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This work addresses the problem of cheating prevention in secret sharing.

The scheme is said to be k-cheating immune if any group of k cheaters

has no advantage over honest participants. In this paper we study the con-

straints of cheating immune secret sharing schemes. We give a necessary

and sufficient condition for SSSs to be cheating immune. Then, we improve

the upper bound of D’Arco et. al on the number of cheaters tolerated in such

scheme. Our proof is much simpler than the proof of D’Arco et. al and re-

lies on certain properties of cryptographic Boolean functions. As a result of

independent interest we provide a condition given function to be t-resilient

and to satisfy the propagation criterion of degree � over any finite field.

INTRODUCTION

Secret sharing is widely used to produce group-oriented cryptographic algo-

rithms, systems and protocols. Informally, a secret sharing scheme (SSS) is a

method of sharing a secret K among a finite set of participants in such a way

that certain specified subsets of participants can compute the secret K by pool-

ing together. Cheating prevention is an important problem in SSS. As proven by

Tompa and Woll [9], dishonest players can cheat in any linear SSS. The cheaters

are able to recover the valid secret from the invalid one passed by the combiner.

Recently Pieprzyk and Zhang [4] have proposed an approach to deal with cheaters,

namely by discouraging them from sending invalid shares to the combiner. This

means that dishonest participants have no advantage in submitting uncorrect

shares compared to honest participants.
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Let the secret be defined by the image of a function with inputs the shares

of the participants: f : F
n
q → Fq where Fq is the finite field of q elements and

q = ps with p prime. Let us call this function a defining function of the SSS. We

also assume that we are dealing with (n, n) threshold scheme where only all n

participants together are able to determine the secret.

In this paper we derive a necessary and sufficient condition for the defining

function to produce SSSs that are cheating immune and strictly cheating immune.

Then we improve the known upper bound for the number of cheaters based on

a relation between the required properties of the defining function. This relation

was known for Boolean functions, but now it is proven that it halds also for

functions over any finite field.

MODEL OF CHEATING

We consider (n, n) threshold schemes, i.e. schemes for which only all n partic-

ipants together are able to determine the secret. These schemes are represented

by a set of distribution rules combined in a table. The secret K is computed by

the defining function f : F
n
q → Fq where Fq is the finite field of q = ps elements

with p prime and s ≥ 1. Denote the sequence of shares held by the participants

P = {P1, . . . , Pn} by the vector α and the secret K = f(α). Represent the

cheaters by the vector δ ∈ F
n
q , also called cheating vector, in which the non-zero

elements denote the deviations of the exact values. For any two vectors x, δ, the

vector x+
δ satisfies x+

j = xj if δj �= 0 and x+
j = 0 otherwise. Conversely, the vector

x−
δ satisfies x−

j = xj if δj = 0 and x−
j = 0 otherwise. Denote the weight of a

vector v by wt(v). The number of cheaters is equal to wt(δ). We are following

the model and the notations from [1, 2, 4, 5, 6]. Let define the following sets:

R(δ, α+
δ , K) = {xδ− |f(x−

δ + α+
δ ) = K};

R(δ, α+
δ + δ,K∗) = {xδ− |f(x−

δ + α+
δ + δ) = K∗}.

The first set represents the collection of rows of the table with the correct K

and valid shares held by the cheaters. The second set represents the view of

the cheater after getting back K∗ from the combiner. As a consequence, the

probability of successful cheating with respect to α and cheating vector δ is given

by

�δ,α =
|R(δ, α+

δ + δ,K∗) ∩ R(δ, α+
δ , K)|

|R(δ, α+
δ + δ,K∗)| .
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Definition 1 [4, 5, 6] A secret sharing scheme (SSS) is said to be k-cheating

immune if �δ,α = q−1 for every α ∈ F
n
q and δ ∈ F

n
q where 1 ≤ wt(δ) ≤ k.

In the above definition, all cheaters are assumed to submit invalid shares.

This can be generalized in a model where cheaters may submit a mixture of valid

and invalid shares. To write out this definition, a vector τ ∈ F
n
q is used to specify

the cheating values and a binary vector δ to denote the cheaters. For any τ � δ

(τj �= 0 if δj �= 0), we consider the following probability with respect to δ, τ, α:

�δ,τ,α =
|R(δ, α+

δ + τ,K∗) ∩ R(δ, α+
δ , K)|

|R(δ, α+
δ + τ,K∗)| .

Definition 2 [5, 6] An SSS is called k-strictly cheating immune if �δ,τ,α = q−1

for every α, τ, δ ∈ F
n
q such that τ � δ, and 1 ≤ wt(τ) ≤ wt(δ) ≤ k.

PROPERTIES OF THE DEFINING FUNCTION

As it has been proven in [6], the following equivalence can be derived for

k-cheating immune SSS.

Theorem 3 [6] An SSS with defining function f is k-cheating immune if and

only if for any integer l with 1 ≤ l ≤ k, for any vectors δ, τ ∈ F
n
q with wt(δ) = l

and τ � δ, and for any u, v ∈ Fq simultaneously holds that

|R(δ, τ, v)| = qn−l−1;

|R(δ, τ, v) ∩ R(δ, τ + δ, u)| = qn−l−2.

We now prove that the conditions of Theorem 3 imply certain properties for the

defining function f of the SSS. Therefore, we first give a formal definition of these

properties.

Definition 4 [8] A function f : F
n
q → Fq is said to be t-correlation-immune if

and only if for every t-subset {i1, . . . , it} ⊆ {1, . . . , n}, for every choice of zj ∈ Fq

with 1 ≤ j ≤ t and for every y ∈ Fq holds that

P (f(x1, . . . , xn) = y | xij = zj, 1 ≤ j ≤ t) = q−1.

If the function is also balanced, then the function is said to be t-resilient.
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Definition 5 [7] A function f : F
n
q → Fq is said to satisfy the propagation

criterion of degree � if and only if for any non-zero word a, such that wt(a) ≤ �,

the function f(x + a) − f(x) is balanced (0-resilient).

In the context of cheating immune secret sharing schemes, the following property

seems to be relevant.

Definition 6 [4, 5, 6] A function f : F
n
q → Fq is said to satisfy the strengthened

propagation of degree k, denoted by B(k), if f(x−
δ +τ +δ)−f(x−

δ +τ) is a balanced

function on F
n
q , where τ, δ ∈ F

n
q are as in Definition 2.

In [5], the relation between the strengthened propagation criterion of degree k

and the propagation criterion of degree k is proven for characteristic 2. It is easy

to see that this relation also holds for fields of characteristic q ≥ 2.

Theorem 7 If f : F
n
q → Fq satisfies the strengthened propagation of degree k

then f satisfies the propagation criterion of degree k.

We now show how these properties can be used in order to produce a defining

function for a cheating immune SSS. In [6] the authors have shown a construction,

which leads to a defining function for a k-cheating immune SSS, but no general

properties of the defining function were mentioned. In [5] the analogous theorem

is given over F2.

Theorem 8 An SSS with defining function f is k-cheating immune if and only

if the function f is k-resilient and satisfies B(k).

Proof. We use the same definitions and conditions for δ and τ as in Theorem 3.

From the definition of δ and τ , the function f(x−
δ + τ) is defined on F

n−l
q (l fixed

variables). Moreover, the function is balanced by the first condition of Theorem

3. As a consequence, the defining function is k-resilient.

It can be easily seen that the second condition of Theorem 3 can also be

interpreted as follows. The system of equations for all u, v, τ, δ

{
f(x−

δ + τ + δ) = u

f(x−
δ + τ) = v

has exactly qn−l−2 solutions for x−
δ . This implies that f(x−

δ +τ +δ)−f(x−
δ +τ) =

u− v for qn−l−2 choices of x−
δ . Because this property holds for all q2 possibilities

of the tuple (u, v), we can conclude that the function satisfies B(k). �
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The following relation between cheating immune and strictly cheating im-

mune SSS is known.

Theorem 9 [6] An SSS is strictly k-cheating immune if and only if for any

integer r with 0 ≤ r ≤ k − 1, any subset {j1, . . . , jr} of {1, . . . , n} and any

a1, . . . , ar ∈ Fq, the function f(x1, . . . , xn)|xj1
=a1,...,xjr=ar as a function on F

n−r
q is

the defining function on F
n−r
q of a (k − r)-cheating immune SSS.

As a consequence, combining Theorem 8 and Theorem 9, we derive a necessary

and sufficient condition on the defining function of a strictly cheating immune

SSS.

Corollary 10 An SSS with defining function f is strictly k-cheating immune if

and only if all subfunctions f ′, which are derived from the function f by fixing at

most k − 1 variables to arbitrary values in Fq, are k-resilient and satisfy B(k).

BOUNDS ON THE NUMBER OF CHEATERS

Recently an upper bound for the number of cheaters has been proven by

D’Arco et. al.

Theorem 11 [1, 2] Let f be a function defined over GF (q)n. An SSS defined by

f can be k-cheating immune only if 2k < n.

We improve this bound for fields of characteristic 2 and find a similar result

for fields of general characteristic. For characteristic 2, it suffices to combine

Theorem 7 and Theorem 8, together with the following well-known theorem:

Theorem 12 [10, Theorem 2] Let f be a Boolean function on GF (2)n. If f

is t-resilient and satisfies the propagation criterion of degree � then t + � < n.

Moreover t + � = n − 1 ⇐⇒ t = 0, � = n − 1 and n is odd.

Corollary 13 Let f be a Boolean function of n binary variables. An SSS defined

by f can be k-cheating immune only if 2k ≤ n − 2.

We will prove that the first part of Theorem 12 also holds for functions defined

over any finite alphabet F of order q ≥ 2 endowed with the structure of an abelian

group. Therefore, we need to introduce some general background on the theory

of finite groups.
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Recall that the homomorphisms from the abelian group F into the multi-

plicative group C form an abelian group F ′, called the characters group which is

isomorphic with F . For x ∈ F and y ∈ F ′, we denote 〈x, y〉 the complex image of

x under the character y. Moreover, for all x, y ∈ F , the value 〈−x, y〉 = 〈x, y〉, or

also the element −x represents the symmetric x (x−x = 0) and 〈x, y〉 represents

the conjugate of 〈x, y〉.
For example if F is the additive group (Fq, +) where q = ps, p a prime, then

〈x, y〉 = θtrFq/Fp (xy) where θ is a primitive p-th root of unity in C. Note that for

q = 2, 〈x, y〉 = (−1)xy. If F is the additive cyclic group (Zq, +) of order q, then

〈x, y〉 = θxy with θ a primitive q-th root of unity in C and the product xy is

performed in the ring Zq.

We need the following classical lemma:

Lemma 14 For any subspace V of any finite alphabet F of order q ≥ 2 endowed

with the structure of an abelian group and for all u ∈ F ′, it holds that

∑
x∈V

〈x, u〉 =

{
|V | if u ∈ V ⊥;

0 otherwise.
(1)

For the sake of simplicity, we assume that we work in the field Fq, where

q = ps with p prime. We also denote the trace function in the field by tr(xy)

instead of trFq/Fp(xy). The definitions of Walsh transform Wf and autocorrelation

rf of a function f : F
n
q → Fq are given by:

Wf (w) =
∑

x

θtr(f(x)−wx) and rf (w) =
∑

x

θf(x+w)−f(x). (2)

As it is proven in [3], a function is t-resilient if and only if Wf (w) = 0 for all

w with wt(w) ≤ t. Analogously, a function satisfies the propagation criterion of

degree l if and only if rf (w) = 0 for all w with wt(w) ≤ l.

We now generalize the Wiener-Klitchine theorem for finite fields.

Lemma 15 For any function f : F
n
q → Fq where q = ps with p prime, the

following relations between the Walsh spectrum and the autocorrelation spectrum

of the function f hold:

Wrf
(s) = Wf (s)Wf (s) and rf (k) = q−n

∑
s∈Fn

q

Wf (s)Wf (s)θ
tr(sk). (3)
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Proof. We start with the first equality by using (2).

Wrf
(s) =

∑
w∈Fn

q

rf (w)θtr(−ws) =
∑
w∈Fn

q

∑
x∈Fn

q

θtr(f(x+w)−f(x)−ws)

=
∑
k∈Fn

q

∑
x∈Fn

q

θtr(f(k)−f(x)−ks+xs) =
∑
k∈Fn

q

θtr(f(k)−ks)
∑
x∈Fn

q

θtr(−f(x)+xs)

= Wf (s)Wf (s).

Using this equality, we derive:

∑
s∈Fn

q

Wf (s)Wf (s)θ
tr(sk) =

∑
s∈Fn

q

∑
w∈Fn

q

rf (w)θtr(−ws)θtr(sk)

=
∑
w∈Fn

q

rf (w)
∑
s∈Fn

q

θtr((−w+k)s) = rf (k) qn.

In the last step of the the proof, we used Lemma 14. �

Lemma 16 For any affine subspace V ⊆ F
n
q and any function from F

n
q into Fq

where q = ps with p prime:

∑
k∈V

rf (k) =
1

|V ⊥|
∑

s∈V ⊥
Wf (s)Wf (s). (4)

Proof. Using (3) and Lemma 14 we have:

∑
k∈V

rf (k) =
∑
k∈V

q−n
∑
s∈Fn

q

Wf (s)Wf (s)θ
tr(sk)

= q−n
∑
s∈Fn

q

Wf (s)Wf (s)
∑
k∈V

θtr(sk) =
1

|V ⊥|
∑

s∈V ⊥
Wf (s)Wf (s).

�

Theorem 17 If f is t-resilient and satisfies the propagation criterion of degree

l, then t + l ≤ n − 1.

Proof. Consider equation (4) with Va = {u ∈ F
n
q : ui = 0 if ai �= 0} for any a

such that wt(a) = l. The dual vector space is defined by V ⊥ = {u ∈ F
n
q : ui =

0 if ai = 0}. As a consequence, equation (4) leads to

q2n−p =
∑

s∈V ⊥
Wf (s)Wf (s). (5)
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Because wt(u) ≤ n− l for any u ∈ V ⊥ and f is t-reslient, t should be strictly less

than n− l, because otherwise we arrive at contradiction with equation (5). �

This theorem leads to the same bound on the number of cheaters as proven

by D’Arco et. al. The proof is totally different, much shorter and exploits a

relation between the properties of the defining function of the SSS. Moreover,

from Theorem 17, we derive that any (n, n) perfect SSS can never be cheating

immune because an (n, n) perfect SSS is defined by a (n − 1)-resilient function.

REFERENCES

[1] P. D’Arco, W. Kishimoto, D. Stinson, On Cheating-Immune Secret Sharing,

International Workshop on Coding and Cryptography (WCC 2003), 2003.

[2] P. D’Arco, W. Kishimoto, D. Stinson, Properties and Constraints of

Cheating-Immune Secret Sharing Scheme, Applied Discrete Mathematics (to

appear).

[3] K. Gopalakrishan, D.R. Stinson, Three Characterizations of Non-Binary

Correlation-Immune and Resilient Functions, Designs, Codes and Cryptog-

raphy, Vol. 5, pp. 241-251, 1995.

[4] J. Pieprzyk, X.-M. Zhang, Cheating Immune Secret Sharing, ICICS 2001,

LNCS 2229, pp. 144-149, 2001.

[5] J. Pierpzyk, X.M. Zhang, Constructions of Cheating Immune Secret Sharing,

ICICS 2001, LNCS 2288, pp. 226-243, 2002.

[6] J. Pieprzyk, X.-M. Zhang, Cheating Prevention in Secret Sharing over

GF (pt), Indocrypt 2001, LNCS 2247, pp. 79-90, 2001.

[7] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts and J. Vande-

walle, Propagation Characteristics of Boolean Functions, EUROCRYPT’90,

LNCS 473, pp. 161-173, 1991.

[8] T. Siegenthaler, Correlation-Immunity of Nonlinear Combining Functions

for Cryptographic Applications, IEEE Trans. on Inf. Theory, Vol. 30, Nr. 5,

pp. 776-780, 1984.

[9] M. Tompa, H. Woll, How to Share a Secret with Cheaters, Journal of Cryp-

tography, Vol, 1, Nr. 2, 1988, pp. 133-138.

[10] Y. Zheng, X.M. Zhang. On Relationships among Avalanche, Nonlinearity,

and Correlation Immunity, Asiacrypt 2000, LNCS 1976, 470-482, 2000.


