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Abstract

In a ring signature scheme, a signer in a subset (or ring) of potential signers
produces a signature of a message in such a way that the receiver can verify
that the signature comes from a member of the ring, but cannot know which
member has actually signed.

In this work, we extend this concept to that of distributed ring signatures,
where a subset of users cooperate to compute a distributed anonymous signature
on a message, on behalf of a family of subsets. We propose two schemes, one
for general families of subsets, and a more efficient one for threshold families
of subsets. The security of both proposals is formally proved, assuming the
hardness of the Computational Diffie-Hellman problem.

Our two schemes run in an identity-based scenario, where public keys of
the users can be derived from their identities. This fact avoids the necessity of
digital certificates, and therefore allows more efficient implementations of such
systems.

1 Introduction

In a standard public key scenario: each user U has a secret key SKy, and usually
the matching public key PKy is computed from SKj. In these scenarios, a serious
problem appears: how can one be sure that PKj; is actually the public key of user U,
or in other words, that the only person who knows SKj is user U? For example, a
different user U’ can generate S Ky, compute the matching public key and broadcast
it as if it was the public key of user U.

To solve this problem, the public keys of the users are authenticated via a Public
Key Infrastructure (PKI) based on digital certificates: a user who wants to use
a public key cryptosystem turns to a certification authority, who signs a message
linking the public key PKy with the identity of user U. Later, a user who must use
public key PKy (to encrypt a message or to verify a signature, for example) must
first verify that the certificate which links U and PKj is still valid. Other problems
appear when revocation of some certificate is necessary, because a secret key SKy
corresponding to a certified PKy has been compromised, for instance.



All these facts make the use of cryptographic protocols less efficient in the real
life. Thus, any possible alternative which avoids the necessity of digital certificates
is welcome in order to design more efficient public key cryptosystems.

Shamir introduced in 1984 the concept of identity-based (from now on, ID-based)
cryptography [17]. The idea is that the public key of a user can be publicly com-
puted from his identity (for example, from a complete name, an e-mail or an IP
address). Then, the secret key is derived from the public key. In this way, digital
certificates are not necessary, because anyone can easily verify that some public key
PKy corresponds in fact to user U.

The process that generates secret keys from public keys must be executed by an
external entity, known as the master. Thus, the master knows the secret keys of all
the users of the system. A way to relax this negative point could be to consider a
set of master entities which share the secret information.

A clear example of cryptographic schemes where the use of digital certificates dra-
matically decreases the efficiency of the implementation are ring signature schemes,
because of the number of public keys that can be involved in any basic operation
(signature and verification).

In a ring signature scheme, an entity signs a message on behalf of a set (or ring)
of members that includes himself. The verifier of the signature is convinced that it
was produced by some member of the ring, but he does not obtain any information
about which member of the ring actually signed.

Ring signatures are a useful tool to provide anonymity in some scenarios. For
example, if a member of a group wants to leak to the media a secret information
about the group, he can sign this information using a ring scheme. Everybody will
be convinced that the information comes from the group itself, but anybody could
accuse him of leaking the secret.

The concept of ring signatures was formally introduced in [15]. After that, many
proposals of ring signature schemes have been published [4, 1, 20, 10, 6, 12]. Two of
these proposals [20, 12] are ring signature schemes which work in ID-based scenarios.

We counsider in this work the following extension of the concept of ring signature.
Suppose that a set of users Us want to anonymously sign some message, in such a
way that the verifier of the signature will be convinced that at least the members of
some set have all agreed in signing this message, but he could not know which set
has actually computed the signature, among the sets of a certain family of possibly
signing sets (we will denote this family as the access structure of the signature).

Members of Us can freely choose the rest of users and the family of sets that will
form the access structure (in an ad-hoc way). We denote as U = {Ui,...,Uy} the
access structure, where the set Us; must be one of the sets in U.

The resulting signature will be a ring signature, taking as ring the set &/. In
this way, the verifier will be convinced that at least all the members of some set in
U have cooperated to compute the signature, but he will not have any information
about which set in i/ is the actual author of the signature.

An example of such a situation can be thought inside a company: workers of the
company are divided in different branches according to their functionality. Suppose
all the workers in some branch of the company want to sign a message where they



complain about some point of the politics of the company. They want the head of
the company to know that many different workers disagree with him, but not to
know who is complaining. Members of the complaining branch can form an access
structure with all the branches of the company, and compute a ring signature for
this structure. The head of the company will be convinced that the complaint comes
from all the members of some of the branches, but he will never know which branch
dared to complain.

This extension of ring signature schemes, that we denote distributed ring signa-
ture schemes, was first considered in [4]. Their specific RSA-based scheme, however,
runs only when the ad-hoc access structures are necessarily threshold (that is, they
contain all the sets with a minimum number of users). Recently a more general
proposal, which allows the use of different types of keys, has appeared in [19]; but
again this scheme is valid only for threshold access structures. In [11], a scheme
for general access structures is proposed, for scenarios based on Discrete Logarithm
keys.

In Section 3, we provide definitions for the protocols that take part in a dis-
tributed ring signature scheme, and the security properties that such schemes must
satisfy. Then we propose the first distributed ring signature schemes for ID-based
scenarios. We first propose, in Section 4, a scheme which works for any general
access structure. Then, in Section 5, we propose a more efficient scheme for the
particular case of threshold access structures. We provide formal and exact proofs
of the security of the two proposed protocols. Roughly speaking, we prove that
they achieve unconditional anonymity and computational unforgeability, assuming
that the Computational Diffie-Hellman problem is hard to solve. This well-known
problem is explained in Section 2, as long as other tools that we use in the design
and analysis of our schemes, for example bilinear pairings. Finally, we conclude the
work in Section 6.

2 Preliminaries

2.1 Bilinear Pairings

Let G; be an additive group of prime order ¢, generated by some element P. Let
Go be a multiplicative group with the same order q.
A bilinear pairing is a map e : G; X G; — Gy with the following three properties:

1. Tt is bilinear, which means that given elements A, A2, A3 € Gy, we have
that €(A1 + AQ,Ag) == e(Al,Ag) - 6(A2,A3) and 6(A1,A2 + A3) = 6(A1,A2) -
e(A1,As). In particular, for all a,b € Z,, we have e(aP,bP) = e(P, P)%* =
e(P,abP) = e(abP, P).

2. The map e can be efficiently computed for any possible input pair.

3. The map e is non-degenerate: there exist elements A;, As € G; such that
e(Al,AQ) ;é 1@2.



Combining properties 1 and 3, it is easy to see that e(P, P) # 1g, and that the
equality e(A;, P) = e(Ag, P) implies that A; = A,.

The typical way of obtaining such pairings is by deriving them from the Weil
or the Tate pairing on an elliptic curve over a finite field. The interested reader is
referred to [21] for a complete bibliography of cryptographic works based on pairings.

Let Hy : {0,1}* — G; — {0} be a hash function. The most usual way to design
an ID-based cryptosystem is the following. The master has a secret key z € Zg, and
he publishes the value Y = zP € G;.

Every user U of the ID-based system has an identifier IDy € {0,1}*, that can
be an IP address, a telephone number, an e-mail address, etc. The public key of
U is then defined to be PKy = Hi(IDy) € Gy — {0}. In this way, everybody can
verify the authenticity of a public key without the necessity of certificates.

The user U needs to contact the master to obtain his secret key SKy = zPKy €
Gi. The drawback of this approach, as mentioned in the Introduction, is that the
master must be completely trusted, because he knows the secret keys of all the users.

2.2 The Computational Diffie-Hellman Problem

We consider the following well-known problem in the additive group Gy of prime
order ¢, generated by P:

Definition 1. Given the elements P, aP and bP, for some random values a,b € Zy,
the Computational Diffie-Hellman problem consists of computing the element abP.

The Computational Diffie-Hellman Assumption asserts that, if the order of Gy
is ¢ > 2% then any polynomial time algorithm that solves the Computational Diffie-
Hellman problem has a success probability p, which is negligible in the security
parameter k. In other words, for all polynomial f(), there exists an integer kg such
that py < 7y, for all k > ko,

The security of the ID-based ring signature schemes that we propose in this work
is based on the Computational Diffie-Hellman Assumption.

2.3 The Splitting Lemma

We first state a well-known lemma, that we will use in some of the security proofs of
this paper. A proof of this lemma can be found, for example, in [14].

Lemma 1. (The Splitting Lemma) Let A C X XY be a set verifying that Pr[(z,y) € A] >
€. For any a <€, let us define

B ={(z,y) € X xY| Ig/ [(z,y") € A] > e—a} and B= (X xY)\B.
yl
Then the following statements hold:
1. Pr[B] > a.
2. for any (z,y) € B, Pryey [(z,y) € A] > e — a.
3. Pr[B|A] > a/e.



2.4 The Random Oracle Model

Bellare and Rogaway introduced in [3] a paradigm that makes easier the task of
proving the security of some cryptographic schemes. This paradigm is the random
oracle model. In this model, hash functions are seen as oracles that produce a truly
random value for each new input. Obviously, if the same input is asked twice, then
the outputs must be identical.

The random oracle model is unreal, because any instantiation of a hash function
is in fact a deterministic function: once the instantiation is made public, everybody
can know which will be the output corresponding to any input. Furthermore, any
realization of a random function can be seen as a list with exponential size. But
hash functions are part of the public key of the considered cryptographic scheme,
and the size of public keys must be polynomial in the security parameter.

Although there are some theoretical works which criticize the paradigm of the
random oracle model [5, 13, 2], it is widely believed that proofs in this model guar-
antee the security of the overall cryptographic scheme, provided the employed hash
function has no weakness.

All the security results that we prove in this work are valid in the random oracle
model.

2.5 Generic Ring Signature Schemes

Herranz and Séez define in [10] a family of ring signature schemes that they call
generic (influenced by the work of Pointcheval and Stern [14], where they give this
name to a family of signature schemes which includes Schnorr’s one). Consider a
security parameter k, a hash function which outputs k-bit long elements, and a ring
U={Ui,...,Us} of d members. Given the input message m, a generic ring signature
scheme produces a tuple (U, m,R1,...,Rq, hi,...,hq,0), where Ry,..., Ry take
their values randomly in a large set G' in such a way that R; # R; for all i # j, h;
is the hash value of (U, m, R;), for 1 < i < d, and the value o is fully determined by
Ry,...,Rg,h1,...,hg and the message m.

Another required condition is that no R; can appear in a signature with proba-
bility greater than 2/2*, where k is the security parameter. This condition can be
achieved by choosing the set G as large as necessary.

In [10], the authors prove a result, the Ring Forking Lemma, which is useful to
prove the security of generic ring signature schemes. We state here a variation of
their result, that we will use throughout Section 4. For integers () and d such that
() > d > 1, we denote as V 4 the number of d-permutations of @) elements; that is,

Voa=Q@Q-1)-...- (@ —d+1).

Theorem 1. (The Ring Forking Lemma) Consider a generic ring signature scheme
with security parameter k. Let A be a probabilistic polynomial time Turing machine
which receives as input the digital identifiers of users in a set U* and other public
data; the machine A can ask @QQ queries to the random oracle.

We assume that A produces, within time bound T and with non-negligible prob-
ability of success €, a valid ring signature (U, m, Ry,...,Rg,h1,...,hq,0) for a ring



U CU* of d users, such that A does not know any of the secret keys of the users in
u.

Then, within time T' < 2T, and with probability £ > %, we obtain two valid
ring signatures (U, m, Ry, ..., Rq,h1,...,hq,0) and (U,m,R1,...,Rq, b',... k), 0')
such that hj # b}, for some j € {1,...,d} and h; = hi for alli=1,...,d such that
1# 7.

In a PKI scenario, the digital identifier of a user is his public key, which can
be verified by means of the corresponding digital certificate. In ID-based scenarios,

however, the digital identifier of a user is simply an e-mail or IP address; the public
key could be computed directly from this identifier.

3 Distributed Ring Signatures
A distributed ring signature scheme consists of three protocols:

1. Key generation. This protocol is executed individually by each user U; of
the system. The input is a security parameter and (possibly) some public
parameters, common to all the users of the system. The output consists of a
public key PK;, that the user U; makes public, and a secret key SK;, that U;
keeps secret. In ID-based scenarios, this protocol is executed with the help of
a master entity.

2. Distributed ring signature generation. Suppose users in a subset U; =
{U1,Us,...,U,,} want to compute a ring signature on a message m on behalf
of a family of subsets (or access structure) U = {U1,...,Us,...,Us}. Then
members of U, jointly execute this protocol, taking as input the message m,
the public keys of all users included in the access structure &/ and their own
secret keys SKi,...,SK,, . The output is a signature 6.

3. Verification of a distributed ring signature. The recipient of a dis-
tributed ring signature checks its validity by running this protocol. It takes
as input the message m, the signature 6 and all the public keys involved in
the access structure U. The output is 1 if the signature is valid, and 0 if it is
invalid.

Note that distributed ring signature schemes are related to standard distributed
(or threshold) signature schemes [8, 18]. In both cases, the recipient of the signature
is convinced that all the users in some subset of the access structure have jointly
signed the message, but he does not know which is the signing subset. There are
two main differences between these two types of signatures.

e In distributed signature schemes, the same access structure is fixed from the
initialization of the system on; in distributed ring signature schemes, however,
the signing users choose ad-hoc the access structure, just before signing.



e In distributed signature schemes, there is a unique public key for the whole
set of users, and the matching secret key is shared among them. On the other
hand, in distributed ring signature schemes, each user has his own public and
secret keys, and therefore he can use them for other purposes (like individual
signatures or encryption).

As we have said in the Introduction, all the distributed ring signature schemes
proposed until now work in a traditional PKI scenario, where the validity of the
public keys of the users must be checked before using them, by means of digital
certificates. Some of them work only for threshold access structures [4, 19], whereas
the only proposal which works for general access structures is [11]. In the rest of the
work, we use the tools introduced in Section 2 to design and analyze two distributed
ring signature schemes which work in ID-based scenarios.

3.1 Security Requirements

A distributed ring signature scheme must satisfy three properties, that we informally
describe below.

1. Correctness: if a distributed ring signature is generated by properly following
the protocol, then the result of the verification is always 1.

2. Anonymity: any verifier should not have probability greater than 1/d to
guess the identity of the subset which has actually computed a distributed
ring signature on behalf of an access structure which contains d subsets.

3. Unforgeability: among all the proposed definitions of unforgeability [9], we
consider the strongest one, ezistential unforgeability against chosen message
attacks, adapted to the scenario of distributed ring signatures. We will con-
sider the exact unforgeability of a scheme, that measures all the resources and
performances of the adversary. Remember that we analyze the security of our
schemes in the random oracle model.

Such an adversary is given as input a set U* of users, and is allowed to corrupt
up to Q. users, obtaining their secret keys. The adversary can also make @)
queries to the random oracle which models the behavior of a hash function.
Finally, the adversary can require the execution of the signing algorithm for
Qs pairs of messages and rings that it adaptively chooses, obtaining a valid
ring signature.

We say that this adversary is (T, ¢, @, Q., Qs)-successful if it obtains in poly-
nomial time 7" and with non-negligible probability ¢ a valid ring signature for
some message m and some ring of users U, such that:

(i) the pair formed by the message m and the ring ¢/ has not been asked to
the signing oracle during the attack; and

(ii) none of the users in the ring U/ has been corrupted by the adversary.



Finally, we say that a distributed ring signature scheme is (7', ¢, @, Qe, Qs)-
unforgeable if there does not exist any (T,¢, @, Q., Qs)-successful adversary
against it.

4 An ID-Based Distributed Ring Signature Scheme for
(General Access Structures

We will assume that any specific set of users can always have access to an authen-
ticated broadcast channel, while the information in this channel remains secret to
the rest of users. This can be achieved using different cryptographic techniques (for
example, broadcast encryption schemes [7]).

The protocols of our distributed ring signature scheme work as follows:

Key generation: let G; be an additive group of prime order ¢, generated by
some element P. Let Gy be a multiplicative group with the same order q. We need
qg>2k+ (f, where k is the security parameter of the scheme and d is the maximum
possible number of subsets in an access structure. Let e : G; XxG; — Go be a bilinear
pairing as defined in Section 2.1. Let H; : {0,1}* — G} and H» : {0,1}* — Z, be
two hash functions.

The master entity chooses at random his secret key z € Zj and publishes the
value Y = zP.

Secret key extraction: any user U; of the system, with identity ID;, has public
key PK; = Hi(ID;). When he requests the master for his matching secret key, he
obtains the value SK; = zPK;.

Distributed ring signature generation: assume that a set U; of users (for

simplicity, we denote them as Us = {U;,Us,...,Up,}) want to compute an anony-
mous signature. They choose the access structure U = {Ui,...,Uz}, such that
US E u-

For each of the sets U; € U, we consider the public value
Y; = Z PK; .
U;el;

The algorithm for computing the ring signature is the following:

1. Each user U; € U chooses at random as; € Zj and computes Rs; = e(as; P, P).
He broadcasts the value R,;.

2. One of the users in Us, for example Uy, chooses, for all i+ = 1,...,d, i # s,
random values a; € Zj, pairwise different, and computes R; = e(a; P, P). He
broadcasts these values R;, and therefore all the members of U; can compute
h; = Ho(U,m,R;), for alli =1,...,d, i # s.

3. Members of U; compute the value

Ry=e(-Y,) hYi) [[ Rss -

its U, €lls



If R, =1g, or R = R; for some i = 1,...,d, i # s, they return to step 1.
Members of Us can then compute hy = Ho(U, m, Ry).

4. User U; computes and broadcasts the value o1 = as1 P+hsSK1+ ). a;P €
1<i<d,i#s
Gq.

5. For j = 2,...,ng, player U; computes and broadcasts the value o; = as; P +
hSSKj +oj-1 € Gy.

6. Define o = oy,,. The resulting valid signature is (U, m, R1,...,Rg, h1,...,hq,0).

Verification of a distributed ring signature: the validity of the signature
is verified by the recipient of the message by checking that h; = Hy(U, m, R;), for
1=1,...,d and that

d
e(o,P) =e(Y,Y_mYi) [ Ri,
i=1 1<i<d

where Y; = )  PKj, for all the sets I; in the access structure U.
U;el;

4.1 Some Remarks

e The ID-based distributed ring signature scheme proposed above allows to de-
tect whether some of the signers in the subset U, tries to boycott the process
of signing. In effect, the correctness of the values o; can be verified by the rest
of the signers, by using public information. Namely, for j = 1 the equation

e(o1, P) = Rs1 - e(hs PK1,Y) - H R;
1<i<dyists

must be satisfied. For the rest of users U; € U, with j # 1, the equation that
must be checked is

e(oj,P) = Ry; - e(hsPK;,Y) - e(0j_1, P).

e We consider the case where the signing users form an ad-hoc access structure.
But the scheme runs as well if the access structure is fixed. In this case the
resulting scheme would be in fact a distributed signature scheme (or threshold
signature scheme, if the access structure is a threshold one).

e Note that this distributed ring signature scheme can be seen as a generic ring
signature scheme, as defined in Section 2.5. In effect, we can see the subsets
U; in the access structure U as individual users of a standard ring signature

scheme, with public keys PK; = Y; = )  PKj;. There is a random value
U, eu;

R; for each subset U;, and a particular R; appears with probability at most

1/(q — d) < 1/2F, as desired. Therefore, in the security analysis, we could use

the Ring Forking Lemma stated in Section 2.5.



e The efficiency of the scheme depends on the total number of users and the
number of sets in the access structure. Therefore, it is a good solution for
situations where the number of sets is small. If the access structure is a

14 .

: ), if £

is the total number of users and ¢ is the threshold). We design in Section 5 a

more efficient proposal, specific for the threshold case.

threshold one, then the number of sets is very large (it is exactly

4.2 Correctness and Anonymity of the Scheme

A ring signature (U, m, R1,..., R4, h1,...,hq,0) computed by following the method
explained above satisfies the verification equation. In effect:

e(o,P) =e(on,, P)=e| (Y ayP+hSK;) + (> aP), P| =
U; €Uy 1<i<d,i#s

II e(as;P,P)-e(haPE;, P) | J[ ela:P,P)=
Uj€Us 1<i<d,i#s

= | [] Rs; ehsPE;,zP)| J[ Ri=

U €Us 1<i<d,i#s
d d
=Ry-e( Y hY;,Y)-ehy Y PK;,Y) [ Ri=eD nYy,Y)][][R
1<i<d,i#s U, €Us 1<i<d,i#s i=1 i=1

With respect to the anonymity of the scheme, we can argue as follows: let
Sig = (U, m,Ryq,...,Rq,h1,...,hg,0) be a valid ring signature of a message m on
behalf of the access structure U = {U1,...,U;}. Let Us be a subset of the access
structure. We now find the probability that members of U; compute exactly the
ring signature Sig, when they produce a ring signature of message m on behalf of
the access U, by following the proposed scheme.

The probability that members of U compute all the values R; # 1g, of Sig,
pairwise different for 1 <7 < d, i # s, is q_% . qi—z SN q_(li +7- Then, the probability
that members of U choose values a,; € Z4 that lead to the value R, of Sig, among

all possible values for R, different to 1g, and different to all R; with ¢ # s, is qi—d.
Summing up, the probability that users in U, generate exactly the ring signature

Sig is

1 1 1 1 1

g—1 q—2 """ g—d+1 q—d Vi—1,d
and this probability does not depend on the subset U, so it is the same for all the
subsets of the access structure. This fact proves the unconditional anonymity of the
scheme.

10



4.3 Unforgeability of the Scheme

We first remember the definition of an adversary against distributed ring signa-
ture schemes, introduced in Section 3.1: a (T, ¢, Q1, Q2, Qe, Qs)-successful attacker
against a ring signature scheme is an algorithm which is given a list of identities
ID;, runs in time 7', makes (1 queries to the random oracle Hi, Q2 queries to the
random oracle Hy, asks for Q). secret keys of different users and asks for Qs valid
ring signatures. With probability e, this algorithm obtains a valid new signature for
a pair (U, m), such that all the sets of the access structure U contain at least one
user whose secret key has not been queried by the adversary.

In the following theorem, we relate the difficulty of forging our ID-based dis-
tributed ring signature scheme with the difficulty of solving the Computational
Diffie-Hellman problem.

Theorem 2. Let A be a (T,e,Q1,Q2, Qe, Qs)-successful adversary against the ID-
based distributed ring signature scheme proposed above, such that the success proba-
bility € of A is non-negligible in the security parameter k.

We denote by 7 the maximum possible cardinality of the subsets and by d the
mazimum possible number of subsets in the access structures considered in the sys-
tem.

Let i be any value such that (1 — %)I/Qe <p<l.

Then the Computational Diffie-Hellman problem in Gy can be solved in time

) . . e ' (1*N)2‘{+1 2
T <2T +2Q1 +2Q2 + 2(d + 7)Qs and with probability &' > S00v— € -
Qa.d

Proof. Since A’s success probability ¢ is non-negligible in k, we can assume that
12 V) 1+6(Q+Qs)”
- (1—p)d2k
Let (P,aP,bP) be the input of an instance of the Computational Diffie-Hellman
problem in G;. Here P is a generator of G, with prime order ¢, and the elements
a,b are taken uniformly at random in Z.

We construct a probabilistic polynomial time Turing machine F which will solve
the given instance of the Computational Diffie-Hellman problem; that is, it will
compute the value abP. This machine B is given as input the digital identifiers
ID; of users U; in a set U*. It will use the attacker A as a sub-routine, so it must
perfectly simulate the environment of the attacker .A. The machine F is also allowed
to make Qs queries to the random oracle for the hash function Ho.

The public data (P,aP,bP) is given to the machine F, and the public key of
the master entity is defined to be Y = aP. Then F runs the attacker A against
our ID-based distributed ring signature scheme, answering to all the queries that A
makes. First of all, F gives the public key Y = aP to the attacker A.

Without loss of generality, we can assume that A asks the random oracle H; for
the value Hi(ID) before asking for the secret key of ID.

The machine F constructs a table TABp, to simulate the random oracle H;.
Every time an identity ID; is asked by A to the oracle H;, the machine F first
checks if this input is already in the table; if this is the case, then F returns to
A the corresponding relation Hy(ID;) = PK;. Otherwise, F acts as follows: with

€

11



probability u, it chooses the random bit ¢; = 0; in this case, F chooses a different
r; € Zy at random and defines PK; = ;P and SK; = z;Y. On the other hand,
with probability 1 — u, the machine F chooses ¢; = 1; in this case, it chooses a
different o; € Zj at random and defines PK; = (a;)bP and SK; =1. The values
(ID;,PKj,z; or aj, SKj,cj) are stored in a new entry of TABp,, and the relation
H.(ID;) = PKj is sent to A. The condition PK; # PK, must be satisfied for all
the different entries j # £ of the table; if this is not the case, the process is repeated
for one of these users.

Since we are assuming that H; behaves as a random function, and the values
PK; are all randomly chosen, this step is consistent.

For any possible set of users U;, we define the value Y; = ZUJ, cu; PK;. Because
of the way in which we have computed the values PK;, we have that

Y; = %P + 6 (bP)

for some values +;, d; € Z4 that the machine F knows.

When A asks for the secret key corresponding to an identity ID;, the machine
F looks for ID; in the table TABpg,. If ¢; = 0, then F sends SK; = z;Y to A. If
¢; = 1, the machine F cannot answer and halts. Note that the probability that F
halts in this process is less than 1 — p@ < 15

Every time A makes a query to the random oracle Ho, the machine F queries
the same input to this random oracle Hy (because it is allowed to do this), and sends
the obtained answer to A.

The adversary A is allowed to query for (s valid ring signatures for messages
and access structures of its choice. The machine F must simulate the information
that A would obtain from these execution of the signing algorithm. Let B be the
set of the users for whom A has asked for their secret keys (we call them corrupted
users). When A asks for a valid signature for a message m’ and an access struc-
ture U’ = {U{,...,U;}, the machine F chooses at random one of the sets of U’
to be the “real” author of the ring signature; for simplicity, we denote this set as
Uy = {U1,Us,...,U, }. The information that A would obtain from such a real
computation consists of all the information broadcast in the private broadcast chan-
nel of U, (because we can consider the worst case where some of the users in U] is
corrupted, and so A has access to this channel), as well as the secret information
generated by the corrupted players, in B NU.. The machine F must execute the
following algorithm in order to simulate this information:

1. For each user U; € U;N B, choose at random ay € Z;, compute and broadcast
R, = e(asuP, P).

2. Choose, for all 4 = 1,...,d, i # s, random values a; € Z}, pairwise different,
and compute R} = e(a; P, P) and h; = Ho(U',m', R;) (by querying the random
oracle Hs); we can assume that A will later ask the random oracle H, with
these inputs, to verify the correctness of the signature.

3. Choose at random h!, € Zj.

12



4. For user Uj:

e if U] € B (since F has not halted, this means that the machine F knows
the secret key SK; of this corrupted user, as well as the value ag1),

compute 01 = a1 P+ h,SK1+ Y. a;P;
1<i<d,is

e if U] ¢ B, choose at random o7 € G; and compute

R, =e(o1,P)-e(hiPKy,-Y)- [ (B)™
1<i<d,i#s

5. For user U], for j = 2,...,m,:

o if UJ'- € B (since F has not halted, this means that the machine F knows
the secret key SK of this corrupted user, as well as the value ay;), com-
pute o; = asjP + h;SKJ +0j-1;

e if U] ¢ B, choose at random o; € G; and compute
R; = e(oj —0j_1,P)-e(h,PK;,-Y).
6. Compute the value
Ry=e(-Y, Y nY) [[ Ry
1<i<d,i#s U, €lls
If R, =1 or R, = R} for some i =1,...,d, i # s, then return to step 1.

7. Impose the relation Ho(U',m', R.) = h. Later, if A asks the random oracle
H, for this input, then F will answer with h.. Since h is a random value and
we are in the random oracle model for Hs, this relation is consistent for A.

The resulting signature (U',m', R},..., R}, h},...,h};,0') is valid. However, the

assignment Ho(U',m',R.) = h’, in step 7 of the simulating algorithm, can cause
some collision if the query (U’,m/, R.) has been previously made to the random
oracle Hs, or if the same tuple (U',m', R.) is produced two times in two different
runs of the signature simulation algorithm.

Since no R] appears with probability greater than 2/ 2% in a simulated ring sig-

nature, we can bound the probability that such collisions occur:

e The probability that a tuple (U’, m’, R.,) that F outputs, as part of a simulated
ring signature, has been asked before to the random oracle by A is less than

2
QZQSQ_kS%

e The probability that the same tuple (U’',m’, R) is output two times by F in

Q.2 ¢
3ok <

two different signature simulations is less than <%

13



Altogether, the probability of collisions is less than £/3. The probability that
the machine F succeeds in obtaining a valid ring signature is the following;:

£r = Pr[F obtains a valid distributed ring signature] =

Pr[F does not halt AND no-collisions in the simulations AND A succeeds] >

> Pr[A succeeds | F does not halt AND no-collisions in the simulations | —

7
— Pr[F halts OR collisions in the simulations] > ¢ — (% + %) = 1—; .

However, assuming that A provides F with a valid distributed ring signature
for a pair (m,U), where U = {U,... , Uy} has d < d subsets, we need to be sure

that F does not know any of the d “secret keys” in . In this case, the “secret
key” of a subset ;, matching with the “public key” PK; =Y; = Y 6 PKj, is
U;el;
SK; = ). SK;. Otherwise, if F knows some of this secret keys, it could have
U, elu;

generated this forged signature by itself, and then it would not be a real forgery.

F will know SK; if and only if he knows the secret keys of all the members of
U;, or in other words, if ¢; = 0, for all U; € U;. Therefore, the probability that F

does not know any of the d “secret keys” in U is

Pr[Vi=1,...,d, 3U; €U s.t. ¢; =1] > (1 — p)%.

. . ey ~ 7 7V "l
Summing up, with probability ex = (1 — p)¢ & > (1 — p)¢ I—; > 2Q,3’d, the
machine F obtains a valid forged ring signature for an access structure where he
does not know any “secret key”. The execution time of the machine F is T <
T+Q1+ Q2+ (d+1)Qs.
Applying the Ring Forking Lemma (Theorem 1) to the machine F, we have

that, by executing two times F, we will obtain in time 77 < 2T'» and with prob-

2

ability &’ > WE/QLJ two valid ring signatures (U,m,Ry,...,Rq,h1,...,hg,0) and
25

U, m,Ry,...,Ra,hy,..., hy,0') such that h; # hj, for some j € {1,...,d} and

hi =R} for all 4 =1,...,d such that i # j.

By definition of valid forgery against a distributed ring signature scheme, there
exists at least one non-corrupted user in each subset I; € U; in particular there exists
a non-corrupted user U, € U;\B in the subset I{;. Remember that Y; = v;P+4,(bP),
where v; and §; are values known by the machine F.

For this non-corrupted user U, € U;, we have c, = 1 with probability 1 — u,
which means that PK, = «,(bP). So the value «, is one of the terms added in the
factor ¢; that appears in Yj. If this is the case, then with overwhelming probability
we will have that J; # Omod gq.

If now we come back to the two forged signatures, and we write the corresponding
verification equations, we have:

6(0’,P) :R1 tee -Rd-e(Y,hlyl) -e(Y,hde)

14



e(c',P)=Ry-...-Rg-e(Y,h\Y1)-... - e(Y,h,Yy)

Dividing these two equations, we obtain e(oc — 0',P) = (Y (h - h))Y;) =
e(aP, (hj — B;)(7; P + 6;(bP))) = e(aP, (h; — h})v; P) - e(aP, (h;j — hj)0 (bP)).
We can conclude from this relation the equahty

e(abdj(hj — h3)P, P) = e(0 — o' — [ayj(hj — h;)]P, P).

Since the pairing is non-degenerate, this implies that abd;(h; — hi)P = o0 — o' —
[aj(h;j — ;)] P. Therefore, one can compute the solutlon of the given instance of
the Computatlonal Diffie-Hellman problem:

1 av;
abP=—— (6—0')— P
dj(h; — hj) 9

The inverses are computed modulo ¢, and they always exists because h; # h; and
0; # 0mod g with overwhelming probability.

Summing up, the machine F has solved the Computational Diffie-Hellman prob-
lem with probability

2 PRY: | 2 _\2d+1
Q) > (- ) —F >(1—u)((1 p)® 7e/12) 2(1 1)
66V, n 66VQ2 i 200VQ2 i

And the total time needed to solve the problem has been T' < 2T < 2T + 2Q1 +
2Q2 + 2(d + 7)Qs.
O

5 An ID-Based Distributed Ring Signature Scheme for
Threshold Access Structures

We next propose a different scheme for computing threshold ring signatures in a more
efficient way, in an ID-based scenario. The proposal follows the ideas introduced in
[19], where threshold ring signatures are designed for PKI scenarios (with users
having either Disc-Log or RSA keys, for example).

In the design of the new scheme, Shamir’s threshold secret sharing scheme [16] is
used as a primitive. We will assume, again, that any specific set of users can always
have access to a private and authenticated broadcast channel. The protocols of our
proposed scheme are described below.

Key generation: let G; be an additive group of prime order ¢, generated by
some element P. Let Gy be a multiplicative group with the same order q. We need
q > 2%, where k is the security parameter of the scheme. Let e : G; x G; — Gy be a
bilinear pairing as defined in Section 2.1. Let H; : {0,1}* — G} and Hy : {0,1}* —
Z4 be two hash functions.

The master entity chooses at random his secret key = € Z; and publishes the
value Y = zP.

15



Secret key extraction: any user U; of the system, with identity ID;, has public
key PK; = H1(ID;). When he requests the master for his matching secret key, he
obtains the value SK; = zPK;.

Threshold ring signature generation: assume that a subset of users {Uy, Us, . ..

want to compute an anonymous signature on behalf of a set U = {Uy,...,U,
Ui+1,---,Up}, where 1 < ¢ < £. The ¢ signing users jointly execute the following
protocol:

1. For non-signing users U; € U, with i =t + 1,..., 4, they choose uniformly at
random ¢; € Zg and A; € Gy; they compute and broadcast the value

Z; = e(AZ-, P) . e(Y, CZPKZ)

2. The signing users Uj, with j = 1,...,%, choose uniformly at random T} € Gy;
they compute and broadcast the value

zj = e(T}, P).

3. They compute ¢ = Ho(U, m, 21, .., 2¢).

4. They construct, by using Lagrange interpolation, the only polynomial f(x) €
Z4|X] of degree £ —t which verifies f(0) = cand f(i) =¢;, fori =t+1,...,L

5. For j =1,...,t, player U; computes ¢; = f(j) and then computes and broad-
casts the value
A]‘ = T] — CjSKj.

6. The resulting signature is (U, m, f(x), A1,..., Ap).

Verification of a threshold ring signature: the recipient of the message first
verifies that the degree of f(x) is exactly £ —t. Then he computes ¢; = f(i), for
every user U; € U, with i =1,...,/, and the values

zi = e(A;, P) - e(Y, ¢; PK;).

The signature is valid if f(0) = Ho(U, m, 21, .., 2g).

5.1 Correctness and Anonymity of the Scheme

A signature which has been generated following the above method is correct, because
zi = e(A;, P) - e(Y,¢;PK;) for i =t +1,...,4, by construction. On the other hand,
for 5 =1,...,t, we have that

zj = e(T}, P) = e(Aj+¢;SK;, P) = e(A;, P)-e(cjzPK;, P) = e(A;, P)-e(¢; PK;,Y),

as desired. Therefore, the signature satisfies that ¢ = f(0) = Ho(U, m, 21, .- ., 2¢).
With respect to anonymity, the reasoning is similar to the one that we have al-

ready used in Section 4.2: given a valid threshold ring signature (U, m, f(z), A1, ..., Ag)
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on behalf of a set of users U, the probability that a particular subset B C U of ¢
users have computed this signature is exactly

1 1 1

20 g T

This probability depends only on £ and ¢. Therefore, all the subsets of ¢ with ¢
users have the same probability to be the actual authors of the signature.

5.2 Unforgeability of the Scheme

In the particular case of threshold access structures, the definition of a (T, ¢, Q1, Q2, Qe, Qs)-
successful attacker against a ID-based threshold ring signature scheme is the follow-
ing: it receives as input the identities of a set of users, then it runs in time 7', makes
(1 queries to the random oracle Hy, (J5 queries to the random oracle H,, asks for Q).
secret keys of different users and asks for ()5 valid threshold ring signatures. With
probability e, this algorithm obtains a valid new signature for a pair ({,m) and a
threshold ¢, such that it has asked for the secret key of at most ¢ — 1 of the users in
U.

In the following theorem, we prove the unforgeability of our ID-based thresh-
old ring signature scheme, by reducing the problem of forging a signature to the
Computational Diffie-Hellman problem.

Theorem 3. Let A be a (T,e,Q1,Q2,Qe, Qs)-successful adversary against the pro-
posed ID-based threshold ring signature scheme, such that the success probability ¢
of A is non-negligible in the security parameter k.

We denote by ? the mazimum cardinality of the sets for which A asks for a valid
signature.

Let p be any value satisfying (1 — %)I/Qe <p<l.

Then the Computational Diffie-Hellman problem in Gy can be solved in time

T' < 2T + 2Q1 + 2Q2 + 20Q, and with probability &' > (%;;Q)f'

Proof. The first thing to remark is the fact that we can bound ¢ > 3(623;7,92)2
Otherwise, the success probability € would be negligible in the security parameter
k.

We are going to construct a probabilistic polynomial time Turing machine F
which will use the attacker A as a sub-routine in order to solve the given instance of
the Computational Diffie-Hellman problem. Therefore, F must perfectly simulate
the environment of the attacker A.

The machine F receives a list of identities and the public data (P,aP,bP), and
its goal is to compute the value abP. The public key of the master entity is defined
to be Y = aP. Then F runs the attacker A against the threshold ID-based ring
signature scheme, answering to all the queries that A makes. The publickey Y = aP
is also sent to the attacker A.

Without loss of generality, we can assume that A asks the random oracle H; for
the value Hi(ID) before asking for the secret key of ID.
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The machine F constructs a table TABpg, to simulate the random oracle Hj.
Every time an identity ID; is asked by A to the oracle Hi, the machine F acts as
follows: first F checks if this input is already in the table; if this is the case, then F
sends to A the corresponding relation H;(ID;) = PK,;. Otherwise, with probability
, the machine F chooses the bit d; = 0 and a different z; € Z; at random, and
defines PK; = z; P and SK; = z;Y. On the other hand, with probability 1 — u, the
machine F chooses the bit d; = 1 and a different o; € Zj at random, and defines
PK; = (a;)bP and SK; =L. The values (ID;, PK;, z; or o;, SK;,d;) are stored in a
new entry of TABp,, and the relation Hy(ID;) = PK; is sent to A. The condition
PK; # PK; must be satisfied for all the different entries 7 # j of the table; if this is
not the case, the process is repeated for one of these users.

Since we are assuming that H; behaves as a random function, and the values
PK; are all randomly chosen, this simulation of the hash function H; is consistent.

Later, every time A asks for the secret key corresponding to an identity ID;, the
machine F looks for ID; in the table TABp,. If d; = 0, then F sends SK; = z;Y
to A. If d; = 1, the machine F cannot answer and halts. The probability that F
halts in this process is less than 1 — % < £/6.

As well, F constructs a table TABpg, to simulate the random oracle Hs. Every
time A makes a query to this oracle, F looks for this value in the table. If it is
already there, then F sends the corresponding relation to A; if not, F chooses at
random an output of the random oracle for the queried input, different from the
outputs which are already in the table, sends the relation to A and stores it in the
table TABp,.

Finally, the attacker A can ask 5 times for valid threshold ring signatures for
messages m’, sets U’ of £ users and thresholds . To answer such queries, the
machine F proceeds as follows:

1. Choose at random £’ —t' + 1 values ', ¢}, ,...,Cpy € Zg.

2. Using Lagrange interpolation, construct the only polynomial f'(z) € Z,[X]
with degree ¢/ — ¢’ such that f'(0) = ¢ and f'(i) =}, fori =¢' +1,...,¢.

3. Compute the values ¢; = f'(j), for j = 1,...,%".
4. Choose at random ¢ values A},..., A} € Gy.
5. Compute, for ¢ = 1,...,¢, the values z; = e(A}, P) - e(Y, ¢, PK;)..

6. Impose and store in the table TABpy, the new relation Ho(U',m/, 2},...,2;) =

c.

7. Define the signature to be (U',m/, f'(z), A}, ..., A}).

The process results in a valid threshold ring signature, because we are assuming
that Hy behaves as a random function, and ¢’ is taken uniformly at random in Lg.
However, the assignment Ho(U',m’,2],..., %)) = ¢/ can produce some collisions in
the management of the table TABp, that simulates the random oracle Hj.
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A first possible collision occurs if a tuple (U',m’,2],...,z;) produced in the
simulation of a signature has been already queried to the random oracle Hs. The
probability of this event is less than QSqQQ.

A second possible collision occurs when the same tuple (', m/, 21, ..., z;) is pro-

duced in two different signature simulations. The probability of this event is less
2

than *¥=.

Wéqdenote by w the whole set of random tapes that take part in an attack by
A, with the environment simulated by F, but excluding the randomness related to
the oracle Hs. The success probability of A in forging a valid ring signature scheme
is then taken over the space (w, H2).

In an execution of the attacker A, we use the notation Qi, Qo,...,Qq, for the
different queries that A makes to the random oracle Hs. If A produces a valid
forged signature (U, m, f(z), A1,...,Aq), by the ideal randomness of the oracle H,
the probability that A has not asked for the tuple (U, m,z1,...,2;) to this oracle
(and so A must have guessed the corresponding output), is less than %. We define
B = oo in this case; otherwise, 8 denotes the index of the query where the tuple
above was asked. That is, Qg = (U, m, 21, ..., 2¢).

We denote by S the set of successful executions of A, with F simulating its
environment, and such that 8 # ococ. We also define the following subsets of S: for
every 1 = 1,2,...,Q9, the set S; contains the successful executions such that g = .

This gives us a partition {S;}i=1,..g, of S in exactly Q2 classes.

The probability that an execution (w, Hz) of A with the environment simulated
by F results in a valid forgery with 8 # oo is

Now we define the set of indexes which are more likely to appear as

I={ist Prl(w,Hy) €S| (w,Hy) €8] > ﬁ .

And the corresponding subset of successful executions as St = {(w, H2) € S; s.t.
i€ I},
For a specific index ¢ € I, we have that

Pr(w, Ho) € S;] = Pr[(w, H2) € §] - Pr[(w, H2) € S; | (w, Hp) € §] >

>

2Q2°
Lemma 2. It holds that Pr[(w, Hs) € S1 | (w,H2) € §] > 1/2.

M

Proof. Since the sets S; are disjoint, we have

Pr{(w, H) € Sy | (w,Ha) € §] = Pr{(w, Ha) € S; | (w,Ha) € §] =
el
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1= Prl(w, Hy) €S; | (w,Ha) €8].
il
Since the complement of I contains at most ()2 indexes, we have that this probability
is greater than 1 — Qo - ﬁ =1/2. O

We come back to the execution of A with the environment simulated by F.
With probability at least &, such an execution (w, Hy) results in a valid forgery with
B # oo. In this case, applying Lemma 2, we know that this successful execution
belongs to S; with probability at least 1/2.

Now we split Hy as (H},c), where H} corresponds to the answers of all the
queries to Ho except the query Qg, whose answer is denoted as c.

We apply the Splitting Lemma (lemma 1), taking X = (w, H3), Y =¢, A = Sg,

0= 2‘?@ and o = 4‘?@. The lemma says that there exists a subset of executions (g
such that )
Pr{(w, Ha) € Qp | (w, Ha) € Sg] > % =3

and such that, for any (w, Ha) € Qg:

Prf(w, H3,8) € S5] 20— a = ;@.

With probability at least %, the first execution (w, Hj,c) of A simulated by F
is successful and the index 8 belongs to the set I. Furthermore, in this case we
have that (w,Hj,c) € Qp with probability at least 1/2. If we now repeat this
simulated execution of A with fixed (w, Hj) and randomly chosen ¢ € Z4, we know
that (w, Hj,€) € Sg and furthermore ¢ # ¢ with probability at least ﬁ - %.

Now consider the two successful executions of the attack, (w, H), c) and (w, He, ¢),
that the algorithm F has obtained by executing the attack A. We denote by
U, m, f(z),As,...,Ay) and U, 7, f(x), A1, ..., Ay), respectively, the forged thresh-
old ring signatures. Since the random tapes and H; are identical, and the answers
of the random oracle Hy are the same until the query Qg = (U, m,21,...,2¢), we
have in particular that f =, m =m and %; = z;, for i = 1,..., .

Since f(0) = ¢ # é = f(0) and the degree of both f(z) and f(z) is £ —t, the two
polynomials f(z) and f(z) can coincide at most at £ — ¢ points. Therefore, there
are at least ¢ values j1,...,5 € {1,...,£} such that f(j;) # f(j), for i = 1,...,t.
Furthermore, the forgery against the threshold ring signature scheme has been valid,
so the attacker A has asked for the secret key of at most ¢ — 1 members of the
signing ring &{. This means that there is at least one member U; € U such that
c; = f(j) # fG) = ¢; and such that the secret key of U; has not been asked by .A.
In this case, with probability 1 — x4 we have d; = 1 and so PK; = «;bP.

The equality Z; = z; becomes e(A;, P) - e(Y,¢;PK;) = e(A;, P) - e(Y,&;PK;).
This is equivalent to

e(A; — A, P) = e(Y, (¢ — ¢;) PK;) = e(aP, (¢ — ¢j)ojbP) = e(a(é; — ¢j)a;bP, P).
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This implies that A; — A; = a(&; — ¢j)a;bP. Therefore, the machine F obtains
the solution of the given instance of the Computational Diffie-Hellman problem as

1 ~
abP = —— (4, — Aj).
@ —cj)o 7T
The inverse can be taken modulo ¢, since «; € Zj and ¢; # ¢;.
The total success probability €’ of the attack performed by F is

g 1 5 1 g £
l—p)= = ——=)>Q—p)= — >
> (1= n)3 2(4622 q)_( M1 80, >
S -wE () | (- e
- 32Q, — 320 — 128Q9 '
The total execution time T” of the machine F consists of running two times the
machine A, simulating its environment. That is, 77 < 2(T + Q1 + Q2 + £Q5).

O

This last proposal, apart from being more efficient for the case of threshold
structures, enjoys a better security reduction, since the factor V ;4 does not appear
in the relation between the probabilities ¢’ and e. This is due to the fact that the
Ring Forking Lemma for generic ring signature schemes is not used in the proof of
the security of this threshold proposal.

6 Conclusion

In this work we have dealt with distributed ring signature schemes in identity-based
scenarios. Such schemes provide anonymity to a subset of users who want to sign a
message on behalf of a larger set of users. Furthermore, in identity-based scenarios,
public keys of the users are derived from publicly verifiable data (for example, an
e-mail address), and so digital certificates are not necessary to authenticate the
validity of public keys. This allows more efficient implementations of public key
cryptographic systems, specially for those cases where basic operations involve many
different public keys, as it happens in (distributed) ring signatures.

We have proposed the two first distributed ring signature schemes which run in an
identity-based framework. The first one can be used for general families of possible
signing subsets, whereas the second one is specific, and more efficient, for the case of
threshold families. The design of the schemes uses different mathematical tools, as
bilinear pairings or Shamir’s secret sharing scheme. In the security analysis, we use
some results of probability theory and we assume that the well-known Computational
Diffie-Hellman problem is intractable.
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