
On Oleshchuk’s Public Key Cryptosystem

Heiko Stamer Friedrich Otto
Universität Kassel, Fachbereich Mathematik/Informatik

Heinrich-Plett-Straße 40, D-34132 Kassel, Germany
{stamer,otto}@theory.informatik.uni-kassel.de

September 1, 2004

Abstract

This paper revisits a public key cryptosystem which is based on
finite Church-Rosser string-rewriting systems. We consider some ideas
for cryptanalysis and discuss issues concerning practical usage. It turns
out that without changing crucial details of key generation this cryp-
tosystem does not offer acceptable cryptographic security. We also
provide the source code of our rudimentary implementation, if some-
one would like to use it for further cryptanalysis.

1 Introduction

The security of almost every public key cryptosystem relies on the in-
tractability of only a few number-theoretic problems, e.g., factoring large
integers or computing discrete logarithms in finite groups. Unfortunately,
no strict proof of hardness (from a complexity theoretic point of view) is
known for these assumptions. Therefore it sounds reasonable to look for
other possible trapdoor functions in different areas of theoretical computer
science. Further there is hope that such proposals [10, 11, 12, 9] will provide
some kind of ’provable security’, because their underlying questions (e.g.
the word problem for finitely presented groups) are undecidable in general.
Beside other difficulties a primary problem in the design of secure cryptosys-
tems remains: The gap between the average and the worst case hardness of
instances, and hence the possibility of weak keys.

Vladimir A. Oleshchuk [1] proposed a public key cryptosystem that
relies on the undecidability of the word problem in semigroups. A basic
ingredient of his approach are string-rewriting systems. Each system is
represented by a rule set containing ordered pairs of strings over a finite
alphabet. Bidirectional rewriting on a string is performed through replacing
(non-deterministically chosen) occurrences of the left-hand side by the right-
hand side of a rule or vice versa. This operation induces an equivalence
relation and we say that two strings are congruent, if they can be rewritten

1

to each other in finitely many bidirectional steps. The word problem is
the question of whether two given strings are congruent modulo a given
rewriting system. This problem is undecidable in general, i.e. there exists no
algorithm which terminates for all instances with the right answer. However,
if the rule set is finite and the string rewriting system has the Church-Rosser
property, then the word problem can be solved in linear time. This fact
has been used recently by Oleshchuk to construct a trapdoor function and
Church-Rosser codes [1, 2].

2 Preliminaries

Let Σ be a finite alphabet. Σ∗ denotes the set of all strings over this alphabet
including the empty word ε. The concatenation of two strings x and y is
simply written as xy. Further, |x| denotes the length of string x, where |ε| =
0, |a| = 1 for a ∈ Σ, and |xa| = |x|+1 for x ∈ Σ∗, a ∈ Σ. If A,B ⊆ Σ∗, then
the product of these languages is defined to be AB = {xy |x ∈ A, y ∈ B}.

The string-rewriting system R on Σ is a subset of Σ∗ × Σ∗. An element
(u, v) ∈ R is called rewrite rule. The word u ∈ Σ∗ is the left-hand side (LHS)
and word v ∈ Σ∗ the right-hand side (RHS) of such a rule. Here we will
only be dealing with finite string-rewriting systems, i.e. R is finite. Each
string-rewriting system R induces a reduction relation →∗

R on Σ∗, which
is the reflexive transitive closure of the single-step reduction relation →R=
{(xuy, xvy) |x, y ∈ Σ∗ and (u, v) ∈ R}. If u →∗

R v, then u is an ancestor of
v, and v is a descendant of u. If there is no v ∈ Σ∗ such that u →R v holds,
then the string u is called irreducible modulo R. We denote the set of all
irreducible words modulo R by IRR(R). For finite string-rewriting systems
this is a regular language, i.e. a finite-state acceptor recognizing IRR(R)
can be effectively constructed from the rules of R. The reflexive, symmetric,
and transitive closure of →R is the Thue congruence ↔∗

R. We define the
congruence class of a string u ∈ Σ∗ as [u]R = {v ∈ Σ∗ | v ↔∗

R u}. This
notation is extendable to A ⊆ Σ∗ by [A]R = {v ∈ Σ∗ | ∃u ∈ A : v ↔∗

R u}.

A string-rewriting system R is called

• noetherian if there exists no infinite sequence of reductions,

• confluent if, for all u, v, w ∈ Σ∗, u →∗
R v and u →∗

R w imply that v and
w have a common descendant (i.e. ∃z ∈ Σ∗ : v →∗

R z and w →∗
R z),

• convergent if it is noetherian and confluent,

• length-reducing if |u| > |v| holds for each rule (u, v) ∈ R,

• normalized if u ∈ IRR(R \ {(u, v)}) and v ∈ IRR(R) for each rule
(u, v) ∈ R.

2

A string-rewriting system R is Church-Rosser (i.e. has the Church-Rosser
property) if, for all x, y ∈ Σ∗ with x ↔∗

R y, there exists a word z ∈ Σ∗ such
that x →∗

R z and y →∗
R z. Hence, it is Church-Rosser if and only if it is

confluent. For finite length-reducing systems this property is decidable in
polynomial time [7]. If the string-rewriting system R is Church-Rosser, then
each congruence class has a unique irreducible element (modulo R) and the
corresponding word problem1 can be solved in linear time [4].

Let R1 and R2 be string-rewriting systems on Σ. R1 refines R2, if for
all x, y ∈ Σ∗ the congruence x ↔∗

R1
y implies x ↔∗

R2
y. If R1 refines R2 and

R2 refines R1, then they generate the same Thue congruence and are called
equivalent. R1 refines R2, if and only if the congruence u ↔∗

R2
v holds for

each rewrite rule (u, v) ∈ R1.
A Language L ⊆ Σ∗ is a Church-Rosser Congruential Language [8] if

there exists a finite, length-reducing, and confluent string-rewriting system
R on Σ and finitely many strings w1, . . . , wn ∈ IRR(R) such that

L =
n⋃

i=1

[wi]R.

A nonempty set C ⊆ Σ∗ is called a code, if for all words ui1 , . . . , uin ∈ C,
uj1 , . . . , ujm ∈ C, the equality of ui1 · · ·uin = uj1 · · ·ujm implies ui1 = uj1 .
By induction we get n = m and uik = ujk

for all 1 ≤ k ≤ n. If C is a code
then any word from C∗ has a unique factorization over C.

3 Oleshchuk’s Public Key Cryptosystem

First we briefly repeat the original definition [1]. Subsection 3.1 appends a
necessary requirement for unique decryption, which was established later in
Oleshchuk’s second paper [2] on this topic.

Let Σ be the plaintext alphabet of possible messages M = {w |w ∈ Σ∗}.
Without loss of generality, we consider only the binary case Σ = {x0, x1}.
The ciphertext alphabet ∆ is supposed to be bigger than Σ, i.e. |∆| > |Σ|.

Key Generation Let T be a finite Church-Rosser string-rewriting system
on ∆. We choose u1, u2, . . . , ut ∈ IRR(T) such that, for all i, j = 1, . . . , t, the
word uiuj is irreducible modulo T and the set {u1, u2, . . . , ut} is a code. Now
let R0, R1 ⊂ {u1, u2, . . . , ut} be two nonempty disjoint sets, i.e. R0∩R1 = ∅.
Further let L0 ⊆ [R0]T and L1 ⊆ [R1]T be two regular languages which may
be constructed effectively by applying reverse rules of T arbitrarily and non-
deterministically to R0 resp. R1. Note that also L0 ∩ L1 = ∅ because T is
confluent and R0, R1 are disjoint. The next step of key generation picks a
finite string-rewriting system S on ∆ such that u ↔+

T v, for all (u, v) ∈ S, i.e.

1Instance: x, y ∈ Σ∗, Question: Are x and y congruent modulo R? (i.e. x↔∗
R y)

3

S refines T . This property can be tested easily because T is Church-Rosser
and thus the corresponding word problem is decidable in linear time [4].

The string-rewriting system S and the languages L0, L1 form the public
key. The finite Church-Rosser system T and R0, R1 should be kept secret,
because they represent the private part of the key.

Encryption The encryption of a letter xi is a random word yi ∈ [Li]S .
Therefore the non-deterministic encryption function Enc : M → C maps
a possible message m = xi1xi2 . . . xin , where xik ∈ Σ, k = 1, . . . , n, to a
random ciphertext c ∈ [Li1Li2 . . . Lin]S . In practice we will do as follows:

1. Encode the plaintext m = xi1xi2 . . . xin into m̂ = x̂i1 x̂i2 . . . x̂in , where
each string x̂ik is randomly chosen from the corresponding set Lik .

2. Rewrite m̂ arbitrarily into c according to the rules of S.

Decryption For decryption of a secret message c ∈ C we have to find a
word m̂ ∈ {L0∪L1}∗ such that c ↔∗

S m̂. In general the finite string-rewriting
system S may have an undecidable word problem [4] and even decidability
does not guarantee that it is computationally feasible [6].

With the secret trapdoor (T,R0, R1) decryption becomes easy, because
T has the Church-Rosser property and thus there exists a uniquely defined
word m̃ ∈ IRR(T) such that c →∗

T m̃. This irreducible string can be found
in linear time [4] and its factorization m̃ = ui1ui2 . . . uin (where uik ∈ Rik)
reveals obviously the plaintext m = xi1xi2 . . . xin of the message.

3.1 Necessary requirement for unique decryption

It was observed [2] that the condition uiuj ∈ IRR(T) for all i, j = 1, . . . , t is
not sufficient for unique decoding. Consider the following simple counterex-
ample within the original definition of key generation.

Example 1 (Non-uniqueness of decryption)

T = {(acb, b), (cab, c)}, R0 = {b}, R1 = {a, c}

Of course, T is a finite, length-reducing and confluent string-rewriting sys-
tem on ∆ = {a, b, c}. Hence it has the desired Church-Rosser property.
Further the strings b ∈ R0, a, c ∈ R1 and their possible concatenations aa,
ab, ac, ba, . . . , cc are irreducible modulo T . Public languages Li ⊆ [Ri]T
and the string-rewriting system S (which refines T) are arbitrary.

Nevertheless, the intermediate encoding m̂1 = acabacbcab of a message
m1 = 1101 leads to a decryption failure, because one possible encoding of the
second message m2 = 01 belongs to the same congruence class modulo T ,
i.e. m̂1 →∗

T acbc = m̂2 →T bc = m̃1 = m̃2 ∈ [R0R1]T .

4

Therefore we have to ensure (during the process of key generation) that
all words in (R0∪R1)∗ are irreducible modulo T . This reformulated condition
(R0 ∪ R1)∗ ⊆ IRR(T) can be effectively tested, since both sides are regular
languages and thus the inclusion property is decidable in polynomial time.

Let `T = max{|u1|, . . . , |un|} for all rewrite rules (ui, vi) ∈ T and let
`R = max{|u1|, . . . , |um|} for all words ui ∈ (R0 ∪ R1). Then it is sufficient
to check, whether the inclusion (R0∪R1)≤2max{`T ,`R} ⊆ IRR(T) holds. This
can easily be done by generating all concatenations of length lower or equal
than 2 ·max{`T , `R} and verifying irreducibility for each of them.

4 Cryptanalysis

Like other cryptosystems based on rewriting techniques [14, 15] this ap-
proach is vulnerable to particular cryptanalytic attacks, if weak keys (here
string-rewriting systems) are chosen during key generation.

4.1 Completion of string-rewriting system S

Oleshchuk noticed [1] that it is not necessary to find the exact secret string-
rewriting system T generated by the owner. Any Church-Rosser system T ′

where all of the conditions

1. S refines T ′

2. [L0]T ′ ∩ [L1]T ′ = ∅

3. ([L0]T ′ ∪ [L1]T ′) ∩ IRR(T ′) is a code

4. ([L0]T ′ ∪ [L1]T ′)∗ ⊆ IRR(T ′) (reformulated according to [2])

apply, can be used to decrypt messages. In general, there is no algorithm to
decide whether a finite string-rewriting system S is equivalent to any finite
Church-Rosser system T ′ [5]. But a cryptanalyst can try techniques known
as completion procedures to construct such a convergent system T ′, and with
some luck he will succeed.

Let ≥ be a partial ordering on ∆∗. This ordering is called admissible
if u ≥ v implies that xuy ≥ xvy holds for all x, y ∈ ∆∗, and it is called
well-founded if there is no infinite strictly descending sequence u0 > u1 >
· · · > ui > ui+1 > · · · . A string-rewriting system S on ∆ is compatible with
an ordering ≥ if u > v holds for each rule (u, v) ∈ S.

The Knuth-Bendix [16] completion procedure takes as input a finite
string-rewriting system S on ∆ and an admissible well-founded partial or-
dering ≥ on ∆∗. Based on this ordering the system S is turned into an
equivalent system T ′ that is compatible with ≥ by orienting each rule with
respect to this ordering. Thus, T ′ will be noetherian. Then the critical pairs
of T ′ are computed, and for each critical pair that does not resolve a new

5

rule is introduced. Unfortunately, each new rule can lead to new unresolv-
able critical pairs, and hence, this process may not terminate. A detailed
description of the Knuth-Bendix completion is omitted here, due to lack of
space. Interested readers are referred to the existing literature [3, 16].

Example 2 (Knuth-Bendix completion of S)

T = {(bb, b), (ca, c), (bc, c)}, S = {(ab, abb), (abb, ab), (bbc, bc)}

A malicious cryptanalyst can easily obtain the convergent string-rewriting
system T ′ = {(abb, ab), (bbc, bc)} by using Knuth-Bendix completion with the
length-lexicographical ordering. Obviously, S refines T ′ because all rewrite
rules (u, v) ∈ S satisfy u ↔T ′ v. Moreover S and T ′ are equivalent.

Now assume that the public regular languages L0 and L1 are finite. Then
based on the above observation we can establish the following result:

Theorem 1 If, on input of S (finite string-rewriting system) and ≥ (admis-
sible well-founded partial ordering), the Knuth-Bendix completion procedure
terminates with a convergent string-rewriting system T ′, then a passive ad-
versary can retrieve the plaintext of an encrypted message with non negligible
probability in linear time.

Proof. By using Knuth-Bendix completion one obtains a convergent string-
rewriting system T ′ which is equivalent to S, i.e. ↔∗

S = ↔∗
T ′ . With it the

cryptanalyst can reduce an arbitrary ciphertext c ∈ C to a normal form m̃′ ∈
IRR(T ′) in linear time [4], i. e. c →∗

T ′ m̃′. Further, assuming the Li’s are
finite, he will get the finite sets R′

i = {u ∈ IRR(T ′) | ∃x̂i ∈ Li : x̂i →∗
T ′ u}

by reducing all words of Li to their unique normal form modulo T ′.
First, consider the restricted case of a one-bit message (n = 1). We will

show that c ∈ [Li]S if and only if m̃′ ∈ R′
i:

⇒ For each c ∈ [Li]S there exists an encoding string x̂i ∈ Li such that
c ↔∗

S x̂i holds. Since S and T ′ are equivalent, the reduction c →∗
T ′ m̃′

implies m̃′ ↔∗
T ′ x̂i. Further, T ′ is Church-Rosser and thus each x̂i ∈ Li

has a unique normal form r′i modulo T ′. By construction r′i ∈ R′
i.

Finally r′i = m̃′ and hence m̃′ ∈ R′
i, because normal forms are unique.

c oo ∗
S, T ′

//

∗
T ′

��@
@@

@@
@@

@

∗ T

��

x̂i

∗
T ′

����
��

��
��

∗ T

��

m̃′

∗
T~~~~

~~
~~

~~
= r′i

∗
T ��?

??
??

??
?

m̃ = ri

6

⇐ The other direction follows by similar arguments.

Now we turn to the case of longer messages. Here we get the problem that
not necessarily (R′

0 ∪ R′
1)

∗ ⊆ IRR(T ′) holds and thus the decoding may be
ambiguous. Let L̄′

0 ⊆ L0 resp. L̄′
1 ⊆ L1 be the set of all code strings x̂ij ∈ Lij

used during the encryption of a fixed ciphertext c, i.e. c ∈ [L̄′
i1

L̄′
i2

. . . L̄′
in

]S .
Further let R̄′

i = {u ∈ IRR(T ′) | ∃x̂i ∈ L̄′
i : x̂i →∗

T ′ u} be the corresponding
sets of normal forms modulo T ′. Obviously, if

(i) [L̄′
0]T ′ ∩ [L̄′

1]T ′ = ∅,

(ii) ([L̄′
0]T ′ ∪ [L̄′

1]T ′) ∩ IRR(T ′) is a code, and

(iii) ([L̄′
0]T ′ ∪ [L̄′

1]T ′)∗ ⊆ IRR(T ′),

then (R̄′
0 ∪ R̄′

1) is a code and the inclusion (R̄′
0 ∪ R̄′

1)
∗ ⊆ IRR(T ′) holds.

Hence c ∈ [L̄′
i1

L̄′
i2

. . . L̄′
in

]S if and only if m̃′ ∈ R̄′
i1

R̄′
i2

. . . R̄′
in

. As (R̄′
0 ∪ R̄′

1)
is a code the corresponding factorization of m̃′ can be determined easily.

The conditions (i), (ii), and (iii) are often satisfied for short messages or
sparse sets L̄′

0, L̄
′
1. Further, if one of these conditions does not hold, a passive

adversary may probably still be able to retrieve some partial information
about the corresponding plaintext by looking at m̃′ and R′

0 resp. R′
1. 2

Example 3 (Knuth-Bendix completion attack)

T = {(cb, c), (aa, a), (ab, a)}, S = {(ab, aab), (cba, ca), (baa, ba)}

R0 = {cacac}, R1 = {aca}, L0 = {caacbabc}, L1 = {abacbaab}

On input of S and ≤llex (length-lexicographical ordering) the Knuth-Bendix
completion procedure terminates with the Church-Rosser system

T ′ = {(aab, ab), (cba, ca), (baa, ba), (caa, ca)}.

By reducing L0, L1 modulo T ′ we get R′
0 = {cacabc} and R′

1 = {abacab}.

caacbabc
(4)→T ′ cacbabc

(2)→T ′ cacabc

abacbaab
(2)→T ′ abacaab

(4)→T ′ abacab

Now suppose that the cryptanalyst observes the ciphertext c = cbaacabc
which can be reduced in two steps to m̃′ = cacabc ∈ [R′

0]T ′.

c = cbaacabc
(2)→T ′ caacabc

(4)→T ′ cacabc = m̃′ ∈ [R′
0]T ′

Thus the corresponding plaintext is the single letter x0.

As a consequence of this attack we have to ensure that the string-rewriting
system S cannot easily be completed. Since such a property depends on the
ordering used, this seems to be a hard task.

7

4.2 Guessing T by prefix and suffix properties of S

Further properties of weak keys can be exploited: A pitfall stems from the
fact that S refines T . Of course, if S = {(xuy, xvy) | (u, v) ∈ T, x, y ∈ ∆∗}
the congruence xuy ↔∗

T xvy holds for each rewrite rule of S.

Example 4 (Guessing T by common prefix)

T = {(ba, b), (ab, b), (aa, a)}, S = {(baa, ba), (bb, bab), (aba, ab)}

A cryptanalyst can guess the Church-Rosser system T , if S was improper
chosen, i.e. for some (u, v) ∈ T a prefix z exists such that (zu, zv) ∈ S
or (zv, zu) ∈ S. In our example this is the case for all rewrite rules of T :
(6 baa, 6 ba) leads to (aa, a), (6 bb, 6 bab) to (ab, b), and (6aba, 6ab) to (ba, b).

4.3 Ciphertext-only attack

If the string-rewriting system S and the sets L0, L1 are not carefully chosen,
then (analogously to [15]) information about the corresponding plaintext
m ∈M may be retrieved just by observing a given ciphertext c ∈ C.

That might be the case if a letter of the ciphertext alphabet ∆ appears
only in words either from L0 or from L1 and this relation is preserved by
the rules of S applied during encryption. A cryptanalyst can count the
occurrences of such a letter in c and thus obtain information about the
minimum number of x0’s or x1’s in the plaintext m. This attack can be
generalized to other measures, e.g. if S preserves some unique subword or
the characteristic lengths of strings either from L0 or from L1.

4.4 Structure of cryptogram space C

Obviously, for finite message space M and Church-Rosser system T the set
of all cryptograms is a Church-Rosser Congruential Language (CRCL) [8],
because each ciphertext c ∈ C belongs to a congruence class [Ri1Ri2 . . . Rin]T
represented by the corresponding plaintext xi1xi2 . . . xin = m ∈M.

5 Practical issues

This section describes some questions that arose during our implementation
of Oleshchuk’s cryptosystem. The programming was done as proof of concept
in approximatly 1 200 lines of C++ code. Thus features and documentation
are very limited: First the program constructs a random key pair (Kpub =
(S, L0, L1),Ksec = (T,R0, R1)) according to the described procedure of key
generation. Then some simple encryption/ decryption operations on one-
bit and longer messages are performed. Finally, if possible, the completion
attack (see section 4.1) is mounted. We provide the source code [18] under

8

the GNU General Public License, if the reader would like to investigate or
use parts of our work for further cryptanalysis.

Choosing ”cryptographically good” parameter settings This seems
to be a serious question since many possible parameters may have influence
on the security of the entire cryptosystem, e.g. the size of the ciphertext
alphabet ∆, the sizes of the string-rewriting systems T and S, the sizes
of the sets Ri, and, if finite sets Li are used, the number of applied rules
during their generation. Concerning the first measure we can find that in
the unary case (|∆| = 1) the word problem becomes decidable for finite
string-rewriting systems [3].

On the other hand, if we consider a bounded number of rewrite rules
over an arbitrary finite alphabet, then there exists a string-rewriting system
with only three rules and undecidable word problem [17]. It is an open
question of whether or not this problem becomes decidable if we consider
only a one-rule rewriting system. Hence S should have at least three rules.

Generating a string-rewriting system S that refines T Up to now
we don’t have any other method than to randomly guess S and check if
u ↔+

T v holds for all rules (u, v) ∈ S. Each obvious strategy to perform this
in a more efficient way will probably introduce new vulnerabilities.

Encrypting messages Here we have to ensure that a cryptanalyst cannot
handle the word problem by a brute-force search in the Thue congruence.
Therefore the number of nodes in the derivation tree of c →∗

S m̃ should grow
exponentially in the number of performed rewrite steps during encryption.

6 Conclusion

Our contribution shows that without changing crucial details of key gener-
ation Oleshchuk’s cryptosystem is vulnerable to the described attacks and
thus does not offer acceptable cryptographic security. It is a open question
whether this system can be repaired to withstand the proposed attacks.

Acknowledgement The authors want to thank Tomasz Jurdziński, Hart-
mut Messerschmidt, and Andreas Conz for fruitful discussions regarding
cryptanalysis and implementation of Oleshchuk’s cryptosystem.

References

[1] Vladimir A. Oleshchuk: On Public-Key Cryptosystem Based on Church-
Rosser String-Rewriting Systems, Proceedings of COCOON’95, Lecture Notes
in Computer Science 959, pp. 264–269, 1995

9

[2] Vladimir A. Oleshchuk: Church-Rosser Codes, Proceedings of 5th IMA Con-
ference, Lecture Notes in Computer Science 1025, pp. 199 – 204, 1996

[3] Ronald V. Book, Friedrich Otto: String-Rewriting Systems, Texts and Mono-
graphs in Computer Science, Springer, New-York, 1993

[4] Ronald V. Book: Confluent and other types of Thue systems, Journal of the
ACM 29, pp. 171–183, 1982

[5] Colm O’Dunlaing: Undecidable questions related to Church-Rosser Thue sys-
tems, Theoretical Computer Science 23, pp. 339–345, 1983

[6] Günther Bauer, Friedrich Otto: Finite Complete Rewriting Systems and the
Complexity of the Word Problem, Acta Informatica 21, pp. 521–540, 1984

[7] Deepak Kapur, Mukkai S. Krishnamoorthy, Robert McNaughton, Paliath
Narendran: An O(|T |3) algorithm for testing the Church-Rosser property of
Thue systems, Theoretical Computer Science 35, pp. 109–114, 1985

[8] Robert McNaughton, Paliath Narendran, Friedrich Otto: Church-Rosser Thue
systems and formal languages, Journal of the ACM 35, pp. 324–344, 1988

[9] Valtteri Niemi: Cryptology: Language-Theoretic Aspects, G. Rozenberg,
A. Salomaa (eds.): Handbook of Formal Languages, Springer, Berlin, 1997

[10] Neal R. Wagner, Marianne R. Magyarik: A Public-Key Cryptosystem Based
on the Word Problem, Advances in Cryptology: Proceedings of CRYPTO’84,
Lecture Notes in Computer Science 196, pp. 19–36, 1985

[11] Rani Siromoney, Lisa Mathew: A Public Key Cryptosystem Based on Lyndon
Words, Information Processing Letters 35, pp. 33–36, 1990

[12] Akihiro Yamamura: Public-Key Cryptosystems Using the Modular Group,
1st International Workshop on Practice and Theory in Public Key Cryptogra-
phy (PKC’98), Lecture Notes in Computer Science 1431, pp. 203–216, 1998

[13] S.C. Samuel, D.G. Thomas, P.J. Abisha, K.G. Subramanian: Tree Replace-
ment and Public Key Cryptosystem, Progress in Cryptology — INDOCRYPT
2002: Third International Conference on Cryptology in India, Lecture Notes
in Computer Science 2551, pp. 71–78, 2003

[14] Maria I.G. Vasco, Rainer Steinwandt: Pitfalls in public key cryptosystems
based on free partially commutative monoids and groups, Cryptology ePrint
Archive: Report 2004/012, 2004

[15] David P. Garcia, Maria G. Vasco: Attacking a Public Key Cryptosystem Based
on Tree Replacement, Cryptology ePrint Archive: Report 2004/098, 2004

[16] Donald E. Knuth, Peter B. Bendix: Simple word problems in universal alge-
bras, J. Leech (ed.): Computational Problems in Abstract Algebra, pp. 263–
297, Pergamon Press, New-York, 1970

[17] Yuri Matiyasevich, Geraud Sénizergues: Decision problems for semi-Thue sys-
tems with a few rules, Proceedings of the 11th IEEE Symposium on Logic in
Computer Science, IEEE Computer Society Press, pp. 523–531, 1996

[18] http://www.theory.informatik.uni-kassel.de/∼stamer/OlkPK.tar.gz

10

http://www.theory.informatik.uni-kassel.de/~stamer/OlkPK.tar.gz

	Introduction
	Preliminaries
	Oleshchuk's Public Key Cryptosystem
	Necessary requirement for unique decryption

	Cryptanalysis
	Completion of string-rewriting system S
	Guessing T by prefix and suffix properties of S
	Ciphertext-only attack
	Structure of cryptogram space C

	Practical issues
	Conclusion

