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Abstract

The necessity to secure the communication between hardware components in embedded systems

becomes increasingly important with regard to the secrecy of data and particularly its commercial use.

We suggest a low-cost (i.e. small logic-area) solution for flexible security levels and short key lifetimes.

The basis is an approach for symmetric key exchange using the synchronization of Tree Parity Machines.

Fast successive key generation enables a key exchange within a few milliseconds, given realistic

communication channels with a limited bandwidth. For demonstration we evaluate characteristics of

a standard-cell ASIC design realization as IP-core in
���������

-technology.

Index Terms

K.4.4.f Security, K.6.5.a Authentication, B.7.1.b Algorithms implemented in hardware, C.3.h Ubiq-

uitous computing, J.9.d Pervasive computing

I. INTRODUCTION

For embedded systems like handheld devices, smartcards, mobiles or other wireless com-

munication devices security concepts need to be developed, in order to keep privacy and still

(commercially) exploit the merits of such devices in widespread and everyday use [1]. This is,

for example, of particular interest for the smartcard- or RFID-industry, where the secrecy of data

is directly linked to the commercial prosperity of a product. Also, the economic importance to

secure information technology applications in the automotive area is becoming eminent along

with the protection of firmware, access control, anti-theft protection, up to scenarios like the

hacking of vital vehicle functions such as an antilock braking system (see e.g. [2]).

Yet, the often relatively small size and severe power consumption constraints of these devices

limit the available size for additional cryptographic hardware components [3], [4], [5]. This holds

in particular for sensor networks, RFID-systems and near field communication devices. Secure

hardware is thus especially demanded for ubiquitous and pervasive computing, and the need and

research efforts manifest in first conferences on security in pervasive computing [6].

Hardware-cryptosystems are often based on hard-coded secret keys as the basic secret. It is

good common practice to obey the often cited Kerckhoffs Principle [7] (‘no security through

obscurity’) and not base the security of a crypto-system on the secrecy of the device or algorithm

it employs. The security of a system is thus only as strong as the secrecy of the (fixed) keys.
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But some of the most effective attacks on a crypto-system involve no ciphertext analysis but

instead find flaws in the key-management. Furthermore, insecure bus communication as reported

in [8] (regarding the video game console market), allows attacks still above the chip level by

sniffing internal buses. In embedded system environments, functions are being realized (at least

partly) in hardware and often lack online system access. The changing of a fixed key, as any

other security update, is difficult or even impossible – i.e. too expensive.

The exchange of a common secret key over a public channel is dominated by methods

based on number theory since the invention of the Diffie-Hellman key exchange protocol in

1976 [9]. Computational security is based on the difficulty of the discrete logarithm problem

in El Gamal [10], which is considered as difficult as the factorization problem of a product

of long prime numbers as in RSA [11]. Such asymmetric algorithms need to perform a lot

of computational intensive arithmetics on typically limited embedded microcontrollers. In a

particular GSM mobile phone, for example, two algorithms are combined to meet performance

requirements: an asymmetrical algorithm with a 1024 bit key for key exchange and a symmetrical

algorithm using only 128 bit for the key and voice encryption [12]. This also demonstrates the

often necessary tradeoff between the level of security and the available resources.

The state-of-the-art, regarding applications in embedded systems, is represented by Elliptic

Curve Cryptography and the generalization to Hyper-Elliptic Curves (see e.g. [13]). Without

a reduction of the security, these representations allow to reduce the size of the numbers to

calculate with. Yet, more complex expressions need to be calculated. After all, a (frequent) key

exchange is often of prohibitive cost, especially in the often changing topology of pervasive or

ad-hoc networks.

In this paper we present a small hardware solution for secure data exchange with flexible

security levels and short key lifetimes. It is based on a fast successive key generation and

exchange process. We use a hardware-friendly algorithm for secure symmetric key exchange by

synchronization of socalled Tree Parity Machines [14]. We define architectures, using this key

exchange concept, that allow fast successive key generation and exchange. The key exchange

ranges within milliseconds for realistic channels and can be performed in parallel (or multi-

plexed) to encryption and the encrypted communication process. Additionally, we provide the

architectures with a flexible rekeying functionality to enable full exploitation of the achievable

exchange rates. This particularly increases the cost for a successful immediate (online) attack, as
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opposed to a subsequent (offline) analysis on recorded information. Our focus is on secure data

exchange between hardware components in embedded systems like RAM, FLASH-type ROM,

(co-)processors and on bus-communication in general. Environments in which security can also

be of moderate concern are also considered.

In the following, we introduce the neural network structure and a learning algorithm (section

II), also in order to already point out advantageous properties for a hardware realization. The

synchronization effect leading to the key exchange property is explained. Algorithmic secu-

rity implications on the realization of our architecture are described in section III. Section

IV comprises the architectural design of the proposed hardware component with its rekeying

functionality. Here, we also refer to design decisions prepared in the previous section. In section

V, we present results from an FPGA and an ASIC implementation on silicon area, possible clock

and key exchange rates (throughput). We conclude the paper in section VI with a short summary

and an outlook on possible further extensions also referring to current research activities.

II. TREE PARITY MACHINE KEY EXCHANGE

In [14], Kanter et. al. proposed a symmetric key exchange method based on the fast synchro-

nization of two identically structured Tree Parity Machines (TPMs). The particular tree structure

has non-overlapping binary inputs, discrete weights and a single binary output as depicted in

Fig. 1a.
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Fig. 1. (a) The tree parity machine (TPM) generates a single output – the parity of the outputs of the hidden units. (b) For

mutual learning, outputs on commonly given inputs are exchanged between the two parties � and � .
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Studying interacting neural networks in general (cf. [15], [16], [17]), the authors focused

the phenomenom of fast synchronization by mutual learning TPMs and its potential for a

cryptographic approach, not involving large numbers and methods from number theory. Their

exchange protocol is realized implicitly by a mutual adaptation process between the two parties�
and � , not involving large numbers and methods from number theory.

A. Structure of a Tree Parity Machine

In the following, we describe the implemented parallel-weights version using hebbian learning

(cf. [14]). Weights are identical in both TPMs after synchronization. The anti-parallel-weights

version, using anti-hebbian learning and leading to inverted weights at the other party, is omitted

for brevity. The notation
��� � denotes equivalent operations for the parties

�
and � . A single�

or � denotes an operation which is specific to one of the parties.

The TPM (see Fig. 1a) consists of � hidden units ( ���	�
��� ) in a single hidden-layer with

non-overlapping inputs (the tree structure) and a single unit in the output-layer.

Each hidden unit receives different � inputs ( �
�	����� ), leading to an input field of size����� . The vector-components are random variables with zero mean and unit variance. The

output ����������� �"!$#&%��(')�+* , given bounded weights , �����-/. ��� �"!102%435'6387:9�; (from input unit � to

hidden unit � ) and common random inputs < -=. ��� �"!>#&%��+')�+* , is calculated by a parity function

of the signs of summations:

?A@)BDCFEHGJILK MNO=PRQTS @)BDCO EHGJIUKVMNOWP�QYX EHZ @)BDCO EHGJIJI
K MNO=PRQYX

[\^]_` P�Qba @cBDCO ` EHGJIed O ` EfGJIDgh �
(1)

The common random inputs can also be kept secret between the parties, yielding authentication

(see Section II-B). i is a party-specific modified sign-function, that defines an agreement between

the two parties on an opposite sign in case of a sum j �b�J�- ��� �"!�; of zero:

X EfZ @cBDCO EHGJIJIeklKnmop oq
� r Z @)BDCO EfGJIes �ut Z @O EHGJIUK �

v �wr Z @)BDCO EfGJIex �ut Z CO EfGJIUK � � (2)
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From the communicated output, the outputs of the hidden units cannot be uniquely determined.

There are multiple combinations for a signed or unsigned output, depending on the number of

hidden units � .

B. Key Exchange by Mutual Learning and Synchronization

The so-called bit package variant was chosen for implementation (cf. [14]). Due to an reduction

of (physical) output exchanges by an order of magnitude, it is advantageous for practical

communication channels with a certain protocol overhead.

Parties
�

and � start with an individual randomly generated initial weight vector , �����-/. ����� � –

their secret. After a set of
��� � presented inputs, where

�
denotes the size of the bit package,

the corresponding
�

TPM outputs (bits) � ��������� � are exchanged over the public channel in one

package (see Fig. 1b). The
�

sequences of hidden states � �����- ��� � ! #&%��+')�+* are stored for the

subsequent learning process.

A hebbian learning rule is applied to adapt the weights, using the
�

outputs and
�

sequences

of hidden states. They are changed only on an agreement � � ��� ��� ���e�D� � on the parties’ outputs.

Furthermore, only weights of those hidden units are changed that agree with this output, i.e. if�����J�e�D� ���	� �b�J�- ��� � :
a @cB�CO ` EHGJIeklK a @)BDCO ` EfG v � I�

? @cB�C EHGJI d O ` EfGJI �

(3)

Updated weights are bound to stay in the maximum range 0 % 35'6387 9 ; by reflection onto the

boundary values

a @cBDCO ` EHGJI�k K mop oq sign
� a @cBDCO ` EHGJI�
�� r�� a @)BDCO ` EfGJI � s��

a @)BDCO ` EfGJI r
otherwise.

(4)

In iterating the above procedure, each component of the weight vectors performs a random

walk with reflecting boundaries. This implies a trajectory in a weight space of ���+3����b����� points.

Two corresponding components in , �-=. ��� � and , �-/. �D� � receive the same random component of

the common input vector < -/. �D� � . After each bounding operation (4), the distance between the

components is successively reduced to zero. Synchrony is achieved when both parties have
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learned to produce each others outputs. They remain synchronized (see learning rule (3)) and

continue to produce the same outputs on every commonly given input. This effect in particular

leads to common weight-vectors in both TPMs in each of the following iterations. These weights

have never been communicated between the two parties and can be used as a common time-

dependent key for encryption and decryption respectively. Such secret key agreement based on

interaction over a public insecure channel is also discussed under information theoretic aspects by

Maurer [18], especially with regard to unconditional security. Furthermore, synchrony is achieved

only for common inputs. Thus, keeping the common inputs secret between
�

and � can be used

to have an authenticated key exchange. There are ��� � % � possible inputs in each iteration,

yielding as many possible initializations for a pseudo random number generator. Shamir et al.

conferred to such a synchronization over multiple rounds as a gradual type of Diffie-Hellman key

exchange [19], because Diffie-Hellman has a single round that transmits several bits. Obviously,

a test for synchrony cannot practically be defined by checking whether weights in both nets have

become identical. One therefore tests on successive equal outputs in a sufficiently large number

of iterations ������� , such that equal outputs by chance are excluded:

	 G�

� G�� r������ r G�� 
 G���������k ? @ EHGJIUK ? C EHGJI �
(5)

The number of outputs (bits) required to achieve synchronization is lower than the size of

the key [20]. Synchronization time is finite for discrete weights. It is almost independent on� and scales with ��� � for very large � . Furthermore, it is proportional to 3�� [20]. Our

investigations/experiments confirmed that the average synchronization time is distributed and

peaked around 400 for the parameters given in [14].

III. SECURITY AND REKEYING FUNCTIONALITY

The symmetric key-exchange protocol can generate long keys by fast calculations and building

the secure channel is of linear complexity. It scales with the size � �b� of the TPM structure

[14], which defines the size � �Y�n�Y3 of the key. In order to still allow comparisons with the

literature we chose 3 ��� for our implementation. The time to synchronize roughly doubles in

comparison to 3 �! , while for the attacker the same time increases by orders of magnitude

(see [21]).
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The security of the key exchange manifests in algorithm-specific properties and can be fully

exploited by appropriate hardware design. Next to other general (algorithmic) aspects on the

security of the exchange method as described in [14], [19] , the tracking of the weights is hard

in comparison to synchronization – practically even harder when implemented in hardware.

The key exchange protocol has been attacked by several eavesdropping approaches, which

always require full knowledge of the TPM structure in use. We will describe their basic properties

in order to clarify the security aspect. Due to the nature of the key exchange and its attacks,

only probabilistic definitions of a ‘successful attack’ can be provided. One can distinguish

between two classes of attacks. The first class comprises attacks, that can be defeated by

appropriately increasing the parameter 3 . The consequence is, that the learning time of an attacker

is significantly longer than the synchronization time. The security increases proportional to 3 �
while the probability of a successful attack decreases exponentially with 3 [20]. Among these

so defeatable attacks, which try to synchronize faster than the two parties [22], are the Naive

Attack, that uses a single or an ensemble of several identically structured TPMs. The Genetic

Attack even comprises a population of thousands of TPMs, whose internal representations are

optimized by a genetic algorithm [19]. A successful attack is defined here as synchronizing faster

than the parties
�

and � and could be realized for � � � in ��� % of all cases. But, already for3	�  , this attack has shown to be less effective than the Flipping Attack. The complexity of

such attacks (especially in hardware), with hundreds or thousands of TPMs plus an additional

(genetic) algorithm, is obviously high. The Flipping Attack defines a successful attack as having
���

% overlap with the weights of one party, when parties
�

and � are already synchronous. For3 � � , an ensemble of ��������� Flipping Attackers was found less effective than a single attacker,

which revokes its practical use [22].

All of the previously sketched attacks can be made arbitrarily costly and thus practically

defeated by increasing L, which significantly decreases the probability of a successful attack.

The approach thus remains computationally secure for sufficiently large L [21], [23].

The only attack, which does not seem to be affected by an increase of 3 (but still by an

increase of K) is the socalled Majority Flipping Attack. It uses a hundred of coordinated and

communicating TPMs [23]. Yet, the given definition of a successful attack is problematic: When

A and B have fully synchronized, the attacker has 98% average overlap (i.e. a fraction) with the

weights, in 50% of all cases. For 99% average overlap, the probability reduces to 25%. This
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indicates that the difficulty lies in achieving the last percents. The authors chose this definition,

because of the strong fluctuations they observed in the success probability. But the definition of

overlap is an average overlap over all hidden units. Thus an attacker does not know, which of the� �=� components of the weights (the key) are correct in a real attack scenario. In currently used

symmetric encryption algorithms, the flipping of a single bit only already leads to a complete

failure in decryption. Thus practically, one still has to perform a subsequent brute-force attack,

which would then only be successful in 50% of all cases. Keep in mind, that
�

and � already

have one key (while the attacker has 98% with a probability of 0.5) and start encryption and data

transmission. The attacker needs to perform his brute force attack plus the attack on the encrypted

data in parallel. Furthermore, the rekeying principle and the achievable short key lifetimes (cf.

Section III-A) aim at an online usage of the exchanged keys for secure transmission.

All formulated attacks can hardly be performed online. Only an offline attack on the previously

recorded exchanged information seems realistic. Last but not least, note that all of the existing

attacks are based on knowing the common inputs and thus refer to a non-authenticated key

exchange, in which man-in-the-middle attacks are possible as well.

A. Feasible Immediate Rekeying

We propose to minimize the key lifetime as much as possible employing immediate rekeying,

that allows to exploit the speed of key exchange and features of our hardware component. Such a

rekeying process normally is to be avoided due to the computational cost of a new key exchange.

Strategies are developed to increase the key lifetime without affecting the security (see e.g. [24]).

Yet, using the TPM principle allows for efficient rekeying in the ����� -range (see also Section V).

Next to several other propositions (cf. [14]) concerning the en-/decryption, one particular

proposition (cf. [16]) is to take each (common) weight vector after synchronization for en-

/decryption. On the one hand, a new potential key is present in each step, which can then be

used block-wise. On the other hand, an opponent then also has the chance to synchronize using

the ongoing communication (cf. Section II-B) and get a key.

We suggest to permanently generate (i.e. synchronize) new keys in parallel or multiplexed

to the encryption-transmission-decryption of data, using the most recent key exchanged. In this

case, the key is only used to encrypt a certain small subset of the plaintext. As soon as a new

key has been exchanged, it is used for encryption. This especially allows to realize short key
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lifetimes, enabling a certain security level by many smaller keys instead of one large key.

Consequently, in our hardware design, we allow an external unit to demand a key exchange

service. Our TPMRAs will continuously synchronize new keys, as long as data needs to be

exchanged. Once a crypt-unit uses the first key, synchronization is triggered again to always

provide a next key. In this way, the related hardware resources are consequently used and keys

are exchanged at a maximum rate subject to hardware constraints, average synchronization time

and available channel bandwidth. Furthermore, it allows to implement services like periodic

or even adaptive rekeying. Security is thus increased in our hardware implementation through

feasible immediate rekeying, the mere speed of key exchange and the achievable short key

lifetimes.

IV. TREE PARITY MACHINE REKEYING ARCHITECTURES

It is important to note that, with respect to a hardware implementation, only signs and bounded

integers are processed within the algorithm. The result of the outer product in (1) can be realized

without multiplication. The product within the sum is only changing the sign of the weight. Thus,

the most complex structure to be implemented is an adder. The complexity of such a unit is

thus even less than the complexity of a linear filter, which requires a full multiply-accumulate

structure. Yet, the inherent parallelism can be exploited here as well. The branches in (2) are

only based on a test for the sign or a test on equality to zero, also easily done in hardware.

Furthermore, only sign-operations and additions are present in the learning rule (3), well suited

for a hardware implementation. The bit package exchange can either be realized serially or via

a parallel bus, depending on the users requirements and the intended application. The amount

of registers needed for storage increases in the bit package variant, finally imposing a tradeoff

area vs. speed.

Equal (pseudo-)random inputs are realized by equally initialized Linear Feedback Shift Reg-

isters (LFSR) or a Cyclic Redundancy Code (CRC). Different (secret) initial weights can either

be fixed (device-specific), or they can be provided by an additional application-specific device or

by a thermal noise device. The synchronization criterion (5) basically comprises a counter, that

is increased when outputs are identical and resetted at different outputs. Software experiments

verified, that 96 identical outputs (i.e. three identical bit-packages of 32 bit) reliably indicate

a successful synchronization for 3 � � . The synchronization times are only determined by the
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properties of the algorithm and the capacity of the communication channel, as can be seen in

Section V.

The proposed Tree Parity Machine Rekeying Architectures (TPMRAs) are functionally sepa-

rated into two main structures. One structure essentially comprises the Key Handshake and Bit

Package Control. The other structure contains the TPM Unit and its control state machine.

A. Key Handshake and Bit Package Control

As described in Section II-B, we implemented the bit package generalization of the protocol

(cf. [14]). The overall structure of the TPMRAs is shown in Fig. 2. It consists of three functional

blocks: a Key Handshake and Bit Package Control, the TPM unit and a Watchdog timer.

key_com

key_cha

Keyreq_key error
sync_

package
Bit−

BP_req
BP_ack

Bit Package Control
Key Handshake & 

Tree Parity
Machine

Watchdog

Fig. 2. Basic diagram and functional blocks of the Tree Parity Machine Rekeying Architectures.

The Watchdog timer supervises the number of interactions needed for a key-exchange between

two parties (5). If there is no synchronization within a specific time (remember that the syn-

chronization time is distributed), a signal (sync error) indicates a synchronization error. It is

programmable for variable average synchronization times subject to the chosen TPM structure.

The Key Handshake and Bit Package Control handles the key transmission with an en-

cryption unit and the bit package exchange process with the other party. It accomplishes the

bit packaging by partitioning the parity bits from the TPM unit in tighter bit slices. Due to

different computation cycles between two key exchange parties, the rekeying procedure employs

a key request (req key), a key changed (key cha) and a key commit (key com) handshake

protocol (see Fig. 2). A key is handed over via the internal bus (Key) to an encryption unit

when the synchronization process is finished. For our application domain in embedded system
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environments, we choose a fixed bit package length of 32 bit for physically parallel exchange

and synchronization over a 32 bit wide bus (Bit Package). The bit package exchange process

uses a simple request/acknowledge handshake protocol (BP ack, BP req).

B. Tree Parity Machine Unit

The TPM unit comprises the logic for the TPM structure, such as the logic for calculating

the parity bits as explained in Section II. It consists of the TPM control, a Cyclic Redundancy

Code (CRC) generator, a Parity Computation unit and a Weight Adjustment unit. A register bank

holds the data for the hidden unit and the weights of the network as shown in Fig. 3.

Key

Parity Bit

Bit Package

Weights

Hidden Units

Registers

Tree Parity
Machine
Control

(FSM)

Generator
CRC Random

Parity
Computation

Weight
Adjustment

Fig. 3. Internal structure of the Tree Parity Machine Unit.

The TPM control is realized as simple finite state machine (FSM) which executes the initial-

ization of the TPM and the learning process with the bit package from the other party. The Parity

Computation unit calculates the summation and the parity bit (1) and 2). The weight adjustment

unit accomplishes the learning rule (3) and (4).

The CRC random generator generates the pseudo random bits for the inputs of the TPM. It

is initialized by a vector which is equal for both parties. For the purpose of authentication, the

initial value would have to be kept secret.

V. IMPLEMENTATION AND PERFORMANCE

We designed and simulated parameterizable, serial and semi-parallel TPM Rekeying Architec-

tures, using VHDL to implement a FPGA- and an ASIC-realization. For both architectures we

appoint the integer range 3 to � , as explained in Section III. In the serial architecture, the synaptic
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summation is performed by Time Devision Multiple Access (TDMA) of an 3 -bit adder, while

the semi-parallel form uses TDMA of six 3 -bit adders in parallel. The details of the TPMRA

implementations (key length � �T�L�T3 , serial or semi/fully-parallel realization) must be chosen

with respect to the target environment, including the used parameters, the timing, the available

channel capacity and the available chip-area, of course.

We realized a two party prototype system based on two XCV300E-8 (Virtex E) FPGAs from

Xilinx in order to investigate and demonstrate the functionality of our architectures. Standard

cell ASIC prototype realizations were built to verify the suitability of the TPMRAs for typical

embedded system components. We chose � �� and varied � up to � � for a resulting key size

of  � � � � � � � ��� bit. This choice for � already allows a remarkable key length and still keeps

the average synchronization time low (cf. [14]). The underlying process was a ���f� � � six-layer

CMOS process with ��� ��� supply voltage based on the UMC library. The design was synthesized

using the Synopsys Design-Compiler and was mapped using Cadence Silicon Ensemble.

The area (Fig. 4a) of the TPMRA realizations scale approximately linear (around one square-

millimeter) due to the linear complexity of the adders. The serial TPM realization consumes

less area (i.e. less hardware resources). Note, that most of the area is consumed by the bit

packaging, because of the necessary storage of the inputs for the learning (cf. Section II-B).

Yet, this influence is minor for the ASIC-realization, because here registers are more efficiently

mapped than on current FPGA architectures.

Obviously, the achievable clock speed (Fig. 4b) in the serial variant is significantly higher than

in the semi-parallel version. This is due to the necessity of a longer clock tree for the additional

registers to store partial results.

Additionally, we established the throughput (i.e. keys per second) subject to the average

synchronization time of 400 iterations for different key lengths in Fig. 4c. We assumed the

maximally achievable clock frequency with regard to each key length, which can be achieved

by Digital Phase Lock Loop (DPLL), regardless of the systems clock frequency. Furthermore,

we appointed the average synchronization time of 400 iterations for all key lengths, although

it is really always less than the size of the key (a worst-case scenario). This data refers to an

idealized infinite channel bandwidth, neglecting the transmission delay. For key lengths smaller

than approximately 180 bit, the serial TPMRA has a higher throughput (in the range of ��� �"�c�����
to more than � � ���	� keys per second) due to the higher clock frequency (Fig. 4b). Beyond this
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Fig. 4. Post-synthesis results for chip-area (logic) (a) and achievable clock-frequency (b) vs. key length. Average key exchange

rate (avg. synchronization time of 400 iterations) vs. key length is plotted in (c). A practically finite channel capacity is neglected

here. Plot (d) is log-scaled and shows average key exchange rates for a 588 bit key and a selection of typical channels with

their capacities. All data refers to a UMC 0.18 micron six-layer standard cell process.

point, the semi-parallel version achieves a higher throughput, exploiting the parallel computation.

Figure 4d shows the same information, but for three real communication channels and their

bandwidths, given a key length of 588 bit. The chosen log-scale allows to see the small dif-

ference regarding the throughput (up to around 1000 keys per second) for an ����� and � � � -
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bus. Only for buses of higher bandwidth such as the � � � -bus, the two architectures show a

significantly different throughput (reaching the ����� -range). In the case of an 32 bit � � � -bus

in burst mode, the theoretical maximum throughput (as in Fig. 4c) can be achieved. We also

considered other bus systems (e.g. packet based systems like WLAN). The results are similar,

due to their small bandwidth in comparison to the � � � -bus. Obviously, the bottleneck is the

underlying communication-bus, as it is also typical in other domains (processor-bus-bottleneck).

The concrete implementations of the components of the TPMRA influence the time necessary

for the calculation of one output bit and the time for the assembly of a bit package. Yet, with the

communication being the bottleneck, to optimize the TPMRA with regard to area is preferable.

Given a high-speed communication channel, the proposed key exchange and rekeying in the� � � -range allows us to use rather weak encryption algorithms (cf. Section III), as the security

may rely on fast rekeying. Of course, any other more sophisticated encryption algorithm like

AES or 3-DES can also be used.

The achievable average key-exchange rates of the TPMRAs in the ����� -range, allow to increase

the security through a feasible frequent key exchange. Short key lifetimes can be realized

efficiently. Also, any successful online attack must at least achieve the same performance,

requiring significant hardware expenses. This does not appear to be feasible. Using different

keys for encryption and transmission of different blocks of data, increases the difficulty for an

attack on the encrypted data.

Due to the small area in the range of one square-millimeter, we regard the field of application

principally as an IP-core in embedded system environments. A particular focus can be smartcards

or transponder-based applications such as RFID-systems and devices in ad-hoc networks [25],

in which a small area for cryptographic components is mandatory.

VI. SUMMARY AND OUTLOOK

We presented a solution for secure communication in embedded system environments via

Tree Parity Machine Rekeying Architectures. Our investigations confirm the results as presented

in [14] and stress the advantages of a hardware implementation. The silicon area lies within

a square-millimeter and allows to exchange keys of practical size within about a millisecond.

The proposed exchange in parallel to encryption-transmission-decryption also allows for efficient

rekeying schemes and short key lifetimes.
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Next to algorithmic extensions to further increase the security [26], [27], [28], [29], architec-

tural improvements or variants include a fully serial realization with TDMA usage of a single

TPM unit. This further decreases the area consumption but at the cost of an increase in necessary

cycles for one output bit. A stream cipher variant, using output bits directly via the Blum-

Blum-Shub bit generator, was suggested already in [14] and its implementation in hardware is

particularly suited for streaming applications. The relatively small size of the TPMRAs allows

an implementation in embedded systems with only small overhead. They are especially suited

for devices of limited resources and even more in moderate security scenarios. Consequently,

the integration of our architectures into such a system and its practical evaluation is subject to

future work.
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