
Direct Anonymous Attestation

Ernie Brickell
Intel Corporation

ernie.brickell@intel.com

Jan Camenisch
IBM Research

jca@zurich.ibm.com

Liqun Chen
HP Laboratories

liqun.chen@hp.com

February 11, 2004

Abstract

This paper describes the direct anonymous attestation scheme (DAA). This scheme was adopted
by the Trusted Computing Group as the method for remote authentication of a hardware module,
called trusted platform module (TPM), while preserving the privacy of the user of the platform that
contains the module. Direct anonymous attestation can be seen as a group signature without the
feature that a signature can be opened, i.e., the anonymity is not revocable. Moreover, DAA allows
for pseudonyms, i.e., for each signature a user (in agreement with the recipient of the signature)
can decide whether or not the signature should be linkable to another signature. DAA furthermore
allows for detection of “known” keys: if the DAA secret keys are extracted from a TPM and pub-
lished, a verifier can detect that a signature was produced using these secret keys. The scheme is
provably secure in the random oracle model under the strong RSA and the decisional Diffie-Hellman
assumption.

1 Introduction

Consider a trusted hardware module, called the trusted platform module (TPM) in the following, that
is integrated into a platform such as a laptop or a mobile phone. Assume that the user of such a
platform communicates with a verifier who wants to be assured that the user indeed uses a platform
containing such a trusted hardware module, i.e., the verifier wants the TPM to authenticate itself.
However, the user wants her privacy protected and therefore requires that the verifier only learns that
she uses a TPM but not which particular one – otherwise all her transactions would become linkable
to each other. This problem arose in the context of the Trusted Computing Group (TCG). TCG is an
industry standardization body that aims to develop and promote an open industry standard for trusted
computing hardware and software building blocks to enable more secure data storage, online business
practices, and online commerce transactions while protecting privacy and individual rights (cf. [35]).
TCG is the successor organization of the Trusted Computing Platform Alliance (TCPA).

In principle, the problem just described could be solved using any standard public key authentication
scheme (or signature scheme): One would generate a secret/public key pair, and then embed the secret
key into each TPM. The verifier and the TPM would then run the authentication protocol. Because
all TPMs use the same key, they are indistinguishable. However, this approach would never work in
practice: as soon as one hardware module (TPM) gets compromised and the secret key extracted and
published, verifiers can no longer distinguish between real TPMs and fake ones. Therefore, detection
of rogue TPMs needs to be a further requirement.

The solution first developed by TCG uses a trusted third party, the so-called privacy certification
authority (Privacy CA), and works as follows [33]. Each TPM generates an RSA key pair called an
Endorsement Key (EK). The Privacy CA is assumed to know the Endorsement Keys of all (valid) TPMs.

1

Now, when a TPM needs to authenticate itself to a verifier, it generates a second RSA key pair called
an Attestation Identity Key (AIK), sends the AIK public key to the Privacy CA, and authenticates
this public key w.r.t. the EK. The Privacy CA will check whether it finds the EK in its list and, if so,
issues a certificate on the TPM’s AIK. The TPM can then forward this certificate to the verifier and
authenticate itself w.r.t. this AIK. In this solution, there are two possibilities to detect a rogue TPM:
1) If the EK secret key was extracted from a TPM, distributed, and then detected and announced as
a rogue secret key, the Privacy CA can compute the corresponding public key and remove it from its
list of valid Endorsement Keys. 2) If the Privacy CA gets many requests that are authorized using the
same Endorsement Key, it might want to reject these requests. The exact threshold on requests that are
allowed before a TPM is tagged rogue depends of course on the actual environment and applications,
and will in practise probably be determined by some risk-management policy.

This solutions has the obvious drawback that the Privacy CA needs to be involved in every transac-
tion and thus highly available on the one hand but still as secure as an ordinary certification authority
that normally operates off-line on the other hand. Moreover, if the Privacy CA and the verifier collude,
or the Privacy CA’s transaction records are revealed to the verifier by some other means, the verifier
will still be able to uniquely identify a TPM.

In this paper, we describe a better solution that was adopted by TCG in the new specification of
the TPM [34]. It draws on techniques that have been developed for group signatures [20, 13, 1], identity
escrow [27], and credential systems [16, 6]. In fact, our scheme can be seen as a group signature scheme
without the capability to open signatures (or anonymity revocation) but with a mechanism to detect
rogue members (TPMs in our case). More precisely, we also employ a suitable signature scheme to issue
certificates on a membership public key generated by a TPM. Then, to authenticate as a group member,
or valid TPM, a TPM proves that it possesses a certificate on a public key for which it also knows the
secret key. To allow a verifier to detect rogue TPMs, the TPM is further required to reveal and prove
correct of a value NV = ζf , where f is its secret key and ζ is a generator of an algebraic group where
computing discrete logarithms is infeasible. As in the Privacy-CA solution, there are two possibilities
for the verifier to detect a rogue TPM: 1) By comparing NV with ζ f̃ for all f̃ ’s that are known to stem
from rogue TPMs. 2) By detecting whether he has seen the same NV too many times. Of course, the
second method only works if the same ζ is used many times. However, ζ should not be a fixed system
parameter as otherwise the user gains almost no privacy. Instead, ζ should either be randomly chosen
by the TPM each time when it authenticates itself or every verifier should use a different ζ and change
it with some frequency. Whether a verifier allows a TPM to choose a random base ζ and, if not, how
often a verifier changes its ζ is again a question of risk management and policies and is outside the
scope of this paper. However, we assume in the following that in case ζ is not random, it is derived
from the verifier’s name, e.g., using an appropriate hash function.

Because the TPM is a small chip with limited resources, a requirement for direct anonymous at-
testation was that the operations carried out on the TPM be minimal and, if possible, be outsourced
to (software that is run on) the TPM’s host. Of course, security must be maintained, i.e., a (cor-
rupted) host/software should not be able to authenticate without interacting with the TPM. However,
privacy/anonymity needs only be guaranteed if the host/software is not corrupted: as the host controls
all the communication of the TPM to the outside, a corrupted host/software can always break pri-
vacy/anonymity by just adding some identifier to each message sent by the TPM. In fact, our scheme
satisfies an even stronger requirement: when the corrupted software is removed, the privacy/anonymity
properties are restored.

As our scheme employs the Camenisch-Lysyanskaya signature scheme [7] and the respective discrete
logarithms based proofs to prove possession of a certificate, unforgeability of certificates holds under the
strong RSA assumption and privacy and anonymity is guaranteed under the decisional Diffie-Hellman
assumption. Furthermore, we use the Fiat-Shamir heuristic to turn proofs into signatures and thus our
security proofs also assume random oracles.

2

As already mentioned, our setting shares many properties with the one of group signatures [20, 13, 1],
identity escrow [27], and credential systems [16, 6] and we employ many techniques [1, 6, 7] used in
these schemes. However, unlike those schemes, the privacy/anonymity properties do not require that
the issuer uses so-called safe primes. We achieve this by a special sub-protocol when issuing credentials.
This rids us of the necessity that the issuer proves that his RSA modulus is a safe-prime product which
makes the setup of those schemes rather inefficient.

Finally, Brickell’s direct proof method [4] addresses the same problem as we do. Its security is based
on the Bounded Decision Diffie-Hellman assumption and a new assumption called the Interval RSA
assumption stating that given e and n it is hard to find a pair (x, y) such that x ≡ ye (mod n) and x lies
in some small specific interval. Besides this non-standard assumption, the direct proof methods is far
less efficient than ours (it uses cut-and-choose proofs) and does not provide security against corrupted
TPM’s when issuing certificates, i.e., the signature scheme used to issue certificates is not shown to be
secure against adaptive chosen message attacks.

2 Formal Specification of Direct Anonymous Attestation and Secu-
rity Model

This section provides the formal model of direct anonymous attestation (DAA). As in [6], we use an ideal-
system/real-system model to prove security based on security models for multi-party computation [14,
15] and reactive systems [30, 31].

We summarize the ideas underlying these models. In the real system there are a number of players,
who run some cryptographic protocols with each other, an adversary A, who controls some of the
players, and an environment E that 1) provides the player Ui with inputs and 2) arbitrarily interacts
with A. The environment provides the inputs to the honest players and receives their outputs and
interacts arbitrarily with the adversary. The dishonest players are subsumed into the adversary.

In the ideal system, we have the same players. However, they do not run any cryptographic protocol
but send all their inputs to and receive all their outputs from an ideal all-trusted party T . This
party computes the output of the players from their inputs, i.e., applies the functionality that the
cryptographic protocols are supposed to realize.

A cryptographic protocol is said to implement securely a functionality if for every adversary A and
every environment E there exists a simulator S controlling the same parties in the ideal system as A
does in the real system such that the environment can not distinguish whether it is run in the real
system and interacts with A or whether it is run in the ideal system and interacts with the simulator
S.

We now specify the functionality of direct anonymous attestation. We distinguish the following
kinds of players: the issuer I, a trusted platform module (TPM) Mi with identity idi, a host Hi that
has TPM Mi “built in,” the rogue detection oracle O announcing which TPMs are rogue, and verifiers
Vj .

The ideal system all-trusted party T supports the following operations:

Setup: Each player indicates to T whether or not it is corrupted. Each TPM Mi sends its unique
identity idi to T who forwards it to the respective host Hi.

Join: The host Hi contacts T and requests to become a member w.r.t. to a counter value cnt. Thus T
sends the corresponding TPM Mi the counter value cnt and asks it whether it wants to become a
member w.r.t. counter value cnt. Then, T asks the issuer I whether the platform with identity id
and counter value cnt can become a member. If Mi was tagged rogue w.r.t. some counter value, T
also tell I this. If the issuer agrees, T notifies Hi that it has become a member.

DAA-Sign/Verify: A host Hi wants to sign a message m with respect to some basename bsn ∈ {0, 1}∗∪
{⊥} and some counter value cnt for some verifier Vj . So Hi sends m, bsn and cnt to T . If Hi/Mi

3

are not a member w.r.t. cnt, then T denies the request. Otherwise, T forwards m and cnt to the
corresponding Mi and asks it whether it wants to sign. If it does, T tells Hi that Mi agrees and
asks it w.r.t. which basename bsn it wants to sign (or whether it wants to abort). If Hi does not
abort, T proceeds as follows

• If Mi has been tagged rogue w.r.t. cnt, T lets Vj know that a rogue TPM has signed m.

• If bsn = ⊥ then T informs Vj that m has been signed w.r.t. bsn.

• If bsn 6= ⊥ then T checks whether Hi/Mi have already signed a message w.r.t. bsn and cnt. If
this is the case, T looks up the corresponding pseudonym P in its database; otherwise T chooses
a new random pseudonym P ∈R {0, 1}`σ (the quantity `σ is a security parameter). Finally, T
informs Vj that the platform with pseudonym P has signed m.

Rogue Tagging:O tells T to tag of the platform with identity id w.r.t. cnt as a rogue. If the TPM with
identity id is not corrupted, T denies the request. Otherwise, T marks the TPM with identity id
as rogue w.r.t. counter value cnt.

Let us discuss our model. Note that the ideal system model captures both unforgeability and
anonymity/pseudonymity. More precisely, a signature can only be produced with the involvement of a
TPM that is a member and is not tagged rogue. Furthermore, signatures involving the same TPM w.r.t.
the same basename are linkable to each other via a pseudonym P , but if they are done w.r.t. different
basenames or no basename then they cannot be linked. (If a signature is done w.r.t. a basename we
have bsn ∈ {0, 1}∗ and if its done w.r.t. no basename we set bsn = ⊥.) These two properties hold,
regardless of whether or not the corresponding host is corrupted. Anonymity/pseudonymity is only
guaranteed if both the host and the TPM are honest, as a dishonest party can always announce its
identity and the messages it signed.

The way we have modeled rogue-tagging of a TPM has no effect on old messages but only causes
verifiers to reject messages signed by a TPM that is tagged rogue. In the cryptographic protocol,
however, an (honest) verifier would in principle be able to identify the messages a rogue TPM signed
before it gets tagged as rogue. For simplicity, we do not model this and thus an honest verifier in the
real system will not consider this information.

In the model, we assumed that no two verifiers use the same basename bsn. It they do, we consider
them to be the same entity. But of course, a verifier can use several different basenames.

We also assume that TPM has a unique identity id with respect to which is can identify itself. How-
ever, the issuer can always add new hosts/TPMs to the system and hence the number of hosts/TPMs
is not fixed. As all these hosts/TPMs have some external identifier, we do not model such additions
but just assume that there is always another host/TPM if we need one. Also, in real life, the issuer
will decide whether or not a given TPM is allowed to become a member based upon some policy (e.g.,
the issuer might only allow a specific TPM to join w.r.t., e.g., ten different counter values) and based
upon a list of the identities of the valid TPMs.

In our security proofs we make two assumptions about the adversary: First, we assume that the
rogue-tagging oracle O is always controlled by the adversary. The rationale behind this is that the
rogue-tagging oracle models the case where a rogue hardware module from a platform is found, its
keys are extracted and published on a rogue list. Thus the adversary “controls” this oracle as the
adversary can decide when such a rogue platform is found. Note that this assumption strengthens the
model. Second, we will not consider corrupted TPMs embedded into honest hosts. The reason is that
we assume that at some point all platforms, i.e., hosts and TPM are genuine. Once the platforms get
shipped, they might get compromised. As it is easier to compromise a platform than the TPM, we
assume that whenever a TPM is corrupted, then so is the platform.

4

3 Preliminaries

3.1 Notation

Let {0, 1}` denote the set of all binary strings of length `. We often switch between integers and their
representation as binary strings, e.g., we write {0, 1}` for the set [0, 2` − 1] of integers. Moreover, we
often use ±{0, 1}` to denote the set [−2` + 1, 2` − 1].

We need some notation to select the high and low order bits of an integer. Let LSBu(x) := x−2ub x
2u c

and CARu(x) := b x
2u c. Let (xk . . . x0)b denote the binary representation of x =

∑k
i=0 2ixi, e.g., (1001)b

is the binary representation of the integer 9. Then LSBu(x) is the integer corresponding to the u least
signification bits of (the binary representation of) x, e.g., LSB4(57) = LSB4((111001)b) = (1001)b = 9,
and CARu(x) is the integer obtained by taking the binary representation of x and right-shifting it by
u bits (and cutting of those bits), e.g., CAR4(57) = CAR4((111001)b) = (11)b = 3. Also note that
x = LSBu(x) + 2uCARu(x).

3.2 Protocols to Prove Knowledge of and Relations among Discrete Logarithms

In our scheme we will use various protocols to prove knowledge of and relations among discrete log-
arithms. To describe these protocols, we use notation introduced by Camenisch and Stadler [13] for
various proofs of knowledge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that y = gαhβ and ỹ = g̃αh̃γ

holds, where v < α < u,” where y, g, h, ỹ, g̃, and h̃ are elements of some groups G = 〈g〉 = 〈h〉 and
G̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek letters denote the quantities the knowledge of which is
being proved, while all other parameters are known to the verifier. Using this notation, a proof protocol
can be described by just pointing out its aim while hiding all details.

In the random oracle model, such protocols can be turned into signature schemes using the Fiat-
Shamir heuristic [23, 32]. We use the notation SPK{(α) : y = gα}(m) to denote a signature obtained
in this way.

Proof of knowledge of the discrete logarithm modulo a composite. In this paper we apply
such PK ’s and SPK ’s to the group of quadratic residues modulo a composite n, i.e., G = QRn, where
n is a safe-prime product. This choice for the underlying group has some consequences. First, the
protocols are proofs of knowledge under the strong RSA assumption [24]. Second, the largest possible
value of the challenge c must be smaller than the smallest factor of G’s order. Third, soundness needs
special attention in the case that the verifier is not equipped with the factorization of n because then
deciding membership in QRn is believed to be hard. Thus the prover needs to convince the verifier
that the elements he presents are indeed quadratic residues, i.e., that the square roots of the presented
elements exist. This can in principle be done with a protocol by Fiat and Shamir [23]. However, often it
is sufficient to simply execute PK{(α) : y2 = (g2)α} or PK{(α) : y = ±gα} instead of PK{(α) : y = gα}.
The quantity α is defined as logg2 y2, which is the same as logg y in case y is in QRn.

Other proofs in a fixed group. A proof of knowledge of a representation of an element y ∈ G with
respect to several bases z1, . . . , zv ∈ G [18] is denoted PK{(α1, . . . , αv) : y = zα1

1 · . . . · zαv
v }. A proof

of equality of discrete logarithms of two group elements y1, y2 ∈ G to the bases g ∈ G and h ∈ G,
respectively, [17, 19] is denoted PK{(α) : y1 = gα ∧ y2 = hα}. Generalizations to prove equalities
among representations of the elements y1, . . . , yw ∈ G to bases g1, . . . , gv ∈ G are straightforward [13].

5

A proof of knowledge of a discrete logarithm of y ∈ G with respect to g ∈ G such that logg y that
lies in the integer interval [a, b] is denoted by PK{(α) : y = gα ∧ α ∈ [a, b]}. Under the strong RSA
assumption and if it is assured that the prover is not provided the factorization of the modulus (i.e.,
is not provided the order of the group) this proof can be done efficiently [3] (it compares to about six
ordinary PK{(α) : y = gα}.)

Proofs of knowledge of equality in different groups. The previous protocol can also be used to
prove that the discrete logarithms of two group elements y1 ∈ G1, y2 ∈ G1 to the bases g1 ∈ G1 and
g2 ∈ G2 in different groups G1 and G2 are equal [5, 11]. Let the order of the groups be q1 and q2,
respectively. This proof can be realized only if both discrete logarithms lie in the interval [0,min{q1, q2}].
The idea is that the prover commits to the discrete logarithm in some group, say G = 〈g〉 = 〈h〉 the
order of which he does not know, and then executes PK{(α, β) : y1

G1= gα
1 ∧y2

G2= gα
2 ∧ C

G= gαhβ ∧ α ∈
[0,min{q1, q2}]}, where C is the commitment. This protocol generalizes to several different groups, to
representations, and to arbitrary modular relations.

3.3 Cryptographic Assumptions

We prove security under the strong RSA assumption and the decisional Diffie-Hellman assumption.

Assumption 1 (Strong RSA Assumption). The strong RSA (SRSA) assumption states that it is
computational infeasible, on input a random RSA modulus n and a random element u ∈ Z∗

n, to compute
values e > 1 and v such that ve ≡ u (mod n).

The tuple (n, u) generated as above is called an instance of the flexible RSA problem.

Assumption 2 (DDH Assumption). Let Γ be an `Γ-bit prime and ρ is an `ρ-bit prime such that
ρ|Γ − 1. Let γ ∈ Z∗

Γ be an element of order ρ. Then,for sufficiently large values of `Γ and `ρ, the
distribution {(δ, δa, δb, δab)} is computationally indistinguishable from the distribution {(δ, δa, δb, δc)},
where δ is a random element from 〈γ〉, and a, b, and c are random elements from [0, ρ− 1]

3.4 The Camenisch-Lysyanskaya Signature Scheme

The direct anonymous attestation scheme is based on the Camenisch-Lysyanskaya (CL) signature
scheme [8, 29]. Unlike most signature schemes, this one is particularly suited for our purposes as
it allows for efficient protocols to prove knowledge of a signature and to retrieve signatures on secret
messages efficiently using discrete logarithm based proofs of knowledge [8, 29]. As we will use some-
what different (and also optimized) protocols for these tasks than those provided in [8, 29], we recall
the signature scheme here and give an overview of discrete logarithm based proofs of knowledge in the
following subsection.

Key generation. On input 1k, choose a special RSA modulus n = pq, p = 2p′ + 1, q = 2q′ + 1. Choose,
uniformly at random, R0, . . . , RL−1, S, Z ∈ QRn. Output the public key (n, R0, . . . , RL−1, S, Z) and
the secret key p. Let `n be the length of n.

Message space. Let `m be a parameter. The message space is the set {(m0, . . . ,mL−1) : mi ∈ ±{0, 1}`m}.
Signing algorithm. On input m0, . . . ,mL−1 , choose a random prime number e of length `e > `m + 2,

and a random number v of length `v = `n + `m + `r, where `r is a security parameter. Compute the
value A such that Z ≡ Rm0

0 . . . R
mL−1

L−1 SvAe (mod n). The signature on the message (m0, . . . ,mL−1)
consists of (e,A, v).

Verification algorithm. To verify that the tuple (e,A, v) is a signature on message (m0, . . . ,mL−1), check
that Z ≡ AeRm0

0 . . . R
mL−1

L−1 Sv (mod n), and check that 2`e > e > 2`e−1.

6

Theorem 1 ([8]). The signature scheme is secure against adaptive chosen message attacks [26] under
the strong RSA assumption.

The original scheme considered messages in the interval [0, 2`m − 1] . Here, however, we allow
messages from [−2`m + 1, 2`m − 1]. The only consequence of this is that we need to require that
`e > `m + 2 holds instead of `e > `m + 1.

4 The Direct Anonymous Attestation Scheme

High-Level Description. The basic idea underlying the direct anonymous attestation scheme is
similar to the one of the Camenisch-Lysyanskaya anonymous credential system [6, 8, 29] : A trusted
hardware module (TPM) chooses a secret “message” f , obtains a Camenisch-Lysyanskaya (CL) sig-
nature (aka attestation) on it from the issuer via a secure two-party protocol, and then can convince
a verifier that it got attestation anonymously by a proof of knowledge of an attestation. To allow
the verifier to recognize rogue TPMs, a TPM must also provide a pseudonym NV and a proof that
the pseudonym is formed correctly, i.e., that it is derived from the TPM’s secret f contained in the
attestation and a base determined by the verifier. We discuss different ways to handle rogue TPMs
later.

Before providing the actual protocols, we first expand on the basic idea and explain some implemen-
tation details. First, we split the TPM’s secret f into two `f -bit messages to be signed and denote the
(secret) messages by f0 and f1 (instead of m0 and m1). This split allows for smaller primes e as their
size depends on the size of the messages that get signed. Now, the two-party protocol to sign secret
messages is as follows (cf. [8]). First, the TPM sends the issuer a commitment to the message-pair
(f0, f1), i.e., U := Rf0

0 Rf1
1 Sv′ , where v′ is a value chosen randomly by the TPM to “blind” the fi’s.

Also, the TPM computes NI := ζf0+f12
`f

I mod Γ, where ζI is a quantity derived from the issuer’s name,
and sends U and NI to the issuer. Next, the TPM convinces the issuer that U and NI correctly formed
(using a proof of knowledge a representation of U w.r.t. the bases R0, R1, S and NI w.r.t. ζI) and that
the fi’s lie in ±{0, 1}`f+`H+`∅+2, where `f , `H, and `∅ are security parameters. This interval is larger
than the one from which the fi’s actually stem because of the proof of knowledge we apply here. If the
issuer accepts the proof, it compares NI with previous such values obtained from this TPM to decide
whether it wants to issue a certificate to TPM w.r.t. NI or not. (The issuer might not want to grant
too many credentials to the TPM w.r.t. different NI , but should re-grant a credential to a NI it has
already accepted.) To issue a credential, the issuer chooses a random `v-bit integer v′′ and a random
`e-bit prime e, signs the hidden messages by computing A :=

(
Z

USv′′
)1/e mod n, and sends the TPM

(A, e, v′′). The issuer also proves to the TPM that she computed A correctly. The signature on (f0, f1)
is then (A, e, v := v′ + v′′), where v should be kept secret by the TPM (for f0 and f1 to remain hidden
from the issuer), while A and e can be public.

A TPM can now prove that it has obtained attestation by proving that it got a CL-signature on
some values f0 and f1. This can be done by a zero-knowledge proof of knowledge of values f0, f1, A,
e, and v such that AeRf0

0 Rf1
1 Sv ≡ Z (mod n). Also, the TPM computes NV := ζf0+f12

`f mod Γ and
proves that the exponent here is related to those in the attestation, where ζ ∈ 〈γ〉, i.e., the subgroup
of Z∗

Γ of order ρ.
As mentioned in the introduction, the base ζ is either chosen randomly by the TPM or is generated

from a basename value bsnV provided by the verifier. The value NV serves two purposes. The first one
is rogue-tagging: If a rogue TPM is found, the values f0 and f1 are extracted and put on a blacklist.
The verifier can then check NV against this blacklist by comparing it with ζ f̂0+f̂12

`f for all pairs (f̂0, f̂1)
on the black list. Note that i) the black list can be expected to be short, ii) the exponents f̂0 + f̂12`f

are small (e.g., 200-bits), and iii) batch-verification techniques can be applied [2]; so this check can
be done efficiently. Also note that the blacklist need not be certified, e.g., by a certificate revocation

7

agency: whenever f0, f1, A, e, and v are discovered, they can be published and everyone can verify
whether (A, e, v) is a valid signature on f0 and f1. The second purpose of NV is its use as a pseudonym,
i.e., if ζ is not chosen randomly by the TPM but generated from a basename then, whenever the same
basename bsnV is used, the TPM will provide the same value for NV . This allows the verifier to link
different transactions made by the same TPM while not identifying it, and to possibly reject a NV if
it appeared too many times. By defining how often a different basename is used (e.g., a different one
per verifier and day), one obtains the full spectrum from full identification via pseudonymity to full
anonymity. The way the basename is chosen,the frequency it is changed, and the threshold on how
many times a particular NV can appear before a verifier should reject it, is a question that depends on
particular scenarios/applications and is outside of the scope of this document.

We finally note that, whenever possible, multiple proofs by a party are merged in to a single one.
Furthermore, the Fiat-Shamir heuristic [23] is used to turn a proof into a “signature of knowledge”.

As mentioned before, some operations of the TPM can be outsourced to the host in which the TPM
is embedded. In particular, operation that are related to hiding the TPM’s identity but not to the
capability of producing a proof-signature of knowledge of an attestation can be preformed on the host.
The rationale behind this is that the host can always reveal a TPM’s identity.

Security Parameters. We employ the security parameters `n, `f , `e, `′e, `v, `∅, `H, `r, `Γ, and `ρ,
where `n (2048) is the size of the RSA modulus, `f (104) is the size of the fi’s (information encoded
into the certificate), `e (368) is the size of the e’s (exponents, part of certificate), `′e (120) is the size of
the interval the e’s are chosen from, `v (2536) is the size of the v’s (random value, part of certificate),
`∅ (80) is the security parameter controlling the statistical zero-knowledge property, `H (160) is the
output length of the hash function used for the Fiat-Shamir heuristic, `r (80) is the security parameter
needed for the reduction in the proof of security, `Γ (1632) is the size of the modulus Γ, and `ρ (208) is
the size of the order ρ of the sub group of Z∗

Γ that is used for rogue-tagging (the numbers in parentheses
are our proposal for these parameters). We require that:

`e > `∅ + `H + max{`f + 4 , `′e + 2} , `v > `n + `∅ + `H + max{`f + `r + 3 , `∅ + 2} , `ρ = 2`f

The parameters `Γ and `ρ should chosen such that the discrete logarithm problem in the subgroup
of Z∗

Γ of order ρ with Γ and ρ being primes such that 2`ρ > ρ > 2`ρ−1 and 2`Γ > Γ > 2`Γ−1, has about
the same difficulty as factoring `n-bit RSA moduli (see [28]).

Finally, let H be a collision resistant hash function H : {0, 1}∗ → {0, 1}`H .

Setup for Issuer. This section describes how the issuer chooses its public key and secret key. The
key generation also produces a non-interactive proof (using the Fiat-Shamir heuristic) that the keys
were chosen correctly. The latter will guarantee the security requirements of the host (resp., its user),
i.e., that privacy and anonymity of signatures will hold.

1. The issuer chooses a RSA modulus n = pq with p = 2p′ + 1, q = 2q′ + 1 such that p, p′, q, q′ are
all primes and n has `n bits.

2. Furthermore, it chooses a random generator g′ of QRn (the group of quadratic residues modulo
n).

3. Next, it chooses random integers x0, x1, xz, xs, xh, xg ∈ [1, p′q′] and computes

g :=g′
xg mod n h :=g′

xh mod n S :=hxs mod n (1)
Z :=hxz mod n R0 :=Sx0 mod n R1 :=Sx1 mod n . (2)

8

4. It produces a non-interactive proof proof that R0, R1, S, Z, g, and h are computed correctly, i.e.,
that g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and R0, R1 ∈ 〈S〉. We refer to Appendix A for the details of this
proof.

5. It generates a group of prime order: Choose random primes ρ and Γ such that Γ = rρ + 1 for
some r with ρ - r, 2`Γ−1 < Γ < 2`Γ , and 2`ρ−1 < ρ < 2`ρ . Choose a random γ′ ∈R Z∗

Γ such that
γ′(Γ−1)/ρ 6≡ 1 (mod Γ) and set γ := γ′(Γ−1)/ρ mod Γ.

6. Finally, it publishes the public key (n, g′, g, h, S, Z,R0, R1, γ,Γ, ρ) and the proof proof and stores
p′q′ as its secret key.

Let HΓ(·) and H(·) be two collision resistant hash functions HΓ(·) : {0, 1}∗ → {0, 1}`Γ+`∅ and
H(·) : {0, 1}∗ → {0, 1}`H .

Verification of the Issuer’s Public Key. An issuer’s public key can verified as follows.

1. Verify the proof proof that g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and R0, R1 ∈ 〈S〉 as stated in Appendix A.

2. Check whether Γ and ρ are primes, ρ | (Γ− 1), ρ - Γ−1
ρ , and γρ ≡ 1 (mod Γ).

3. Check whether all public key parameter have the required length.

If R0, R1, S, Z, g, and h are not formed correctly, it could potentially mean that the security
properties for the TPM/host do not hold. However, it is sufficient if the platform/host (i.e., owner
of the TPM) verifies the proof that R0, R1, g, and h are computed correctly once. In principle, it is
just sufficient if one representative of platform users checks this proof. Also, if γ does not generate a
subgroup of Z∗

Γ, the issuer could potentionally use this to link different signatures.
As we shall see, it is not important for the security of the platform (i.e., the anonymity/pseudonymity

properties) that n is a product of two safe primes.

Join Protocol. Let PKI := (n, g′, g, h, S, Z,R0, R1, γ,Γ, ρ) be the public key of the issuer and
let PK′

I be a long-term public key of the issuer used to authenticate PKI for the DAA. Let ζI ≡
(HΓ(1‖bsnI))(Γ−1)/ρ mod Γ, where bsnI is the issuers long-term basename.

The input to the TPM is (n, R0, R1, S, ρ, Γ).
We assume that the TPM and the issuer have established a one-way authentic channel, i.e., the

issuer needs to be sure that it talks to the right TPM. Note that authenticity of the channel is enough,
i.e., we do not require secrecy, in fact we even assume the host reads all messages and may choose not
to forward some messages sent by the issuer to the TPM. In fact, it is sufficient that the value U be
transmitted authentically from the TPM to the issuer. In setting of TCG, one can achieve this using
the Endorsement Key (EK) pair was issued to the TPM (see Appendix B).

Let DAAseed be the seed to compute the f0 and f1 secret of the TPM. Also let cnt be the current
value of the counter keeping track of the number of times the TPM has run the Join protocol (however,
the TPM is allows to re-run the Join protocol with the same cnt value many times).

1. The TPM and host verify that PKI is authenticated by PK′
I .

2. The host computes ζI := (HΓ(1‖bsnI))(Γ−1)/ρ mod Γ and sends ζI to the TPM.

3. The TPM checks whether ζρ
I ≡ 1 (mod Γ).

9

4. Let i := b `ρ+`∅
`H

c (i will be 1 for values of the parameters selected in Section 4).

The TPM computes

f := H(H(DAAseed‖H(PK′
I))‖cnt‖0)‖ . . . ‖H(H(DAAseed‖H(PK′

I))‖cnt‖i) (mod ρ), (3)

f0 := LSB`f
(f), f1 := CAR`f

(f) , (4)

v′ ∈R {0, 1}`n+`∅ , (5)

U := Rf0
0 Rf1

1 Sv′ mod n , NI := ζf0+f12
`f

I mod Γ (6)

and sends U and NI to the issuer.

5. The issuer checks for all (f0, f1) on the rogue list whether NI

?
6≡ (ζf0+f12

`f) (mod Γ). The issuer
also checks this for the NI this platform had used previously. If the issuer finds the platform to
be rogue, it aborts the protocol.

6. The TPM proves to the issuer knowledge of f0, f1, and v′: it executes as prover the protocol

SPK{(f0, f1, v
′) : U ≡ ±Rf0

0 Rf1
1 Sv′ (mod n) ∧ NI ≡ ζf0+f12

`f

I (mod Γ) ∧
f0, f1 ∈ {0, 1}`f+`∅+`H+2 ∧ v′ ∈ {0, 1}`n+`∅+`H+2}(nt‖ni)

with the issuer as the verifier. This protocol is implemented as follows, where some non-critical
operations are performed by the host and not be the TPM.

(a) The TPM picks random integers rf0 , rf1 ∈R {0, 1}`f+`∅+`H , rv′ ∈R {0, 1}`n+2`∅+`H , and

computes Ũ := R
rf0
0 R

rf1
1 Srv′ mod n and ÑI := ζ

rf0
+rf1

2
`f

I mod Γ, and sends Ũ and ÑI to
the host.

(b) The issuer chooses a random string ni ∈ {0, 1}`H and sends ni to the host.

(c) The host computes ch := H(n‖R0‖R1‖S‖U‖NI‖Ũ‖ÑI‖ni) and sends ch to the TPM

(d) The TPM chooses a random nt ∈ {0, 1}`∅ and computes

c := H(ch‖nt) ∈ [0, 2`H − 1] .

(e) The TPM computes

sf0 := rf0 + c · f0 , sf1 := rf1 + c · f1 , sv′ := rv′ + c · v′ . (7)

(f) TPM sends (c, nt, sf0 , sf1 , sv′) to the host.

(g) The host forwards (c, nt, sf0 , sf1 , sv′) to the issuer.

(h) Issuer verifies the proof as follows. It computes

Û := U−cR
sf0
0 R

sf1
1 Ssv′ mod n and N̂I := N−c

I ζ
sf0

+2
`f sf1

I mod Γ (8)

and checks

c
?= H(H(n‖R0‖R1‖S‖U‖NI‖Û‖N̂I‖ni)‖nt) ∈ [0, 2`H − 1] , (9)

sf0 , sf1

?
∈ {0, 1}`f+`∅+`H+1 , and sv′

?
∈ {0, 1}`n+2`∅+`H+1 . (10)

10

7. The issuer chooses v̂ ∈R {0, 1}`v−1 and a prime e ∈R [2`e−1, 2`e−1 + 2`′e−1] and computes v′′ :=
v̂ + 2`v−1 and

A :=
(Z

USv′′

)1/e mod n .

8. To convince the host that A was correctly computed, the issuer as prover runs the protocol

SPK{(d) : A ≡ ±
(Z

USv′′

)d (mod n)}(nh)

with the host:

(a) The host chooses a random integer nh ∈ {0, 1}`∅ and sends nh to the issuer.

(b) The issuer randomly chooses re ∈R [0, p′q′] and computes

Ã :=
(Z

USv′′

)re mod n , c′ :=H(n‖Z‖S‖U‖v′′‖A‖Ã‖nh) , and se :=re − c′/e mod p′q′

(11)

and sends c′, se, and (A, e, v′′) to the host.

(c) The host verifies whether e is a prime and lies in [2`e−1, 2`e−1 + 2`′e−1], computes Â :=
Ac′

(
Z

USv′′
)se mod n, and checks whether c′

?= H(n‖Z‖S‖U‖v′′‖A‖Â‖nh).

9. The host forwards v′′ to the TPM.

10. The TPM receives v′′, sets v := v′′ + v′, and stores (f0, f1, v).

Our protocol differs from the one provided in [8] to sign a committed message mainly in that our
protocol requires the issuer to prove that A lies in 〈h〉. The host can conclude that A ∈ 〈h〉 from
the proof the issuer provides in Step 8, the fact that AeUSv′′ ≡ Z (mod n), and the proofs the issuer
provides as part of the setup that S, R0, R1, Z ∈ 〈h〉. We refer to the security proof of Theorem 2,
Equations (39) and (40), for the details of this. The reason for requiring A ∈ 〈h〉 is to assure that later,
in the signing algorithm, A can be statistically hidden in 〈h〉. Otherwise, an adversarial signer could
compute A for instance as b

(
Z

USv′′
)1/e mod n using some b such that be = 1 and b 6∈ 〈h〉. As a DAA-

signature contains the value T1 = Ahw for a random w (see DAA-signing protocol), and adversarial
signer would be able to link T1 to A, e.g., by testing T1 ∈ 〈h〉. Prior schemes such as [1, 6, 8] have
prevented this by ensuring that n is a safe-prime product and then made sure that all elements are cast
into QRn. However, proving that a modulus is a safe-prime product is rather inefficient [10] and hence
the setup of these schemes is not really practical. We note that the proof in Step 8 is zero-knowledge
only if the issuer has chosen n as a safe-prime product. This is a property that the issuer is interested
in, and not the TPM, host, or users of a platform.

Because our security proof requires rewinding to extract f0, f1, and v′ from an adversarial TPM,
the join protocol can only be run sequentially, i.e., not in parallel with many TPMs. At some loss of
efficiency, this drawback could be overcome for instance by using the verifiable encryption [12] of these
values.

DAA-Signing Protocol. We now describe how a platform can prove that is got an anonymous
attestation credential and at the same time authenticate a message. Thus, the platform gets as input a
message m to DAA-sign. We remark that in some cases the message m will be generated by the TPM
and might not be known to the host. That is, the TPM signs an Attestation Identity Key (AIK), an
RSA public key that is has generated, which the TPM will later to sign its internal registers.

11

Let nv ∈ {0, 1}`H be a nonce and bsnV a basename value provided by the verifier. Let b be a byte
describing the use of the protocol, i.e., b = 0 means that the message m is generated by the TPM and
b = 1 means that the message m was input to the TPM.

The input to the protocol for the TPM is m, (n, R0, R1, S,Γ, ρ) and (f0, f1, v), and the host’s input
to the protocol is m, the certificate (A, e) and (n, g, g′, h, R0, R1, S, Z, γ, Γ, ρ).

The signing algorithm is as follows.

1. (a) Depending on the verifier’s request (i.e., whether bsnV 6= ⊥ or not), the host computes ζ as
follows

ζ ∈R 〈γ〉 or ζ := (HΓ(1‖bsnV))(Γ−1)/ρ mod Γ

and sends ζ to the TPM.
(b) The TPM checks whether ζρ ≡ 1 (mod Γ).

2. (a) The host picks random integers w, r ∈ {0, 1}`n+`∅ and computes T1 := Ahw mod n and
T2 := gwhe(g′)r mod n.

(b) The TPM computes NV := ζf0+f12
`f mod Γ and sends NV to the host.

3. Now, the TPM and host together produce a “signature of knowledge” that T1 and T2 commit to
a certificate and NV was computed using the secret key going with that certificate. That is, they
compute the “signature of knowledge”

SPK{(f0, f1, v, e, w, r, ew, ee, er) :

Z ≡ ±T e
1 Rf0

0 Rf1
1 Svh−ew (mod n) ∧ T2 ≡ ±gwheg′

r (mod n) ∧

1 ≡ ±T−e
2 gewheeg′

er (mod n) ∧ NV ≡ ζf0+f12
`f (mod Γ) ∧

f0, f1 ∈ {0, 1}`f+`∅+`H+2 ∧ (e− 2`e) ∈ {0, 1}`′e+`∅+`H+1}(nt‖nv‖b‖m) .

Most of the secrets involved are actually known by the host; in fact only the values involving f0,
f1, and v need to be computed by the TPM, as the reader can see below.

(a) i. The TPM picks random integers

rv ∈R{0, 1}`v+`∅+`H , rf0 , rf1 ∈R{0, 1}`f+`∅+`H ,

and computes

T̃1t :=R
rf0
0 R

rf1
1 Srv mod n r̃f :=rf0 + rf12

`f mod ρ ÑV :=ζ r̃f mod Γ .

The TPM sends T̃1t and ÑV to the host.
ii. The host picks random integers

re ∈R{0, 1}`′e+`∅+`H , ree ∈R{0, 1}2`e+`∅+`H+1 ,

rw, rr ∈R{0, 1}`n+2`∅+`H , rew, rer ∈R{0, 1}`e+`n+2`∅+`H+1

and computes

T̃1 := T̃1tT
re
1 h−rew mod n , T̃2 := grwhreg′

rr mod n , T̃ ′
2 := T−re

2 grewhreeg′
rer mod n .

(12)

(b) i. Host computes

ch := H((n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ)‖ζ‖(T1‖T2)‖NV ‖(T̃1‖T̃2‖T̃ ′
2)‖ÑV)‖nv) ∈ [0, 2`H−1] .

and sends ch to the TPM.

12

ii. The TPM chooses a random nt ∈ {0, 1}`∅ and computes

c := H(H(ch‖nt)‖b‖m) ∈ [0, 2`H − 1] .

and sends c, nt to the host.

(c) i. The TPM computes (over the integers)

sv := rv + c · v , sf0 := rf0 + c · f0 , and sf1 := rf1 + c · f1

and sends (sv, sf0 , sf1) to the host.
ii. The host computes (over the integers)

se := re + c · (e− 2`e−1) , see := ree + c · e2 , sw := rw + c · w ,

sew := rew + c · w · e , sr := rr + c · r , ser := rer + c · e · r .

4. The host outputs the signature

σ := (ζ, (T1, T2), NV , c, nt, (sv, sf0 , sf1 , se, see, sw, sew, sr, ser)) . (13)

Let us give some intuition about why this signature should convince a verifier that NV links to
secrets that were certified. The first term in the SPK can be rewritten as Z ≡ (± T1

hew/e)eRf0
0 Rf1

1 Sv

(mod n), if e divides we (see proof of security). The second two terms show that e indeed divides we,
so the rewriting works. Therefore, because the last terms that show that the fi’s and e satisfy the
length requirements, (T1

hew/e , e, v) is a valid certificate for f0 and f1. The remaining term shows that NV

is based on the same f0 and f1.
The main difference of this DAA-signing protocol to the signature generation in prior schemes such

as [1, 6, 8] is that here we have distributed the necessary operation to two parties, the TPM and the host.
Basically, the TPM only produces the proof-signature SPK{(f0, f1, v) : (Z/Ae) ≡ Rf0

0 Rf1
1 Sv mod n ∧

NV ≡ ζf0+f12
`f (mod Γ)}(nt‖nv‖b‖m), which the host then extends to the full DAA-signature (note

that (Z/Ae) is known to the host). Note that the SPK produced by the TPM is not anonymous (even
with a random ζ) as the value (Z/Ae) would fully identify the TPM. While it is intuitively obvious
that the host cannot generate such signatures on its own or turn one by a TPM into one on a different
message, we provide a formal proof of this in Section 5

Verification Algorithm. Verification of a signature

σ = (ζ, (T1, T2), NV , c, nt, (sv, sf0 , sf1 , se, see, sw, sew, sr, ser)) (14)

an a message m w.r.t. the public key (n, g, g′, h,R0, R1, S, Z, γ,Γ, ρ) is as follows

1. Compute

T̂1 := Z−cT se+c2`e−1

1 R
sf0
0 R

sf1
1 Ssvh−sew mod n , T̂2 := T−c

2 gswhse+c2`e−1
g′

sr mod n , (15)

T̂ ′
2 := T

−(se+c2`e−1)
2 gsewhseeg′

ser mod n , and N̂V := N−c
V ζsf0

+sf1
2

`f mod Γ . (16)

2. Verify that

c
?= H(H(H((n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ)‖ζ‖(T1‖T2)‖NV ‖(T̂1‖T̂2‖T̂ ′

2)‖N̂V ‖nv)‖nt)‖b‖m) ,
(17)

NV , ζ
?
∈ 〈γ〉 , sf0 , sf1

?
∈ {0, 1}`f+`∅+`H+1 , and se

?
∈ {0, 1}`′e+`∅+`H+1 . (18)

13

3. If ζ was not chosen at random but derived from a verifier’s basename, then check whether

ζ
?≡ (HΓ(1‖bsnV))(Γ−1)/ρ (mod Γ) .

4. For all (f0, f1) on the rogue list check whether NV

?
6≡ (ζf0+f12

`f) (mod Γ).

The check NV , ζ
?
∈ 〈γ〉 can be done by raising NV and ζ to the order of γ (which is ρ) and checking

whether the result is 1. In case ζ is random, one can apply so called batch verification techniques (cf. [2])
to obtain a considerable speed-up of the verification step 4. Also note that the involved exponents are
relatively small. Finally, if ζ is not random, one could precompute ζf0+f12

`f for all (f0, f1) on the rogue
list.

On Rogue Tagging. When a certificate (A, e, v) and values f0 and f1 are found (e.g., on the Internet
or embedded into some software), they should be distributed to all potential verifiers. These verifiers
can then check whether AeRf0

0 Rf1
1 Sv ≡ Z (mod n) holds and then put f0 and f1 on their list of rogue

keys. Note that this does not involve a certificate revocation authority.

Inputs and Outputs of the Parties. To actually meet the specifiation of DAA we gave in Section 2,
it remains to define the outputs of the parties in the real system. The hosts do not output anything.
The issuer outputs the identity of a platform after it has joined; if a platform that has been tagged
rogue tries to join the protocols, it outputs the identity of this platform and the relevant counter value.
Finally, when a verifier sees a valid signature (this excludes signatures generated by a rogue TPM), it
produces its output as follows: (1) If the signature was produced by a rogue TPM, it outputs m together
with the note that m was signed by a rogue. (2) If the signature was produced w.r.t. bsnV = ⊥, it just
outputs the message. (3) If the signature was produced with a ζ derived from a basename (i.e., w.r.t.
bsnV 6= ⊥), it looks in its database whether it already assigned a pseudonym P to the pair (ζ, NV);
otherwise it chooses new random pseudonym P ∈R {0, 1}`σ and assigns it the the pair (the quantity `σ

is a security parameter). In either case, it outputs P and m.

5 Security Proofs

The following theorem establishes the security of our scheme.

Theorem 2. The protocols provided in Section 4 securely implement a secure direct anonymous attes-
tation system under the decisional Diffie-Hellman assumption in 〈γ〉 and the strong RSA assumption.

We refer to Appendix C for the actual security proofs and give here only a very high-level overview
of the proof. The proof of Theorem 2 consists of the description of a simulator and arguments that
the environment cannot distinguish whether it is run in the real system, interacting with A and the
real parties, or in the ideal system, interacting with S and the ideal parties. Recall that the simulator
interacts with T on behalf of the corrupted parties of the ideal system, and simulates the real-system
adversary A towards the environment E .

The simulator, which has black box access to the adversary, basically runs the real system protocol
in the same way as an honest party would, apart from the DAA-signing protocol, where the simulator
is just told by T that some party signed a message (possible w.r.t. a pseudonym) but it does not
know which party signed. Thus the simulator just chooses a random NV and then forges a signature by
using the zero-knowledge simulator of the SPK proof and the power over the random oracle. Also, if the
simulator notes that the adversary signed some message, it chooses some corrupted host and tells T that
this host has signed on behalf of a party. The simulator will fail in cases where the adversary manages

14

to forge a signature, to sign on behalf of a honest TPM/host, or to tag an honest TPM as a rogue. We
show that these cases cannot occur only under the strong RSA and the discrete logarithm assumption.
We then show that if the simulator does not fail then, under the decisional Diffie-Hellman assumption,
the environment will not be able to tell whether or not it is run in the real system interacting with the
adversary or the ideal system interacting with the simulator.

6 Conclusion

The protocols we describe could be extended im many ways. For instance, only minor changes would
be necessary to allow the issuer to use any RSA modulus instead of only safe-prime products. How-
ever, one would need to make a small order assumption [22]. Another extension would to guaranteed
anonymity/pseudonymity to the host (in fact to its user) even if the TPM deviates from the protocol
(cf. [19]). Finally, as we have already mentioned in Section 4, one could extend the join protocol in such
a way that the system can also be proved secure if issuer runs the protocol concurrently with different
TPMs.

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-
resistant group signature scheme. In M. Bellare, editor, Advances in Cryptology — CRYPTO 2000,
volume 1880 of LNCS, pages 255–270. Springer Verlag, 2000.

[2] M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular exponentiation and
digital signatures. In K. Nyberg, editor, Advances in Cryptology — EUROCRYPT ’98, volume
1403 of LNCS, pages 236–250. Springer Verlag, 1998.

[3] F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Preneel, editor,
Advances in Cryptology — EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444. Springer
Verlag, 2000.

[4] E. Brickell. An efficient protocol for anonymously providing assurance of the container of a private
key. Submitted to the Trusted Computing Group, Apr. 2003.

[5] E. F. Brickell, D. Chaum, I. B. Damg̊ard, and J. van de Graaf. Gradual and verifiable release of a
secret. In C. Pomerance, editor, Advances in Cryptology — CRYPTO ’87, volume 293 of LNCS,
pages 156–166. Springer-Verlag, 1988.

[6] J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-show credential
system with optional anonymity revocation. In B. Pfitzmann, editor, Advances in Cryptology —
EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer Verlag, 2001.

[7] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In M. Yung, editor, Advances in Cryptology — CRYPTO 2002, volume
2442 of LNCS, pages 61–76. Springer Verlag, 2002.

[8] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In S. Cimato,
C. Galdi, and G. Persiano, editors, Security in Communication Networks, Third International
Conference, SCN 2002, volume 2576 of LNCS, pages 268–289. Springer Verlag, 2003.

[9] J. Camenisch and M. Michels. A group signature scheme with improved efficiency. In K. Ohta
and D. Pei, editors, Advances in Cryptology — ASIACRYPT ’98, volume 1514 of LNCS, pages
160–174. Springer Verlag, 1998.

15

[10] J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is the product of two
safe primes. In J. Stern, editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of
LNCS, pages 107–122. Springer Verlag, 1999.

[11] J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes. In
M. Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of LNCS, pages 413–430.
Springer Verlag, 1999.

[12] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms.
In D. Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of LNCS, pages
126–144, 2003.

[13] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B. Kaliski,
editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of LNCS, pages 410–424. Springer
Verlag, 1997.

[14] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute of Science, Rehovot 76100, Israel, June 1995.

[15] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryptol-
ogy, 13(1):143–202, 2000.

[16] D. Chaum. Security without identification: Transaction systems to make big brother obsolete.
Communications of the ACM, 28(10):1030–1044, Oct. 1985.

[17] D. Chaum. Zero-knowledge undeniable signatures. In I. B. Damg̊ard, editor, Advances in Cryp-
tology — EUROCRYPT ’90, volume 473 of LNCS, pages 458–464. Springer-Verlag, 1991.

[18] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession
of discrete logarithms and some generalizations. In D. Chaum and W. L. Price, editors, Advances
in Cryptology — EUROCRYPT ’87, volume 304 of LNCS, pages 127–141. Springer-Verlag, 1988.

[19] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor, Advances
in Cryptology — CRYPTO ’92, volume 740 of LNCS, pages 89–105. Springer-Verlag, 1993.

[20] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Advances in Cryptology
— EUROCRYPT ’91, volume 547 of LNCS, pages 257–265. Springer-Verlag, 1991.

[21] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM Trans-
actions on Information and System Security, 3(3):161–185, 2000.

[22] I. Damg̊ard and M. Koprowski. Practical threshold RSA signatures without a trusted dealer. In
B. Pfitzmann, editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of LNCS, pages
152–165. Springer Verlag, 2001.

[23] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In A. M. Odlyzko, editor, Advances in Cryptology — CRYPTO ’86, volume 263 of
LNCS, pages 186–194. Springer Verlag, 1987.

[24] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In B. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of LNCS,
pages 16–30. Springer Verlag, 1997.

16

[25] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle.
In J. Stern, editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of LNCS, pages
123–139. Springer Verlag, 1999.

[26] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

[27] J. Kilian and E. Petrank. Identity escrow. In H. Krawczyk, editor, Advances in Cryptology —
CRYPTO ’98, volume 1642 of LNCS, pages 169–185, Berlin, 1998. Springer Verlag.

[28] A. K. Lenstra and E. K. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,
14(4):255–293, 2001.

[29] A. Lysyanskaya. Signature schemes and applications to cryptographic protocol design. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, Sept. 2002.

[30] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems.
In Proc. 7th ACM Conference on Computer and Communications Security, pages 245–254. ACM
press, Nov. 2000.

[31] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 184–200. IEEE Computer Society, IEEE Computer Society Press, 2001.

[32] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor, Advances
in Cryptology — EUROCRYPT ’96, volume 1070 of LNCS, pages 387–398. Springer Verlag, 1996.

[33] Trusted Computing Group. Trusted computing platform alliance (tcpa) main specification, version
1.1a. Republished as Trusted Computing Group (TCG) main specifcation, Version 1.1b, Available
at www.trustedcomputinggroup.org, 2001.

[34] Trusted Computing Group. Trusted platfrom module (TPM) main specification, version 1.2. Avail-
able at www.trustedcomputinggroup.org, 2001.

[35] Trusted Computing Group website. www.trustedcomputinggroup.org.

A Generation and Verification of a Proof that Public Key Elements
lie in the right Subgroups

This section describes the steps to be performed by the issuer to prove that it computed R0, R1, S, Z,
g, and h correctly, i.e., that g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and R0, R1 ∈ 〈S〉. It also describes the steps for a
host to verify the proof and thus to establish that the privacy and anonymity properties of the scheme
will hold.

Generating the proof.

1. The prover chooses random

x̃(g,1), . . . , x̃(g,`H) ∈R[1, p′q′] x̃(h,1), . . . , x̃(h,`H) ∈R[1, p′q′] (19)

x̃(s,1), . . . , x̃(s,`H) ∈R[1, p′q′] x̃(z,1), . . . , x̃(z,`H) ∈R[1, p′q′] (20)

x̃(0,1), . . . , x̃(0,`H) ∈R[1, p′q′] x̃(1,1), . . . , x̃(1,`H) ∈R[1, p′q′] (21)

17

and computes

g̃(g,i) := g′
x̃(g,i) mod n h̃(h,i) := g′

x̃(h,i) mod n (22)

S̃(s,i) := hx̃(s,i) mod n Z̃(z,i) := hx̃(z,i) mod n (23)

R̃(0,i) := Sx̃(0,i) mod n R̃(1,i) := Sx̃(1,i) mod n (24)

for i = 1, . . . , `H.

2. The prover computes

c := H(n, g′, g, h, S, Z,R0, R1, g̃(g,1), . . . , g̃(g,`H), h̃(h,1), . . . , h̃(h,`H),

S̃(s,1), . . . , S̃(s,`H), Z̃(z,1), . . . , Z̃(z,`H), R̃(0,1), . . . , R̃(0,`H), R̃(1,1), . . . , R̃(1,`H)) . (25)

3. The prover computes

x̂(g,i) := x̃(g,i) − cixg mod p′q′ x̂(h,i) := x̃(h,i) − cixh mod p′q′ (26)

x̂(s,i) := x̃(s,i) − cixs mod p′q′ x̂(z,i) := x̃(z,i) − cixz mod p′q′ (27)

x̂(0,i) := x̃(0,i) − cix0 mod p′q′ x̂(1,i) := x̃(1,i) − cix1 mod p′q′ (28)

for i = 1, . . . , `H, where ci is the i-th bit of c.

4. The prover publishes

proof := (c, x̂(g,1), . . . , x̂(g,`H), x̂(h,1), . . . , x̂(h,`H),

x̂(s,1), . . . , x̂(s,`H), x̂(z,1), . . . , x̂(z,`H), x̂(0,1), . . . , x̂(0,`H), x̂(1,1), . . . , x̂(1,`H),) .

as proof that g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and R0, R1 ∈ 〈S〉.

This proof uses binary challenges (the ci’s) and it is easy to see that it is indeed a zero-knowledge
proof that R0 and R1 lie in 〈S〉, that Z and S lie in 〈h〉, and that g and h lie in 〈g′〉

Verifying the proof. A proof

proof = (c, x̂(g,1), . . . , x̂(g,`H), x̂(h,1), . . . , x̂(h,`H), x̂(s,1), . . . , x̂(s,`H), x̂(z,1), . . . , x̂(z,`H),

x̂(0,1), . . . , x̂(0,`H), x̂(1,1), . . . , x̂(1,`H))

that R0, R1, S, Z, g, and h are correctly formed is verified as follows

1. Compute

ĝ(g,i) := gcig′
x̂(g,i) mod n ĥ(h,i) := hcig′

x̂(h,i) mod n (29)

Ŝ(s,i) := Scihx̂(s,i) mod n Ẑ(z,i) := Zcihx̂(z,i) mod n (30)

R̂(0,i) := Rci
0 Sx̂(0,i) mod n R̂(1,i) := Rci

1 Sx̂(1,i) mod n (31)

for i = 1, . . . , `H, where ci is the i-th bit of c.

2. Verify

c
?= H(n, g′, g, h, S, Z,R0, R1, ĝ(g,1), . . . , ĝ(g,`H), ĥ(h,1), . . . , ĥ(h,`H),

Ŝ(s,1), . . . , Ŝ(s,`H), Ẑ(z,1), . . . , Ẑ(z,`H), R̂(0,1), . . . , R̂(0,`H), R̂(1,1), . . . , R̂(1,`H)) . (32)

18

B Authenticating a TPM w.r.t. an Endorsement Key

In the join protocol, the issuer must be sure that the value U stems from the TPM that owns a given
endorsement public key EK. In this paper we just assume that the issuer receives U in an authentic
manner, the following protocol could be used to achieve this.

(a) The issuer chooses a random ne ∈ {0, 1}`∅ and encrypts ne under the EK and sends the encryption
to the TPM.

(b) The TPM decrypts this and thereby retrieves some string ne. Then, the TPM computes aU :=
H(U‖ne) and sends aU to the issuer.

(c) The issuer verifies if aU = H(U‖ne) holds.

This protocol should be executed between the steps 4 and 6 of the join protocol. This protocol is in
the same spirit as the protocol to “authenticate” the AIK in the TCG TPM 1.1b specification.

C Security Proofs

Proof. We first describe how to obtain a simulator S such that the environment E cannot distinguish
whether it is run in the real system, interacting with A and the real parties, or in the ideal system,
interacting with S and the ideal parties.

Recall that the simulator interacts with T on behalf of the corrupted parties of the ideal system,
and simulates the real-system adversary A towards the environment E . The simulator S is given A
as a black box. The simulator S will use A to simulate the conversations of E with A. That is, the
simulator will forward all messages from E to A and all messages from A to E .

As we are in the random oracle model, the simulator has full control of the random oracle, i.e., the
simulator plays the random oracle towards A. Whenever S gets a call from A to the random oracle, S
is free to answer it in any way subject to the only constraint that it cannot give two different answers
to the same query.

We now describe how S handles the different operations of the system. These operations are
triggered either by requests/messages from T to any of the corrupted party (which are thus received
by S) or then by requests/messages from A to any of the honest parties.

The simulator S will need to handle the operations differently depending on which parties are
corrupted. Accordingly, we name the cases as follows. A capital letter denotes that the corresponding
party is not corrupted and a small letter denotes that is it corrupted. For instance, (IMh) denotes the
case where the issuer and the TPM are not corrupted, but the host is. If a party is not listed, then the
simulator handles this case independently of whether or not this party is corrupted.

Ideal System Setup: For all parties controlled by S, it indicates to T that they are corrupted.

Simulation of the Real System’s Setup: Case (i). If the issuer is corrupted, S receives the issuer’s
public key (n, g, g′, h,R0, R1, S, Z, γ, Γ, ρ) from A. For every honest platform, the simulator S
chooses a random seed DAAseed. If there exists a corrupted platform, then let Û be some corrupted
platform and S runs the ideal-system join protocol for Ĥ with counter value 0. Note that no honest
party in the ideal system will note any of this.

Case (I). If the issuer is not corrupted, S runs the key generation of the issuer’s and sends the
thereby obtained public key (n, g, g′, h,R0, R1, S, Z, γ,Γ, ρ) to A as the public key of the issuer.
Note that in this case S knows the factorization of n. Also, for every dishonest platform Hi, the
simulator S initializes the counter value cnti with 0.

19

Simulation of the Join Protocol/Operation: Players in this operation are a host, a TPM and the
issuer. We distinguish six cases, depending on whether or not the issuer, the host, and the TPM
are corrupted (recall that we do not consider corrupted TPMs with uncorrupted hosts).

Case (ihm): Issuer and the platform (host and TPM) are corrupted. There is nothing S has to
do, i.e., it won’t even notice as this is basically an internal transaction of A.

Case (IHM): Issuer and platform are not corrupted. S does not have to do anything (again, it
won’t even notice as this operation does not trigger a call from T to S).

Case (iHM): Issuer is corrupted but not the platform. In this case S gets a request from T that
platform with identity idi wants to join w.r.t. counter value cnti. Thus, S has to play the ideal-
system issuer towards T and to simulate the real-system platform Hi/Mi towards A. I.e., S runs
the real-system join protocol as platform Hi/Mi with A as issuer using the counter value cnti.
If the join protocol finishes successfully and S obtains a certificate (A, e, v) from A for values f0

and f1, it stores these and informs T that the platform is allowed to join. If the protocol failes,
S informs T that platform is not allowed to join.

Case (Ihm): Issuer is not corrupted but the platform is.

In this case S gets a request from A, as real-system platform with identity idi, to run the join
protocol.

Thus S plays the issuer and runs the join protocol with the adversary as platform as follows. It
runs the join protocol until Step 8b (i.e., it does not send (A, e, v′) yet). If the protocol is aborted
before this step, the simulator does not need to do anything further for this query. If S has not
seen NI sent by A during the join protocol, it increments the counter cnti, stores cnti and NI ,
and informs T that Hi wants to join w.r.t. counter value cnti. If S has seen the NI sent by A, it
looks up the counter value cnti stored with NI , and informs T as Hi that it wants to join w.r.t.
counter value cnti. Next, S plays its role as ideal-system TPM Mi and sends idi and waits until
T tells it (addressed as Hi) whether it was allowed to join. If the answer is positive, S finishes
the join protocol with A; otherwise it aborts the protocol.

Case (IhM): Issuer and TPM are not corrupted, but the host is.

This case is similar to the one above (case (Ihm)), with the exception that S also runs the TPM
part of the join protocol with A and will need to send idi as TPM Mi to T (which it gets as
corrupted host Hi from T during the setup phase of the ideal system).

Case (ihM): Issuer and host are corrupted but not the TPM.

In this case, S gets a request from A that host Hi wants to use TPM Mi in a join protocol w.r.t.
the counter value cnti. So S triggers a request to T that Hi wants to join w.r.t. counter value
cnti. As the issuer is corrupted, S gets a request from T whether the platform with identity idi

can join. Next, S runs the TPM part of the join protocol with the adversary. If the protocol
finished successfully S, i.e., S received a value v′ from A for values f0 and f1 it chose, it stores
these and, acting as corrupted issuer, informs T that the platform is allowed to join. Otherwise,
S informs T that platform is not allowed to join.

Simulation of the DAA-Sign Protocol/Operation: The simulator will only note that this oper-
ation is going on when the host is corrupted and the TPM is not. That is, when the adversary
engages with the (honest) TPM in the signing protocol.

Case (hM): Request from corrupted host to non-corrupted TPM to sign a message. So S gets a
call from A addressed as TPM Mi to sign message m w.r.t. counter value cnti and then proceeds
as follows.

20

1. If no join protocol has been successfully finished by Mi w.r.t. counter value cnti, simulator
S rejects the request.

2. (a) S receives a ζ from A. It looks up ζ in its records. If ζ is present, it looks up the NV

used with ζ before, otherwise it chooses a random NV ∈R 〈ζ〉.
(b) S sends NV to A.

3. S now forges the TPM’s part of the signature as follows.

(a) S picks random integers

sv ∈R{0, 1}`v+`∅+`H , sf0 , sf1 ∈R{0, 1}`f+`∅+`H ,

(b) S picks a random c ∈ {0, 1}`H .
(c) S computes

T̃1t := Z−cR
sf0
0 R

sf1
1 Ssv mod n , (33)

ÑV := N−c
V ζsf0

+sf1
2

`f mod Γ . (34)

and sends T̃1t and ÑV to A.
(d) S receives ch from A, chooses a random nt, and patches the random oracle such that

c = H(ch‖nt‖b‖m) .

4. S request as Hi from T that m be signed w.r.t. counter value cnti. If T informs S that Mi is
ready to sign and asks for a basename, S postpones the answer to T (S will answer this call
only once it has seen the signature from A, see “Simulation of the DAA-Verify operation”
below) but sends A the values c, nt, sf0 , sf1 , and sv.

Simulation of the DAA-Verify Operation/Algorithm: This action can be triggered in two dif-
ferent ways. First, S (as ideal-system verifier Vj) can be informed by T that some honest platform
signed m w.r.t. a basename bsn (and possibly a pseudonym P). This is case (H) below.

Second, S (as real-system verifier Vj) can receive a real-system signature from the adversary. This
is case (h).

Note that we need not distinguish whether or not the issuer is corrupted.

Case (H): The platform is not corrupted (by assumption, the TPM is honest if the host is).

In this case S gets a notification from T that some platform has signed m w.r.t. bsn and, if
bsn 6= ⊥, pseudonym P .

S proceeds as follows to simulate a signature in the real-system using the power over the random
oracle.

1. (a) If bsn = ⊥, simulator S picks a random ζ ∈ 〈γ〉 and picks a random NV ∈R 〈ζ〉.
(b) If bsn 6= ⊥, S looks up P in its records. If P is present, it looks up (ζ, NV) used with P

before, otherwise S sets ζ := (HΓ(1‖bsn))(Γ−1)/ρ mod Γ, chooses a random NV ∈R 〈ζ〉,
and stores (ζ, NV) with P .

(c) S picks a random T1 ∈R 〈h〉 and T2 ∈R 〈g′〉.
2. S now forges a signature w.r.t. ζ, NV , T1, and T2 as follows.

21

(a) S picks random integers

sv ∈R{0, 1}`v+`∅+`H , sf0 , sf1 ∈R{0, 1}`f+`∅+`H ,

se ∈R{0, 1}`′e+`∅+`H , see ∈R{0, 1}`′e+`e+`∅+`H+1,

sw ∈R{0, 1}`n+2`∅+`H sew ∈R{0, 1}`e+`n+2`∅+`H+1

sr ∈R{0, 1}`n+2`∅+`H ser ∈R{0, 1}`e+`n+2`∅+`H+1

(b) S picks a random c ∈ {0, 1}`H .
(c) S computes

T̃1 := Z−cT se+c2`e−1

1 R
sf0
0 R

sf1
1 Ssvh−sew mod n , (35)

T̃2 := T−c
2 gswhse+c2`e−1

(g′)sr mod n , (36)

T̃ ′
2 := T

−(se+c2`e−1)
2 gsewhsee(g′)ser mod n , and (37)

ÑV := N−c
V ζsf0

+sf1
2

`f mod Γ . (38)

(d) S chooses a random nt and patch the random oracle such that

c = H(H((n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ)‖ζ‖(T1‖T2)‖NV ‖(T̃1‖T̃2‖T̃ ′
2)‖ÑV ‖)‖nt‖nv‖b‖m)) .

3. S sends σ := (ζ, (T1, T2), NV , c, nt, (sv, sf0 , sf1 , se, see, sw, sew, sr, ser)) as signature on m to
A.

Case (h): S obtains a (new) signature from A on a message m w.r.t. NV , ζ, and basename bsn.

First, S checks the validity of the signature, except the rogue check. If these checks fail, S
can just ignore the signature. Otherwise, S proceeds with the rogue check, i.e., checks whether
ζf0+f12

`f = NV holds for any of the f0 and f1 on the rogue-list.

• If there is a matching (f0, f1) pair, S checks whether this pair is assigned to any idi w.r.t.
some counter value cnti. (If the pair is assigned, then idi is marked rogue w.r.t. the counter
value cnti). If there is such an idi, S triggers a call to T as Hi to sign m w.r.t. the counter
value cnti and bsn and the processing of the operation is finished. (Note that idi will be
the identity of a corrupted TPM and thus also Hi is corrupted.)
If there is no such idi, S checks whether it has already seen the (ζ, NV) pair appearing in the
signature. As this can only happen if the issuer is corrupt, S is free to choose any corrupt
TPM Mi and a counter value cnti such that Hi/Mi is not yet a member w.r.t. cnti, trigger
the calls to T to make them a member, then the call to tag them rogue, and finally the calls
as Hi to sign m w.r.t. the counter value cnti and bsn.

• If there is no matching (f0, f1) pair, the signature comes from a platform that is (not yet)
tagged as rogue. So S has to figure out to which platform it should associate this signature.
To this end S checks whether it has already seen the (ζ, NV) pair appearing in the signature.

– If (ζ, NV) was used before, S proceeds as follows.
∗ If S used (ζ, NV) as honest Mi in the simulation of the DAA-sign, and S owes T a

reply whether or not to proceed with a signature on the message m, S replies to T
(as host Hi) that it indeed wants to sign m (cf. Case (hM) Part I).

∗ If S used (ζ, NV) as honest Miin the simulation of the DAA-sign, but S (as host Hi)
does not owe T a reply whether or not to proceed with a signature on the message
m, S stops outputting “failure 1”.

22

∗ Otherwise S looks in its database which host Hi, TPM Mi, and counter value cnti

it assigned to that pair previously and then initiates and executes the signing of m
w.r.t. bsn and cnti with T on behalf of Hi.

– If (ζ, NV) is new to S, it has to assign a “free” TPM Mi and counter value cnti pair
to (ζ, NV). As S has not seen (ζ, NV), this means that the involved TPM must be
corrupted.
∗ If bsn = ⊥ then S can just select any corrupted Mi and counter value cnti (note

that by assumption the corresponding host is then corrupted, too) such that Mi is
not tagged as rogue w.r.t. counter value cnti. Then, as host Hi, simulator S initiates
the signing of message m w.r.t. bsn and counter value cnti with T .

∗ If bsn 6= ⊥ then S select any corrupted Mi and counter value cnti such that Mi is
not tagged as rogue w.r.t. counter value cnti and such that S has not yet triggered a
signature call to T as Hi w.r.t. bsn and cnti. If it finds such a “free” (Mi, cnti) pair,
it initiates the signing of message m w.r.t. bsn and counter value cnti, as host Hi.
If there is no such free (Mi, cnti) pair and the issuer is not corrupt, the adversary
must be able to forge signatures and so S stops outputting “failure 2”. However,
if the issuer is corrupt, S can simply generate such a pair by letting some corrupt
TPM and host join w.r.t. some free counter value cnti.

Simulation of the Rogue-Tagging Operation: By assumption the rogue-tagging oracle is always
corrupted. Thus, S obtains f0, f1, s, A and e from A.

If Rf0
0 Rf1

1 SsAe does not equal Z, simulator S just ignores the values. Next, S checks whether
f0 and f1 correspond to a NI or NV that S used with an honest TPM Mi. If this is the case,
A computed the discrete logarithm of this NI or NV and so S stops outputting “failure 3”.
Otherwise, S proceeds as follows. We now distinguish whether or not the issuer is corrupted.

Case (I): the issuer is not corrupted. In this case S looks up to which platform Hi and counter
value cnti the values f0 and f1 correspond to, using the NI retrieved from the join protocol and
then tells T this platform should be tagged rogue w.r.t. counter value cnti. If S finds no NI that
corresponds to f0 and f1, the adversary must have forged a membership certificate and so S stops
outputting “failure 4”.

Case (i). The issuer is corrupted. In this case S looks whether there is already a NV that
corresponds to the values f0 and f1, it looks up the related idi and counter value cnti and tells
T to tag them as rogue. (There might be several matching NV ’s even belonging to different idi.
However, it it’s safe to take anyone of them.) If there is no matching NV , simulator S just stores
f0 and f1 without assigning the pair a idi and a counter value cnti. (It can be the case that the
matching NV is only later produced by the adversary and so S can trigger the rogue tagging only
then, see “Simulation of the DAA-Sign/Verify operation”.)

This concludes the description of the simulator S. It remains to argue that S is such that the environ-
ment cannot distinguish whether it is run in the ideal system or in the real system.

We now argue that the simulator described above works, i.e., that under the decisional Diffie-
Hellman assumption in Z∗

Γ and under the strong RSA assumption, it will not stop outputting “failure
X” and that the environment can not distinguish whether or not it is run in the real system or in the
ideal system.

• Failure 1: If this failure occurs, the adversary has forged a signature w.r.t. an NV that the
simulator chose. Because the signature is based on a proof of knowledge of the discrete logarithm
of NV , we can extract logζ NV by using rewinding on the adversary and the power over the random
oracle. Thus, by again using the power over the random oracle to set ζ to a given target value,

23

we can reduce an adversary that produces a failure of this type to one that compute discrete
logarithms. Note in such a reduction we would loose a factor related to the number of oracle calls.

• Failure 2: This failure can only occur if the issuer is honest and the adversary produces signatures
w.r.t. given basenames but with more different NV ’s than there are TPM’s that were made
members by the issuer. This means that the adversary must be able to produce signatures
w.r.t. a pair (NV , ζ) such that logζ NV = logζI

NI for to any NI for which the issuer (simulator)
completed the join protocol. We will show in Lemma 3 that this is not possible under the strong
RSA assumption.

• Failure 3: The adversary produced f0 and f1 such that NV or NI equals ζf0+f12
`f for some ζ and

NV or NI . However, the simulator choose all the NV randomly, i.e., such that it did not know
logζ NV . Similarly, the simulator could also have chosen NI at random; this would not change the
distribution of the other values sent to the adversary. It is now straightforward to show that the
adversary could be used to solve the discrete logarithm problem in Z∗

Γ. Note that this reduction
is tight because of the random-self-reducibility of the discrete logarithm problem.

• Failure 4: This is a similar failure as failure 3 and can only occur if the issuer is honest and the
forged a membership certificate (A, e, v) with f0 and f1 such that that do not correspond to a NI

for which the issuer (simulator) completed the join protocol. We will show in Lemma 3 that this
is not possible under the strong RSA assumption.

• It remains to argue that the environment and adversary cannot distinguish whether they are
run in the real system or in the ideal system. To this end note that the simulator performs all
operations as the respective players would in the real system with the exceptions of the operations
related to sign protocol. Also note that the simulator will patch the random oracle such that its
outputs are uniformly random. When simulating an honest TPM, the simulator chooses NV , ÑV ,
T̂1t, sv, sf0 , and sf1 and, when simulating an honest host, S also chooses T1, T2, se, see, sw,
swe, sr, and sre not as specified by the protocol. (We note that T̂1, T̂2, and T̂ ′

2 are a function of
these values and the output of the random oracle.) Thus we need to argue that the adversary
and environment cannot distinguish whether these values are chosen as the simulator does or as
specified by the sign protocol.

It is easy to see that all si’s are distributed statistically close in both cases if `∅ is sufficiently
large, i.e., the statistical difference is at most 2−(`∅−1).

Next, consider the distribution of NV ’s. The simulator chooses all NV ’s at random whereas in the
real system the logζ NV will be the same for a given TPM and counter value. However, under the
decisional Diffie-Hellman assumption, no adversary can distinguish the two distributions provided
that the modulus Γ and the size ρ of the subgroup these elements come from are sufficiently large.

Consider the distribution of ÑV ’s: it is easy to see that r̃f (= rf0 +rf12
`f mod ρ) with rfi

chosen as
specified in the protocol is distributed statistically close to sf0 + sf12

`f mod ρ) with sfi
as chosen

by the simulator. Now as NV ∈ 〈ζ〉, the ÑV ’s are distributed (computationally) indistinguishably
in the real and ideal system.

Next, consider the values T1 and T2. The simulator chooses them randomly from 〈h〉 and 〈g′〉,
respectively. We now show that an honest host computes T1 as Ahw and T2 as gwhe(g′)r and
hence they are distributed statistically close to random elements of 〈h〉 and 〈g′〉, respectively, if
A ∈ 〈h〉 and g, h ∈ 〈g′〉 as w and r are chosen such that w mod |h| and r mod |g′| are distributed
statistically close to [0, |h|] and [0, |g′|]. We show that A ∈ 〈h〉 and g, h ∈ 〈g′〉 will indeed be
the case, even is the issuer was corrupted. First, the issuer proves in the set-up phase that the
elements R0 and R1 lie in the group generated by S, that S and Z lie in the group generated by

24

h, and that g, and h lie in the subgroup generated by g′; Second, A ∈ 〈h〉 is ensured by the the
proof the issuer give in Step 8 of the Join protocol and the check of the host that e is a sufficiently
large prime. That is, from that proof one can deduce that

A∆c′ ≡
(Z

USv′′

)∆se (mod n) (39)

holds for some ∆c′ ∈ [−2`H+1 , 2`H+1] and ∆se (this can be derived from two accepting answers to
different challenges c′ but the same value Ã). We also know that Ae ≡ Z

USv′′ (mod n) holds and
that there are exits integers a1 and a2 such that ea1 + ∆c′a2 = 1 as ∆c′ - e (e is prime and ∆c′ is
smaller than e). Thus we have

A ≡ Aa1e+∆c′a2 ≡
(Z

USv′′

)a1+a2∆se (mod n) (40)

and therefore A must lie in the group generated by h.

Lemma 3. Under the strong RSA assumption, there exists no adversary that does not control the issuer
but can make the simulator output failure 2 or 4 in the above simulation, provided that the join protocol
is run sequentially.

To prove this lemma, we use the following lemma which is a generalization of a Theorem stated by
Camenisch and Shoup [12] and which used before implicitly in the analysis of many schemes based on
the strong RSA assumption (e.g., [9, 25, 21, 1, 6]).

Lemma 4. Let n be a safe prime product and z ∈ QRn. Let ri ∈R [n, n2] and ei be integers that have
no factor smaller than 2`e−1, and xi := zeiri for (i = 1, . . . , u). Then, for any algorithm that obtains
(n, x1, . . . , xu, e1, . . . , eu), but not any other values related to the ri’s, and then outputs si’s and c, and
t such that tc =

∏
xsi

i and |c| < 2`e−1, we have that either c|si holds for all i, or then, with probability
at least 1/2 we can compute integers e > 1 and v such ve = z.

The reason this lemma holds is that the xi reveal at most ri modulo the order of z and c - ei if
ei > 1 and thus, when considering tc ≡ z

∑
eirisi (mod n), c must either divide all si or one can get an

equation of the form t̂c = zu such that c - u and then compute a non-trivial root of z.
Furthermore, we related our proofs to the proof of security are based on the security of the CL

signature scheme [8]. Thus there exists a simulator/oracle SCL with the following behavior:

Generation of Public key : On input an instance (n, z ∈ QRn) of the flexible RSA problem the simulator
outputs a public key (n, R0, . . . , Ru−1, S, Z), such that R0, . . . , Ru−1, S, Z satisfy the properties of
the xi’s in Lemma 4.

Adaptive Signature Queries: On input a vector of messages ~mi = (m(i,0), . . . ,m(i,u−1)), with
mi ∈ ±{0, 1}`m , the simulator/oracle SCL outputs a signature Ai, ei, vi such that Aei

i =
R

m(i,0)

0 · · ·Rm(i,u−1)

u−1 SviZ, ei ∈ [2`e−1, 2`e−1 + 2`′e−1] is a prime and (vi − 2`v) ∈ {0, 1}`v , where it is
required that `e > `m+1. (In the original proof, primes in [2`e−1, 2`e] where considered [8]. Clearly,
the proof also holds when requiring the simulator to output only primes from [2`e−1, 2`e−1+2`′e−1].)

Forgery: On input a signature (A, e, v) on a vector of messages ~m with ~m 6= ~mi for all i, it outputs a
solution to the instance (n, z ∈ QRn) of the flexible RSA problem.

We are now ready to prove Lemma 3.

25

Proof of Lemma 3. We describe and algorithm S ′ that, given an adversary A and an environment E
that makes the simulator § describe above output failure 2 or 4, even though A does not control the
issuer, but we may assume that controls all TPM and hosts, can solve a random instance (n, z ∈ QRn)
of the flexible RSA problem.

The algorithm S ′ will interact with A, E , and T as follows.

Simulation of Real-System Setup. S ′ has to generate the public key of the issuer for the given
instance of the flexible RSA problem. To this end S ′ employs the simulator SCL as described above
on input this instance and receive R0, R1, S, Z. Then S ′ chooses g := zrg mod n, g′ := zrg′ mod n and
h := zrh mod n for rg, rg′ , rh ∈R [n, n2]. S ′ also chooses two primes Γ and ρ such that ρ|Γ − 1 and
a generator γ of the subgroup of Z∗

Γ of order ρ. Moreover, S ′ forges all the proofs that the elements
g, h, R0, R1, S, Z using the power over the random oracle and standard zero-knowledge simulation
techniques. S ′ send these proofs and the public key (n, g, g′, h,R0, R1, S, Z, γ, Γ, ρ) to A.

Simulation of the Join Protocol. S ′ gets a request from A, as real-system platform with identity
idi, to run the join protocol.

Thus S ′ plays the issuer and runs the join protocol with the adversary as platform as follows.
It runs the join protocol as follows. First, S ′ receives U and NI from the A. Next, S ′ runs the

Step 6 of the join protocol with A once, and uses standard rewinding techniques and the power over
the random oracle to obtain two transcripts of the join protocol w.r.t. the same values for U , NI , Ũ ,
and ÑI but different values for (c, sf0 , sf1 , sv′), i.e.,

(c(0), s
(0)
f0

, s
(0)
f1

, s
(0)
v′) and (c(1), s

(1)
f0

, s
(1)
f1

, s
(1)
v′) (41)

such that c(0) 6= c(1). Let ∆c = c(0) − c(1) and ∆si = s
(1)
i − s

(0)
i . From the verification Equations (9)

and (8) we derive that
U∆c ≡ R∆s0

0 R∆s1
1 S∆sv′ (mod n) (42)

Now, due to Lemma 4, we have that ∆c divides the ∆si’s and ∆sv′ . Let ŝi := ∆si/∆c and ŝv′ :=
∆sv′/∆c. Thus we have

U ≡ bURŝ0
0 Rŝ1

1 S ŝv′ (mod n) (43)

for some bU such that b∆c
U ≡ 1 (mod n). Now bU must be ±1 for this to happen because if it was not

±1 then either φ(n)/4|∆c or gcd(b, n) > 1 and we could factor and thus solve the flexible RSA instance.
Moreover, because of the check-terms (9) we have that

ŝi ∈ {0, 1}`f+`∅+`H+2 and ŝv′∈{0, 1}`n+2`∅+`H+2 (44)

Next, if S ′ has not seen NI sent by A during the join protocol, it increments the counter cnti,
stores cnti and NI , and informs T that Hi wants to join w.r.t. counter value cnti. If S ′ has seen the
NI sent by A, it looks up the counter value cnti stored with NI , and informs T as Hi that it wants to
join w.r.t. counter value cnti. Next, S ′ plays its role as ideal-system TPM Mi and sends idi and waits
until T tells it (addressed as Hi) whether it was allowed to join. If the answer is positive, S ′ asks the
SCL for a signature on the message tuple (ŝ0, ŝ1) and receives (Â, v̂, ê) such that

Z ≡ ÂêRŝ0
0 Rŝ1

1 S v̂ (mod n) (45)

Note that because of ŝi ∈ {0, 1}`f+`∅+`H+2, the message tuple satisfies the length requirement `e > `m+1
on the message tuple by the oracle as we required `e > `f + `∅ + `H + 4 and ŝi ∈ {0, 1}`f+`∅+`H+2 .

S ′ sets
v′′ := v̂ − ŝv′ .

26

Note that the oracle SCL gives S ′ a random v of length `v. As ŝv′∈{0, 1}`n+2`∅+`H+2 and `v > `n +
`f + `∅ + `H + `r + 3 > `n + 2`∅ + `H + 2 by assumption, the value v′′ = v − ŝv′ is statistically close
to a random v′′ of length `v as the issuer would choose it in the join protocol if `r + `f are sufficiently
large (e.g., `r + `f > 80).

S ′ sets
e := ê and A := ÂbU mod n .

It is easy to verify that

Ae ≡ Z

USv′′
(mod n)

holds (note that e is odd), i.e., that A satisfies the same equation as it would when is was generated
by the issuer. Thus S ′ can send (A, e, v′′) to the A. Next S ′ runs the rest of the join protocol, where
it again uses the power over the random oracle and standard zero-knowledge simulation techniques to
forge the proof in Step 8. Finally, S ′ stores (f0, f1, cnti) in its record for Hi/Mi.

Note that rewinding here is ok, as we assume that the join protocol is run only sequentially.

Simulation of the DAA-Sign Operation/Protocol Unlike as in the case with the simulator S,
here this case does not occur as we assumed that all platforms are corrupted.

Simulation of the DAA-Verify Operation/Algorithm If S ′ receives a valid signature by the
adversary A, it checks whether the value NV contained in the signature equals ζf0+f12

`f modulo Γ
for any (f0, f1) retrieved in the join protocol. As soon as S ′ finds a signature for which there is no
such pair, S ′ rewinds the adversary to the point in time when he made the call to the random oracle
that lead to the c that is part of the signature and provides the adversary with a different c. By
a standard argument, this will yield us a second signature, i.e., S ′ can extract two signatures w.r.t.
the same values for (ζ, (T1, T2), NV , (T̃1, T̃2, T̃

′
2), ÑV), but with different values for c and possibly for

(sv, sf0 , sf1 , se, see, sw, sew), i.e., two signatures

(ζ, (T1, T2), NV , (T̃1, T̃2, T̃
′
2), ÑV , c(0), (s(0)

v , s
(0)
f0

, s
(0)
f1

, s(0)
e , s(0)

ee , s(0)
w , s(0)

ew , s(0)
r , s(0)

er))

and

(ζ, (T1, T2), NV , (T̃1, T̃2, T̃
′
2), ÑV , c(1), (s(1)

v , s
(1)
f0

, s
(1)
f1

, s(1)
e , s(1)

ee , s(1)
w , s(1)

ew , s(1)
r , s(1)

er))

such that c(0) 6= c(1). Let ∆c = c(0)− c(1) and ∆si = s
(1)
i −s

(0)
i . From the verification Equations (15-16)

and the last one of (18) one can derive the following equations

Z∆c ≡ T∆se+∆c2`e

1 R
∆sf0
0 R

∆sf1
1 S∆svh−∆sew (mod n) (46)

T∆c
2 ≡ g∆swh∆se+∆c2`e

g′
∆sr (mod n) (47)

T∆se+∆c2`e−1

2 ≡ g∆sewh∆seeg′
∆ser (mod n) (48)

∆sf0 ,∆sf1∈ ± {0, 1}`f+`∅+`H+2 (49)

∆se∈ ± {0, 1}`′e+`∅+`H+2 . (50)

From Lemma 4 and Equation (47) it follows that ∆c divides both ∆sw and ∆se. Let ŝw = ∆sw/∆c
and ŝe = ∆se/∆c. Raising Equation (48) to ∆c and using Equation (47) we get

(g∆swh∆se+∆c2`e−1
g′

∆sr)(∆se+∆c2`e−1) ≡ g∆c∆sewh∆c∆seeg′
∆c∆ser (mod n) . (51)

27

It’s not hard to see that
∆sw(∆se + ∆c2`e−1) = ∆c∆sew

must holds as otherwise we could solve the given flexible RSA instance (via retrieving a multiple of
the φn/4 which enables us to compute roots). From this and the definition of ŝw (i.e., the fact that
∆c|∆sw), we have

∆sew = ŝw(∆se + ∆c2`e−1) = ŝw∆c(ŝe + 2`e) (52)

with which we can rewrite Equation 46 as follows (also using the definition of ŝe)(hŝw

T1

)∆c(ŝe+2`e)
≡ R

∆sf0
0 R

∆sf1
1 S∆svZ−∆c (mod n) . (53)

Plugging this equation into Lemma 4, we can derive that ∆c divides the ∆sfi
’s and ∆sv. Let

ŝfi
= ∆sfi

/∆c and ŝv = ∆sv/∆c. (Actually, from Lemma 4 we can only derive that ∆c divides
the ∆sfi

eRi ; but, as eRi are primes that are bigger that ∆c, the claim follows.) Now we can conclude
from Equation (53) that

Z ≡ bZR
ŝf0
0 R

ŝf1
1 S ŝv

(T1

hŝw

)(ŝe+2`e)
(mod n) (54)

for some bZ such that b∆c
Z = 1. Now bZ must be ±1 for this to happen, because otherwise either

φ(n)/4|∆c or (b, n) > 1 and we could factor and thus solve the flexible RSA instance. Let b̂ = 1 if ŝe is
even and b̂ = −1 otherwise. Thus we have

Z ≡ R
ŝf0
0 R

ŝf1
1 S ŝv

(b̂T1

hŝw

)(ŝe+2`e)
(mod n) (55)

Moreover, from Equations (49) and (50) it follows that

ŝfi
∈ [−2`f+`∅+`H+2 + 1, 2`′e+`∅+`H+2 − 1] and (56)

(ŝe + 2`e) ∈ [2`e − 2`′e+`∅+`H+2 + 1, 2`e + 2`′e+`∅+`H+2 − 1] . (57)

We now consider the equations which are the ones involving NV . From the verification Equation (17)
and the second equation of (16) we can derive that

N∆c
V ≡ ζ∆sf0

+∆sf1
2

`f (mod Γ) . (58)

We have already established that ∆c divides the ∆sfi
’s. Furthermore the verification checks (18)

guarantees that NV and ζ lie in the group generated by γ Thus we have

NV ≡ ζ ŝf0
+ŝf1

2
`f (mod Γ) . (59)

This means that we have
ŝf0 + ŝf12

`f 6≡ f0 + f12`f (mod ρ)

for all (f0, f1) that we had extracted from A via the join protocol. Hence (
(

b̂T1

hŝw

)
, (ŝe + 2`e), ŝv)

constitutes a forged signature on the message tuple (ŝf0 , ŝf1). Thus S ′ can compute this and feed this
message-signature pair to the SCL oracle to get an solution to the instance of the flexible RSA problem.

Rogue-Tagging Operation. We just receive the f0, f1, v, A, and e from A and feed this as message-
signature pair to the SCL oracle to get an solution to the instance of the flexible RSA problem!

This concludes the proof.

28

