} 0T T T

073 2 56 7 8 3 4 2 6 7

-5 =59 //

Figure 4: Graphs for logarithmic time in function of m with v = 2m, resp.
3m, and ¢ = 16

affine, a function F'(z) = Az +b can be used to describe the output of UOV.
To launch the attack, we first compute the corresponding y; = UOV (z;) for
1 <i<wand y; € F™. With this knowledge, we can determine for any
given 3/ if it belongs to the subspace W and — if this is the case — compute
a vector a € F¥ with v/ = Y"1 | a;y;. As the subspace W is affine, we can
then determine the corresponding =’ € F" as Y .’ | a;z;. In the following
section, we will present several ways of computing the points z;, i.e., to
determine one or several subspaces W.

For UOV, there exist approx. ¢V subspaces of dimension o = m on which
UOV is affine. Moreover, all these subspaces are disjunct. If we can find
(0o + 1) linearly independent points of the same subspace, we completely
broke the scheme for this subspace. If we find fewer, e.g., w points, we have
at least covered ¢ points of the corresponding subspace W. Repeating the
search for (o + 1) points ¢ times, we break the whole scheme. Note that
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it is sufficient for the signature forgery of a given y € F"" if we know one
subspace W for which y € W. Therefore, we do not need to know all ¢
subspaces but only a small number for forging any given signature x € F"
with high probability.

In order to search for points which are in the same subspace, we use the
following observation: if the 3 points Rj, Rs, R3 € F™ are in the same affine
subspace with respect to UOV, the following condition has to be satisfied:

UOV(Rl) — UOV(RQ) — UOV(Rg) + UOV(—Rl + Ry + Rg) =0. (1)

Using this property, we can determine points of the same affine subspace re-
peating the heuristic algorithm described in Figure 5 several times. The cor-
responding algorithm for even characteristic has been described in [YGO1].

Input:  point Ry, public key P of UOV
Output: A pair (R;, R2) of points which belong to the same affine subspace
repeat
pass «— 0
trials «— 0
Ry — Random(F")
0 — —R1+ Ry
repeat
trials « trials + 1
R3 «— Random(F"™)
Ry — 6,4+ R3
0y — UOV(Ry) —UOV(Ry) —UOV (R3) + UOV (Ry)
if (6, = 0) then pass «— pass + 1
until (pass > threshold) or (trials > q* - threshold)
until (pass > threshold) or (trials > q* - threshold)
OUTPUT (Ry, R2)

Figure 5: Algorithm to find a pair of points in the same affine subspace for
which UOV is affine

Repeating this algorithm often enough for a fixed point R;, we obtain
(04 1) linearly independent points of one affine subspace. The complexity
of the algorithm will be roughly O(¢?"), according to the probability that
Ry, Ry and R3 belong to the same affine subspace.

This attack can be improved using the relation

UOV(Ry) + UOV(Ry) — UOV(Ry + Ry) = b (2)
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for some fixed b € F™. As soon as we find a triple (Ry, R2, R3) € (F")3
of points which yield §, = 0 in Algorithm 5, we use (2) to check if all of
them yield the same constant b. If this is the case, we can conclude with
probability ¢~2™ that all three points belong to the same subspace. At this
point, we can change to another algorithm: instead of checking triples, we
now check pairs. If the pair (R, R') yields the constant b, we found a new
candidate belonging to the same subspace as R;. Using the other points
found so far, we can increase the probability that R’ is genuine further by
q~™ with each point we try. We summarise this algorithm:

1. Find a triple (Ry, R2, R3) € (F)3 which satisfies (1).
2. Using this triple and (2), determine the value of the constant b € F™.
3. Use (2) to find more points R’ € F™ in the same subspace.

4. As soon as (0 + 1) points R € F” are known, determine the value of
the matrix A by Gaussian elimination.

The running time of this algorithm is O(¢?" + (n — v)¢") on average as we
chose the points Ry and Rs independently from the point R; in the first
step and R’ also independently from R;. The overall running time to find
a total of (o + 1) points in the same subspace becomes therefore O(¢??) as
O(0g") is negligible in comparison to O(g?").

We are able to speed up Algorithm 5 from Section 3.4 if we can spend
some memory and also have m > v, i.e., we do have “enough” equations
in relation to the dimension v of the affine subspaces to be found. This
is certainly not true for UOV — here we have typically m < v or even
m < 2v (see above). However, for other multivariate quadratic systems, this
condition may hold. In particular, it is the case for System B of Matsumoto-
Imai, cf [YGO1]. We therefore present two ways of speeding up Algorithm 5.
We explain it for the example of UOV to simplify the discussion but want
to stress that it also works against System B or any other multivariate
quadratic system which has affine approximations of small dimension.

3.4.1 Triple-Algorithm

If we can spend O(kq?") of memory for some small k (e.g., 10 < k < 20),
we can achieve a time/memory-tradeoff for finding all subspaces in UOV
by using the following technique. In the precomputation phase, we evaluate
random pairs (R, R2) €r F" x F™ using (2). The probability for each
of these pairs to have points in the same affine subspace is ¢~ (birthday
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paradox). Moreover, we know that two points in the same subspace will yield
the same constant b € F™. On the other hand, two points which are not in
the same subspace will yield a random value v € F™. The probability for
each of these values to occur is ¢7™ with m > v. As we were dealing with a
total of kg®¥ pairs, we do not expect two random values vy, v € F” to occur
more often than, say, g times. Therefore, all values occurring more often
than % are constants b with very high probability. Checking the points in
the corresponding pairs using (1), we can even distinguish pairs of different
subspaces which yield the same constant b. After this precomputation step,
we can check for each point R’ € F" to which of the ¢V subspaces it belongs,
using O(q") computations on average. After O(og") trials, we have (o + 1)
points for each subspace and can therefore determine the matrix A € F**"
and the vector b for the affine equation F'(z) = Az +b. The above algorithm
can be summarised as follows:

1. Use Equation 2 on kq?" random pairs (R, Ry) €r F* x F* and store
triples (b, R1, R2) € F™ x (F")?

2. Check for each value b; € F™ how often it occurs in the stored list

3. For values b; which occur at least g times, use (1) to check whether
the corresponding triples belong to the same affine subspace.

4. Use (2) to determine more points R’ € F™ for each of these subspaces.

The overall running time of this algorithm is O(¢??). However, the drawback
is that we need an amount of memory that grows exponentionally with 2v.
Therefore, it seems to be advisable to use the following algorithm O(g¢")
times instead. This leads to the same overall running time but requires less
memory, namely only O(gq").

3.4.2 Pair-Algorithm

Using a similar idea, we can also reduce the running time for finding the
corresponding subspace W for one given point R; € F". However, we
need O(kq") memory for some small k, e.g., 10 < k& < 20. In this setting,
we evaluate pairs (Rj, Ry) for randomly chosen Ry €r F™ and store the
corresponding triples (b, Ry, Ry) € F™ x (F*)2. With a similar argument as
for the previous algorithm, we expect a random distribution for the values
b; € F™ — except if the pair (Ry, Ry) for given Rj, Rz is in the same vector
space W . This event occurs with probability ¢ V. Therefore, we can assume
that the correct value b will occur k times on average and with very high
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probability at least % times. As soon as we have found this value b, we
can look for more values R’ which satisfy (2). The overall running time of
this algorithm is O(kq") for the first step and O(og") for the second step,
i.e., O(q") in total. However, the drawback is that we need an amount of
memory that grows exponentionally with v.

Both speed-ups do no longer work for v,m = 5 as the “gap” between
q~ " and ¢~ no longer exists. Therefore, we cannot distinguish anymore
between values b and random values.

The advantage of the affine approximation attack against UOV is that
we know exactly the structure of these affine subspaces. In addition, all
these affine subspaces are disjunct. This was not the case for System B
from Matsumoto-Imai [IM85]. Theoretical predictions were therefore more
difficult.

(2

4 Conclusions

In this paper, we studied the security of the public key signature scheme
“Unbalanced Oil and Vinegar” which has been proposed by Kipnis, Patarin,
and Goubin in [KPG99] and extended in [KPGO03]. We studied its resistance
against a modified Grobner basis attack and concluded that the case 2m <
v < 4m is particularly vulnerable. In addition, we demonstrated that the
choice of parameters in [KPGO03, Sect. 14] for Example 4 is insecure under
an attack from the previous paper [KPG99]. Moreover, we implemented and
simulated an attack using Grobner bases against the other parameter sets
described in [KPGO03, Sect. 14]. We conclude that they allow a security-level
of 264 as claimed in the paper. However, as we did not have access to the
algorithm F5 [Fau02], we recommend to be cautious as this algorithm is
expected to have a rather small running time, therefore, its effect on UOV
should be studied more carefully.

In addition, we showed that the constant part of the affine transformation
S does not contribute to the overall security of UOV — at least not for
attacks which recover the private key.

Finally, we described a new attack against cryptosystems which have
small affine subspaces and applied it against UOV. In particular, param-
eters with ¢” small are shown to be very vulnerable against this type of
attack. The attack is very elegant and the occurrence of affine subspaces is
a very natural property. We therefore expect it to be efficient against other
multivariable cryptographic schemes which have a high number of affine
subspaces.
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A Attack against Affine Parts in M Q-cryptosystems

In this appendix, we show how the observation from [Tol03] on HFE can
be applied against any multivariate cryptographic scheme which allows to
embed a constant part into its (quadratic) centre. For the ease of under-
standing, we demonstrate this attack on a modified UOV which uses two
affine transformations S, T rather than only one.

Let S € AGL,(F) and T' € AGL,,(F). Then there exists a unique,
invertible matrix Mg € F"*" (resp. Mp € F™ ™) and a unique vector
vs € F™ (resp. vy € F"™) which describes the affine transformation S (resp.
T) by S(x) = Mgz + vs where x € F™ is an input vector (resp. T'(z) =
Mrx + vy for x € F™). Moreover, we can rewrite the affine transformation
S as S(z) = (2' + vs) o (Mgz) where z’ denotes the output of Mgz and
o is the composition of functions. In addition, we can rewrite the affine
transformation T as T(z) = (Mra") o (v + Mz 'v;), where 2" denotes the
output of = + M, Yve. As My is an invertible matrix, the matrix My e
F™>*™ exists and is unique.

We now express the public key P as a composition of the private key

P = ToP oS
= [(Mri) o (2 + My v)] o P o [(2' + vg) o (Msz)]

where # is the output of P’ o [(z' + vs) o (Mgz)] and & is the output of
(% + Mzptv) o P o[(2! + vs) o (Msa)].

P = (Mrz)o|(Z+ Mflvt) oP' o (:c’ + v,)] o (Mgx)
= (Mrz)o P’ o (Mgx)

for some system of equations P”. As both (2’ + vs) and (7 + My v;) are
transformations of degree 1, they do not change the overall degree of P”,
i.e., as P’ consists of equations of degree 2 at most, so will P”. In addition,
due to its construction, (Mg, P”, Mr) form a private key for the public key
P. Moreover, the private key equations P’ were random equations. Both
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(z' + vs) and (# + My v;) do not change the internal structure of P’. In
more detail: let

Pi(ahssah) = D Al Y Bl + o]

S5 15k
be a private polynomial. The transformation T effectively adds linear com-
binations of polynomials. Therefore, it does not change the fact that the
private polynomial p; has a constant part o). In particular, this constant
part « also depends on the vector v; of the transformation 7. Therefore,
we can skip the vector v; € F™ as we already have a random vector o/ € F™
to determine the constant part of the public key polynomials. To see the
effect of the affine transformation S, we have to investigate a little more in
detail. Consider

/ / /
pi(zy,...,x,) 08
/ /2 / ! ! / /2 / / / /
= [Yi1177 +%127172 + oo+ Vi Tn + BT+ A+ BT + i) oS
! 2
— 7i,1,1(31,1x1 4+ ... S$1,nTn + 31,0)
/
—I—’yi71’2(81711‘1 + ... 81 0Ty + 8170)(82711'1 + ... 82Ty + 82,0) —+ ...
/ 2 /
FYinn (80171 + - Snn®n + 8n0)” + Bi1 (51,171 + - - . S10T0 + 510)
/ /
oo+ Bin(8n171 + - SnnTn + Sn0) +

_ " 2 " " 2 / 1 "
= Y% T V122122 o Vi Ty + Bt o+ B + o

for the original coeficients o, 5] 1,7, ; ,, € F (chosen at random). This leads
to new coefficients o, 3,7/, € F — depending both on oy, 5} 7} ; , and
S. However, as the coefficient o} has been chosen randomly in the first place,
there is (from a cryptographic point of view) no difference between o €g F
or «. Therefore, we may assume that the affine transformation S is in fact

linear and ignore the constant term for cryptanalytic purposes.



