
A New Forward Secure Signature Scheme

Bo Gyeong Kang1, Je Hong Park2, and Sang Geun Hahn1

1 Department of Mathematics, Korea Advanced Institute of Science and Technology,

373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea

{snubogus,sghahn}@kaist.ac.kr
2 National Security Research Institute,

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-345, Korea

jhpark@etri.re.kr

Abstract. In this paper, we present two forward secure signature schemes based on gap Diffie-

Hellman groups and prove these schemes to be secure in the sense of slightly stronger security

notion than that by Bellare and Miner in the random oracle model. Both schemes use the same

key update strategy as the encryption scheme presented by Canetti, Halevi and Katz. Hence,

our schemes outperform the previous tree-based forward secure signature scheme by Bellare and

Miner in the key generation and key update time, which are only constant in the number of

time periods. Specifically, we describe a straightforward scheme following from the encryption

scheme, and then improve its efficiency for signature verification algorithm which needs only 3

pairing computations independent of the total time periods.

1 Introduction

Ordinary digital signatures have a fundamental limitation: if the secret key of a signer is

compromised, all the signatures of that signer become worthless. As portable devices are

spreading widely, it is required that a number of cryptographic computations are performed

on those devices. But, these devices are usually unprotected and easily-stolen, so careless

usages allow that an adversary gains access to a secret key without breaking the underlying

cryptographic schemes. To mitigate the damage caused by exposure of secret keys stored

on such devices, cryptographic schemes are basically required to meet the notion of forward

security. This assumes that key exposure will inevitably occur and seeks instead to minimize

the damage. The lifetime of the protocol is divided into distinct periods 0, . . . , N − 1 and

secret keys are updated from the current one at the end of each time period via a key update

algorithm, while the public key remains for the lifetime of the scheme. So exposure of the secret

key corresponding to a given time period does not enable an adversary to break the scheme

for any prior time period. This notion was first proposed in the context of key-exchange

protocols [12] and then adapted on signature/identification schemes.

Forward security was first formalized in the context of signature and identification scheme

by Bellare and Miner [3], building on earlier ideas of Anderson [2]. Subsequently, numerous

constructions of forward secure signature schemes have been proposed [1, 18, 14, 19], but a

forward secure encryption scheme has been constructed recently by Canetti, Halevi and Katz

[6]. It is based on the binary tree encryption scheme [17], that is a relaxed variant of the

hierarchical identity-based encryption scheme of Gentry and Silverberg [11]. In this scheme,

each of time periods is associated with a node in a binary tree of depth dlog Ne according to a

2 B.G. Kang et al.

pre-order traversal. So the scheme has all parameters at most poly-logarithmic and especially

constant key generation and key update time in the number of time periods. Recently, Hu,

Wu and Irwin [13] independently presented a forward secure signature scheme parallels to

the encryption scheme of Katz [16]3. However this scheme obviously uses the same strategy

of binary certification tree scheme suggested by Bellare and Miner [3] which associates time

periods with the leaves only.

Related works There are many alternate approaches to address the risks associated with key

exposure. Especially, to obtain security for time periods following key exposure, the notions

of key-insulation [4, 9, 10] and intrusion-resilience [15, 7, 8] were proposed. In these schemes,

not only past but also future secret keys remain secure in case the current secret key is

compromised. So the security provided by these schemes is better. However, those solutions

require time synchronization and the signer’s communication with a safe computing device

for each time period. In the case that the user is self-sufficient and need not interact with any

other device, forward secure schemes are advantageous for efficiency. Recently Malkin, Obana

and Yung [20] established a hierarchy for key evolving signature schemes. They showed that

above two security notions are equivalent and imply forward-security.

Our contribution First, we construct a forward secure signature scheme FS.PKS which use

the same system parameters and key update algorithm as the encryption scheme presented by

Canetti, Halevi and Katz [6]. By modifying the key update algorithm of FS.PKS, we obtain

an efficient forward secure signature scheme EFS.PKS. It is obvious that our schemes maintain

most of the advantages of the corresponding encryption scheme due to the same structure.

Our schemes achieve better performance than the binary certification tree scheme by Bellare

and Miner[3] with respect to the key generation and key update algorithm. One point that

differentiates EFS.PKS from FS.PKS is signature verification algorithm. EFS.PKS needs only

3 pairing computations in each verification procedure at the cost of two field multiplications

in each key update procedure, beating log N pairing computations of FS.PKS. That is very

remarkable success because the pairing computation is the most expensive procedure.

Now, we compare the full performance of our schemes with Bellare-Miner scheme in the

following Table 1. We consider a supersingular curve and a modified pairing on it as a GDH

group and a bilinear map, respectively. We record the cost in terms of the number of scalar

multiplications and pairing computations in the group. For concrete comparison, we refer to

[13] for a concrete example following the Bellare-Miner scheme.

Additionally, we prove that our concrete schemes satisfy a slightly stronger security notion

rather than those in [1].

Due to recent results of [21] and [20], we can obtain several forward secure signature

schemes induced from identity-based signature schemes. But these are so complex to under-

stand their structure and so only valuable for generic construction.

3 It is an older version of the paper [6].

A New Forward Secure Signature Scheme 3

[13](BM type) FS.PKS EFS.PKS

Key gen time O(log N)S O(1)S O(1)S

Key update time O(log N)S O(1)S O(1)S

Signing time O(1)S O(1)S O(1)S

Verifying time O(log N)P O(log N)(S + P) O(log N)S + 3P

Table 1. Performance (S: scalar multiplication, P : pairing computation)

Organization In Section 2, we introduce related mathematical problems, and review the

formal definition of the forward secure signature scheme and its security. In Section 3, we

present our new signature scheme and give a detailed security proof of it.

2 Preliminaries

In this section, we briefly introduce several mathematical backgrounds and then review the

formal definition of the forward secure signature schemes [3, 1].

2.1 Cryptographic assumptions

Let G1 and G2 be two cyclic groups of prime order q, where G1 is represented additively and

G2 is represented multiplicatively. And let P ∈ G1 be a generator of G1.

– Computation Diffie-Hellman (CDH) problem: Given (P, aP, bP) where a, b ∈ Z
∗
q , compute

abP . The advantage of an algorithm A in solving the CDH problem in a group G is

AdvCDHA = Pr[A(P, aP, bP) = abP | a, b
r
←− Z

∗
q].

We say that A (t, ε)-breaks CDH in G if A runs in time at most t, and AdvCDHA ≥ ε.

– Decision Diffie-Hellman (DDH) problem: Given (P, aP, bP, cP) where a, b, c ∈ Z
∗
q , decide

whether c = ab in Z
∗
q . If so, (P, aP, bP, cP) is called a valid Diffie-Hellman tuple.

Definition 1. A prime order group G is a (t, ε)-GDH group if DDH problem can be solved

in polynomial time but no probabilistic algorithm (t, ε)-breaks CDH in G.

A bilinear map is an efficiently computable map e : G1 × G1 → G2 between these two

groups must satisfy the following properties:

1. Bilinear: For all P, Q ∈ G1 and all a, b ∈ Z, e(aP, bQ) = e(P, Q)ab.

2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity in G2. Observe

that since G1, G2 are groups of prime order, this implies that if P is a generator of G1,

then e(P, P) is a generator of G2.

Specifically, the Weil and Tate pairings are practical example of the bilinear map. Using the

Weil or Tate pairing, certain elliptic curves (for example, supersingular curves) can be used

as GDH groups.

4 B.G. Kang et al.

A GDH parameter generator IG is a randomized algorithm that takes a security parameter

k ∈ N, runs in time polynomial in k, and outputs the description of two groups G1 and G2 of

the same prime order q and the description of an admissible pairing ê : G1 × G1 → G2. We

say that IG satisfies the GDH assumption if the following probability is negligible (in k) for

all PPT algorithm A:

Pr[A(G1, G2, ê, P, aP, bP) = abP | (G1, G2, ê)← IG(1
k), P ← G

∗
1, a, b← Z

∗
q].

2.2 A key evolving signature scheme

The approach taken by forward secure signature schemes is to update the secret key periodi-

cally. Thus a forward secure signature scheme is a key-evolving signature scheme which is a

regular signature scheme with the additions of time periods and the key update algorithm

to vary the secret key. However, the public key is left unchanged throughout the lifetime

of the scheme. The following definitions of forward security are taken from [3, 1] with slight

modification.

Definition 2. A key-evolving signature scheme KE.PKS consists of the following four algo-

rithms:

1. KE.GEN, the probabilistic key generation algorithm, takes as input a security parameter

k ∈ N, the total number of period N . It returns a base public key PK and corresponding

base secret key SK0.

2. KE.UPD, the probabilistic secret key update algorithm, takes as input the secret signing

key SKj−1 of the previous period. It returns the secret signing key SKj of the current

period.

3. KE.SIGN, the probabilistic signing algorithm, takes as input the secret signing key SKj of

the current period and a message M . It returns a signature of M for period j. We write

〈j, σ〉
R
←− KE.SIGNSKj

(M).

4. KE.VRFY, the deterministic verification algorithm, takes as input the public key PK, a

message M and a candidate signature 〈j, σ〉 and outputs a binary value 0 (invalid) or 1

(valid).

We say that 〈j, σ〉 is a valid signature of M for period j if KE.VRFY(M, 〈j, σ〉) = 1. It is

required that a signature of M generated via KE.SIGNSKj
(M) be a valid signature of M for

period j.

Basically, what a key evolving signature scheme is forward secure means that an adversary

which obtains the current secret key is computationally infeasible to forge a signature with

respect to a previous secret key. In this paper, we consider a slightly stronger security notion

rather than those defined in [3]: Previously, the adversary is considered successful if it can

create a valid forgery (M, 〈b, σ〉) for some b < j and the new message M , where j is the current

period. We require that the adversary cannot even make a different signature on previously

signed message in period b.

A New Forward Secure Signature Scheme 5

Furthermore, we consider the time period starting at zero. That is, even if the adversary

is not allowed to get the base secret key, it can have access the signing oracle during zero

period. Hence, a signature forgery for time period 0 is considered as a valid one. Formally,

this adversary is modeled via Experiment 1 in the random oracle model.

Experiment 1 FS.PKSA(KE.PKS(k, N),A)
Select H at random.

(PK, SK0)
R
←− KE.GEN(k, N)

j ← 0

0← AKE.SIGN
H(·)(SKj ,·)(PK, j)

repeat

j ← j + 1

SKj ← KE.UPD(SKj−1, j)

d← AKE.SIGN
H(·)(SKj ,·)(PK, j)

until d = breakin or j = N

if j = N and d = 0 then

sets SKN+1 with empty strings.

end if

(M, (b, σ))← AH(·)(SKj)

if KE.VRFY(PK, M, 〈b, σ〉) = 1 and 0 ≤ b < j where σ is distinct from any previously given signature (if

exists) on M by KE.SIGN(SKb, ·) then

return 1

else

return 0

end if

In this model, an adversary knows the public key PK, the total number of time periods N

and the current time period j. For the key-evolving signature scheme KE.PKS, the adversary

A is viewed as functioning in three stages. Basically, we view hash function H as a random

oracle. In the first phase, the chosen message attack phase (cma), the adversary has access to

a signing oracle, which it can query to obtain signatures of messages of its choice with respect

to the current secret key. Without loss of generality of the concept of forward security, we

allow the adversary accesses to the signing oracle made by the base secret key. At the end of

each time period, the adversary can choose whether to stay in the same phase or switch to the

break in (breakin) phase. It cannot get access to previous oracle again. In the breakin phase,

which models the possibility of a key exposure, we give the adversary the secret key SKj for

the specific time period j it decided to break in. In the last phase, the forgery phase (forge),

the adversary outputs a signature forgery 〈M, σ〉 in period b. The adversary is considered to

be successful if KE.VRFY(M, 〈b, σ〉) = 1, 0 ≤ b < j hold and σ is distinct from any previously

given signature (if exists) on the message M in period b. So the advantage of an adversary

AdvKE.PKSA is defined as the probability that A is successful in Experiment 1.

Definition 3. We say that an algorithm A (t, qS , qH , ε)-attacks KE.PKS if A runs in time at

most t and at most qS and qH queries are made to the signing oracle and the random oracle

H, respectively, and then AdvKE.PKSA ≥ ε. We say that the key-evolving signature scheme

6 B.G. Kang et al.

KE.PKS is (t, qS , qH , ε)-forward secure against chosen message attacks in the random oracle if

there is no adversary that (t, qS , qH , ε)-attacks KE.PKS, and denote it by KE.PKS(t, qS , qH , ε).

3 A new forward secure signature scheme

3.1 Notations

Our forward secure signature scheme employs the binary tree structure which is a variant of

the tree structure used in the hierarchical identity-based signature scheme [11]. If we use a

full binary tree with depth l, then the number of time periods is N = 2l+1 − 1. The root of

the tree is called node ε. By the well known pre-order traversal technique [6] of binary trees,

we can assign nodes to time periods.

Denote the node (represented by bit string) and its secret key corresponding to the time

period i by wi and Swi , respectively. Let wi0 (wi1) be the left (right) child node and let wi|k
be a k-prefix of wi. Let w|k̄ be the sibling node of w|k. Pre-order traversal can be defined as

follows: w0 = ε is the root node, and if wi is an internal node, then wi+1 = wi0. If wi is a leaf

node and i < N − 1, then wi+1 = w′1, where w′ is the longest string such that w′0 is a prefix

of wi.

The public verification key PK remains fixed throughout the lifetime of the system. In

the time period i, the signer generates a signature respect to the node secret key Swi , but

the secret key SKi contains secret keys of the right siblings of the nodes on the path from

the root to wi, besides the secret node key Swi . That is, whenever w′0 is a prefix of wi, SKi

contains the secret key of node w′1. So the secret key of the time period i is expressed by

SKi = (Swi|1̄
, Swi|2̄

, · · · , Swi|n̄ , Swi), where wi = w1 . . . wn and Swi|k̄
= Null if the last bit of

wi|k is 1. At the end of the time period i, the key update algorithm can generate the secret

key as the following:

1. If wi is an internal node, then wi+1 = w0 and generates Swi+1 . Additionally, it generates

the secret node key Swi1 for the right child node wi1.

2. If wi is a leaf, the secret node key Swi+1 is already contained in SKi.

After generating the secret key of wi+1, it erases the secret node key Swi in storage. This

process can be easily implemented via stack. The secret key SKi can be organized as a stack

of node keys ST-SK, with the secret node key Swi on top. When the signer runs the key

update algorithm, first pops the current secret node key Swi off the stack.

1. If wi is an internal node, generates secret keys Swi0 and Swi1 of wi0 and wi1, respectively,

and pushes Swi1 and then Swi0 onto the stack. The new top is Swi0 and indeed wi+1 = wi0.

2. If wi is a leaf then the next key on top of the stack is Swi+1 .

In either case, it erases the secret node key Swi .

3.2 A construction of forward secure signature scheme

We now construct a forward secure signature scheme FS.PKS using bilinear maps. Let IG be

a GDH parameter generator for which the GDH assumption holds.

A New Forward Secure Signature Scheme 7

FS.GEN : It takes as input the security parameter k, depth of the binary tree l. Then

1. Run IG(1k) to groups G1, G2 of some prime order q and an admissible pairing e :

G1 ×G1 → G2.

2. Select a random generator P ∈ G1 and a random secret α ∈ Z
∗
q , and sets Q = αP .

3. Chooses cryptographic hash functions H1 : {0, 1}∗ → G1, and H2 : {0, 1}∗×{0, 1}∗×

G1 → G1.

4. The public key is PK = (G1, G2, e, P, Q, l, H1, H2) and the root secret key is SNε =

αH1(ε).

FS.UPD: It takes as input the tree public key PK, the time period i and the secret key SKi =

ST-SK. Let w be the node corresponding to i. In general, for w = w1 · · ·wn, the secret key

of the node w consists of n + 1 group elements, Sw = (Rw|1 , Rw|2 , · · · , Rw|n−1
, Rw, SNw).

It first pops the secret node key Sw off the stack ST-SK and then updates a secret key

respect to the position of node w in tree as follows.

1. If w is an internal node, then chooses random ρw0, ρw1 ∈ Z
∗
q , and computes Rw0 =

ρw0P , Rw1 = ρw1P , SNw0 = SNw +ρw0H1(w0) and SNw1 = SNw +ρw1H1(w1). Then

pushes

Sw1 = (Rw|1 , · · · , Rw|n−1
, Rw, Rw1, SNw1) and Sw0 = (Rw|1 , · · · , Rw|n−1

, Rw, Rw0, SNw0)

in order onto the stack, and erases Sw.

2. If w is a leaf, then only erases Sw.

FS.SIGN: It takes as input the time period i, the secret key SKi = ST-SK and a message

M . The signer pops the top in the stack ST-SK and uses it to generate a signature.

Let w = w1 . . . wn be the node corresponding to i. Then the signer selects r ∈ Z
∗
q and

computes U = rP , PM = H2(M, i, U) and FS = SNw + rPM . The signer outputs a

signature 〈i, σ = (U, FS)〉 and Rw|m where 1 ≤ m ≤ n.

FS.VRFY: Let w = w1 . . . wn be the node corresponding to i. When PM = H2(M, i, U), if

e(P, FS) =
n∏

m=1

e(Rw|m , H1(w|m)) · e(U, PM) · e(Q, H1(ε)),

then confirms that 〈i, σ = (U, FS)〉 is a valid signature of 〈M, i〉.

Completeness The verification of the signature is justified by the following equations:

n∏

m=1

e(Rw|m , H1(w|m)) · e(U, PM) · e(Q, H1(ε))

=
n∏

m=1

e(P, ρw|mH1(w|m)) · e(P, rPM) · e(P, αH1(ε))

= e(P,
n∑

m=1

ρw|mH1(w|m) + rPM + αH1(ε)) = e(P, FS).

8 B.G. Kang et al.

Efficiency We associate time periods with all nodes of a binary tree rather than with the

leaves only as was done in prior work [16, 13]. This improves efficiency in the key-generation

and key-update times from O(log N) to O(1) as stated in [6]. The total signing computation

is independent of the total number of the time periods N . The verification requires more

computation because it involves the pairing computation and its complexity is O(log N).

However, it can be optimized by precomputing
∏n

m=1 e(Rw|m , H1(w|m)) and e(Q, H1(ε)) only

once at the time period for the given signer. Additionally, each size of the signature, the public

key and the secret key is O(log N), O(1) and O(log N), respectively. However, it is noted that

the secret storage size is only O(1) using in current period rather than O(log N).

Security The following theorem shows that the security of FS.PKS depends on the hardness

of the CDH problem on G1.

Theorem 1. If the group G1 generated by FS.GEN(K, l) is (t′, ε′)-GDH group, then FS.PKS

is (t, qS , qH2 , ε)-forward secure, for every (t, ε) such that

t ≤ t′ − cG1(qH2 + 3qS + T l + 4l + T + 3) and ε ≥ N · ε′ +
(qH2 − 1) · qS

q
.

The proof of this theorem is similar to that of the theorem 2. Due to space limitation, we

will omit this proof.

4 Efficiency Improvement

Although the verification phase of FS.PKS scheme can be optimized by precomputing almost

pairings once at the time period for the given signer, it requires 3 pairing computations

basically. We show that the number of pairing computations in each verification procedure

can be reduced only 3 (no precomputation) at the cost of two field multiplications in each

key update procedure. We now describe this forward secure signature scheme EFS.PKS. Let

IG be a GDH parameter generator for which the GDH assumption holds.

EFS.GEN : It takes as input the security parameter k, depth of the binary tree l. Then

1. Run IG(1k) to groups G1, G2 of some prime order q and an admissible pairing e :

G1 ×G1 → G2.

2. Select a random generator P ∈ G1 and a random secret α ∈ Z
∗
q , and sets Ppub = αP .

3. Chooses cryptographic hash functions H1 : {0, 1}∗×G1 → G1, H2 : {0, 1}∗×{0, 1}∗×

G1 → G1, and H3 : {0, 1}∗ ×G1 → Z
∗
q .

4. The public key is PK = (G1, G2, e, P, Ppub, l, H1, H2, H3) and the root secret key is

SNε = αH1(ε, Ppub).

EFS.UPD: It takes as input the tree public key PK, the time period i and the secret key

SKi = ST-SK. Let w be the node corresponding to i. In general, for w = w1 · · ·wn, the se-

cret key of the node w consists of n+1 group elements, Sw = (Rw|1 , Rw|2 , · · · , Rw|n−1
, Rw, SNw).

It first pops the secret node key Sw off the stack ST-SK and then updates a secret key

respect to the position of node w in tree as follows.

A New Forward Secure Signature Scheme 9

1. If w is an internal node, then chooses random different ρw0, ρw1 ∈ Z
∗
q , and computes

Rw0 = ρw0P , Rw1 = ρw1P , SNw0 = SNw + hw0ρw0H1(ε, Ppub) and SNw1 = SNw +

hw1ρw1H1(ε, Ppub) where hw0 = H3(w0, Rw0) and hw1 = H3(w1, Rw1). Then pushes

Sw1 = (Rw|1 , · · · , Rw|n−1
, Rw, Rw1, SNw1) and Sw0 = (Rw|1 , · · · , Rw|n−1

, Rw, Rw0, SNw0)

in order onto the stack, and erases Sw.

2. If w is a leaf, then only erases Sw.

EFS.SIGN: It takes as input the time period i, the secret key SKi = ST-SK and a message

M . The signer pops the top in the stack ST-SK and uses it to generate a signature. Let

w = w1 . . . wn. Then the signer selects r ∈ Z
∗
q and computes U = rP , PM = H2(M, i, U)

and FS = SNw + rPM . The signer outputs a signature 〈i, σ = (U, FS)〉 and Rw|m where

1 ≤ m ≤ n.

EFS.VRFY: Let w = w1 . . . wn. When PM = H2(M, i, U) and hw|m = H3(w|m, Rw|m) for

1 ≤ m ≤ n, if

e(P, FS) = e(Ppub +
n∑

m=1

hw|mRw|m , H1(ε, Ppub)) · e(U, PM)

then, confirms that 〈i, σ = (U, FS)〉 is a valid signature of 〈M, i〉. Completeness can be

checked easily as follows.

e(Ppub+
n∑

m=1

hw|mRw|m , H1(ε, Ppub)) · e(U, PM)

= e(P, (α +
n∑

m=1

hw|mρw|m)H1(ε, Ppub)) · e(P, rPM))

= e(P, (α +
n∑

m=1

hw|mρw|m)H1(ε, Ppub) + rPM)) = e(P, FS).

4.1 Security proof

The following theorem shows that the security of EFS.PKS depends on the hardness of the

CDH problem on G1.

Theorem 2. If the group G1 generated by EFS.GEN(K, l) is (t′, ε′)-GDH group, then EFS.PKS

is (t, qS , qH2 , ε)-forward secure, for every (t, ε) such that

t ≤ t′ − cG1(qH2 + 3qS + T l + 4(T − 1) + 1) and ε ≥ N · ε′ +
(qH2 − 1) · qS

q
.

As the same method as [6], each hash function H1 and H3 can be replaced by 1-wise and

(l+1)-wise independent hash functions in function family H1 and H3, respectively. To achieve

chosen message security, however, H2 needs to remain a random oracle. We will prove the

security of our scheme paying due regard to such factors.

10 B.G. Kang et al.

Proof. The proof of this theorem uses ideas from [3, 1] and [5]. Let A be an algorithm

(t, qS , qH2 , ε)-attacking EFS.PKS. Then we will construct a new PPT adversary B which at-

tempts to solve the CDH problem with respect to IG with probability ≥ ε′ running at most

t′ time. The new algorithm B is given a challenge (P, aP, bP) and the goal of B is to compute

abP . For that purpose, B runs A as the subroutine.

B selects a total time period N and guesses the time period T where 0 ≤ T ≤ N − 1

at which A will ask the breakin query. Let wT = w∗
1w

∗
2 · · ·w

∗
s be a bit string of the node

corresponding to the time period T . For preparing key exposure, B chooses rwT , hwT and

rwT |̄i
, hwT |̄i

at random in Z
∗
q where 1 ≤ i ≤ s and w∗

i = 0. Afterwards, B randomly samples

hash function H1 and H3 from a 1-wise H1 and (l + 1)-wise H3 independent hash families,

respectively, with the following constraints for 1 ≤ i ≤ s and w∗
i = 0.

H1(ε, aP) = bP = I,

H3(w
T |̄i, RwT |̄i

) = hwT |̄i
where RwT |̄i

= 1/hwT |̄i
(rwT |̄i

P − aP),

H3(w
T , RwT) = hwT where RwT = 1/hwT (rwT P − aP)

These result in generating the node secrets contained in the secret key SKT . B gives PK =

(G1, G2, e, P, Q = aP, l, H1, H2, H3) and N to A as system parameters. B simulates hash

queries, signing queries and breakin query from A. B maintains a H2-table and a signing

query table to answer the queries from A.

B initializes j = 0. A first gets access to an oracle for generating signatures for SK0. As

we noted in the formal security model, there is no reason that the chosen message attack

for the base signing key SK0 is not allowed. To simplify the proof concerning the formal

security model, we assume that A outputs d = 0 after the chosen message attack for period

0 without loss of generality. As long as neither d = breakin nor j = N , B moves into the next

chosen message phase providing A an oracle for signing under the next key and updating

keys preparing for breakin phase. We put key updates into chosen message attack phase for

convenience of proof. Let wj = w1 · · ·wt be the node corresponding to the time period j.

– Chosen Message Attack Phase:

Key updates. Note that this procedure is done to by B without any requests of A. It

is just preparing answers for queries of next time periods and breakin query. Given a

current time period j, B simulates the key update algorithm as follows.

1. If wj is leaf node or j = T , B skips key update procedure.

2. If wj0 is wT , then for hwj0, hwj1, rwj0, rwj1 ∈ Z
∗
q

Rwj0 = 1/hwj0(rwj0P −Q), Rwj1 = 1/hwj1(rwj1P −Q)

H3(w
j0, Rwj0) = hwj0, H3(w

j1, Rwj1) = hwj1.

have already defined during choosing H3 in H3.

3. If wj0 6= wT is a prefix of wT , then B computes Rwj0 = ρwj0P for randomly chosen

ρwj0, hwj0 ∈ Z
∗
q and sets H3(w

j0, Rwj0) = hwj0. For rwj1, hwj1 ∈ Z
∗
q ,

Rwj1 = 1/hwj1(rwj1P −Q), H3(w
j1, Rwj1) = hwj1

have already defined during choosing H3 in H3.

A New Forward Secure Signature Scheme 11

4. Otherwise, B randomly chooses ρwj0, ρwj1, hwj0, hwj1P ∈ Z
∗
q , computes

Rwj0 = ρwj0P, Rwj1 = ρwj0P

H3(w
j0, Rwj0) = hwj0, H3(w

j0, Rwj0) = hwj0.

Note again that these result in generating the secret key SKT .

H2 queries. At any time A can query the random oracle H2. To respond to these queries,

B maintains H2-table as explained below. This is initially empty. When A queries the

oracle H2 at a point 〈M, j, U〉, B responds as follows:
1. If 〈M, j, U〉 already appears on the H2-table in a tuple 〈M, j, U, h, λ, ϕ〉 then B

responds with H2(M, j, U) = h ∈ G1.

2. Otherwise, B picks λ ∈ Z
∗
q at random and sets h ← λP, U ← U and ϕ ← ∗.

B adds the tuple 〈M, j, U, h, λ, ϕ〉 to the H2-table and responds to A by setting

H2(M, j, U) = h ∈ G1.
Signature queries. Let 〈M, j〉 be a signature query issued by A. B responds to its query

as follows:

If j 6= T
1. B picks λ, ϕ ∈ Zq at random and computes h ← λP − (1/ϕ)I and U ← ϕQ. If

H2(M, j, U) is defined then B aborts.

2. B adds the tuple 〈M, j, U, h, λ, ϕ〉 to the H2-table.

3. Using hwj |i and ρwj |i (1 ≤ i ≤ t) generated and stored via key update algo-

rithm, computes FS =
∑t

i=1 hwj |iρwj |iI +ϕλQ. Then B gives 〈j, σ = (U, FS)〉 and

Rwj |i (1 ≤ i ≤ t) to A. Since

FS = aI +
t∑

i=1

hwj |iρwj |iI + ϕaH2(M, j, U)

= aI +
t∑

i=1

hwj |iρwj |iI + ϕa(λP − (1/ϕ)I) =
t∑

i=1

hwj |iρwj |iI + ϕλQ,

B can generate the signature of 〈M, j, U〉 though it cannot compute aI = abP .
If j = T
1. B picks λ, ϕ ∈ Z

∗
q at random and computes h← λP and U ← ϕQ. Adds the tuple

〈M, T, U, h, λ, ϕ〉 to the H2-table.

2. B gives 〈T, σ = (U, FS)〉 and RwT |i (1 ≤ i ≤ s) to A where FS = SwT + λU .

– Breakin Phase:

When A outputs a decision value d, if neither j < T and d = 0, nor j = T and d = breakin

occurs, then B reports failure and terminates. If j < T and d = 0, then increments j and

A moves into the chosen message attack phase for period j. When j = T and d = breakin,

B returns the current secret key SKT to A. This can be easily derived from simulated

key update algorithm. B can generate the node secret keys SwT |̄i
for right siblings of the

nodes wT |i on the path from the root to wT using hwT |m , ρwT |m for 1 ≤ m ≤ i − 1 and

rwT |̄i
as follows.

SwT |̄i
= rwT |̄i

I +
i−1∑

m=1

hwT |mρwT |mI.

12 B.G. Kang et al.

Completeness can be easily checked because for 1 ≤ i ≤ s,

SwT |̄i
= aI +

i−1∑

m=1

hwT |mρwT |mI + hwT |̄i
ρwT |̄i

I

= aI +

i−1∑

m=1

hwT |mρwT |mI + hwT |̄i
· 1/hwT |̄i

(rwT |̄i
− a)I

= rwT |̄i
I +

i−1∑

m=1

hwT |mρwT |mI.

B returns the secret key of the time period T , SKT = (SwT |1̄
, SwT |2̄

, · · · , SwT |s̄ , SwT),

where wT = w1 . . . ws and SwT |k̄
= Null if the last bit of wT |k is 1 as the response of

breakin query to A. Note that B already computed SwT during signature query phase for

period T .

– Output forgery phase:

After above attack process, A eventually outputs a signature 〈i, σ = (xP, FS)〉 of the

message/period pair 〈M, i〉 for some 1 ≤ i < T . Let wi = w1w2 · · ·wn be the node

corresponding to the time period i. If this signature is valid,

FS = abP +
n∑

m=1

hwi|mρwi|mI + xH2(M, i, xP).

If it is not, B reports failure and terminates. The probability to output forgery without

a direct H2 query about 〈M, i, xP 〉 is negligible, so B can find the tuple 〈M, i, xP, h, λ, ∗〉

on the H2-table and computes abP = FS −
∑n

m=1 hwi|mρwi|mI − λU using hwi|m , ρwi|m

stored during key update procedure and λ. This completes the description of algorithm

B.

Analysis Now, we analyze the three events need for B to succeed.

Event E1. B does not abort as a result of any of A’s signature queries.

Event E2. A outputs d = breakin and j = T .

Event E3. A generates a valid signature forgery 〈i, σ〉 of the message 〈M, i〉 for some 0 ≤

i < T .

The success probability ε′ is at least (ε − Pr[E1])/N where Pr[E1] is the probability of B’s

abortion arising during signature queries.

Claim 1: Pr[E1] is at most
(qH2

−1)·qS

q
.

Proof. qH2 − qs is the number of H2 queries which does not include queries made by the

signing and verifying algorithms of B. When the k-th signature query is issued, in the worst

case at qH2 − qs + (k − 1) of H2 queries are previously defined. Hence the probability of B

aborting on the k-th signature query (k ∈ {1, 2, · · · qs}) is at most (qH2−qs +(k−1))/q where

q is the size of the domain over which U is chosen, actually ϕ. Note that the random choice

of ϕ makes U random. Finally, the total abortion probability is obtained after summing the

above over k and it is at most (qH2 − 1) · qS/q since qH2 ≥ 1.

A New Forward Secure Signature Scheme 13

Claim 2: Pr[E2] ≥ 1/N .

Proof. SinceA cannot distinguish the simulation given by B and Experiment 1, the probability

that T fixed by B equals to the time which breakin attack occurs by A is at least 1/N .

Claim 3: Pr[E3] ≥ ε.

Proof. A will produce a valid signature forgery with probability at least ε.

Using the bounds from the claims above, we can see that B produces the correct answer

with probability at least (ε − (qH2 − 1) · qS/q)/N ≥ ε′ as required. B’s running time is the

same as A’s running time plus the time of followings. Denote cG1 the running time of a

scalar multiplication in G1. In the following analysis, we don’t consider addition in G1 and

multiplication in Z
∗
q .

1. H2-query. One scalar multiplication for the direct H2 query and three for the indirect H2

query arising from signature queries are required. Hence, the expected running time is

cG1(qH2 − qS) + 3qS) = cG1(qH2 + 2qS).

2. Signature query and Key update.

(a) For each period less than T , at least l scalar multiplications are required to compute∑t
i=1 hwj |iρwj |iI. So the running time is cG1T l.

(b) Signature is generated by adding ϕλQ to
∑t

i=1 hwj |iρwj |iI. So the running time is

cG1qS for generating qS signatures.

(c) For one period, at most 4 scalar multiplications are required for key updating. So

the running time for T periods is cG14(T − 1). Note that T − 1 is the number of key

updates.

3. For the response to breakin query, B computes SwT |̄i
by adding rwT |̄i

I to
∑i−1

m=1 hwT |mρwT |mI.

Thus, generating SwT |̄i
for 1 ≤ i ≤ s requires at most cG1 l.

4. To solve the CDH problem, B computes λU . So the running time is cG1 .

Hence, the total running time is at most

t + cG1(qH2 + 3qS + T l + 4(T − 1) + 1)

as required. This completes the proof of Theorem.

References

1. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. Advances in Cryptology -

ASIACRYPT 2000, T. Okamoto (Ed.), Lecture Notes in Comput. Sci. 1976, Springer-Verlag, pp. 116–129

(2000).

2. R. Anderson. Two remarks on public key cryptology. Proc. of CCS’97, ACM, 1997.

3. M. Bellare and S.K. Miner. A forward-secure digital signature scheme. Advances in Cryptology -

CRYPTO’99, M. Wiener (Ed.), Lecture Notes in Comput. Sci. 1666, Springer-Verlag, pp. 431–448 (1999).

4. M. Bellare and A. Palacio. Protecting against key exposure: strongly key-insulated encryption with optimal

threshold. Cryptology ePrint Archive, Report 2002/64 (2002).

5. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. Advances in Cryptology -

ASIACRYPT 2001, C. Boyd (Ed.), Lecture Notes in Comput. Sci. 2248, Springer-Verlag, pp. 514-532

(2001).

14 B.G. Kang et al.

6. R. Canetti, S. Halevi and J. Katz. A forward-secure public-key encryption scheme. Advances in Cryptology

- EUROCRYPT 2003, E. Biham (Ed.), Lecture Notes in Comput. Sci. 2656, Springer-Verlag, pp. 255–271

(2003).

7. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung. Intrusion-resilient public-key encryption. Topics

in Cryptology - CT-RSA 2003, M. Joye (Ed.), Lecture Notes in Comput. Sci. 2612, Springer-Verlag, pp.

19–32 (2003).

8. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung. A generic construction for intrusion-resilient

public-key encryption. Topics in Cryptology - CT-RSA 2004, T. Okamoto (Ed.), Lecture Notes in Comput.

Sci. 2964, Springer-Verlag, pp. 81–98 (2004).

9. Y. Dodis, J. Katz, S. Xu and M. Yung. Key-insulated public key cryptosystems. Advances in Cryptology

- EUROCRYPT 2002, L.R. Knudsen (Ed.), Lecture Notes in Comput. Sci. 2332, Springer-Verlag, pp.

65–82 (2002).

10. Y. Dodis, J. Katz, S. Xu and M. Yung. Strong key-insulated signature scheme. Public Key Cryptography

- PKC 2003, Y.G. Desmedt (Ed.), Lecture Notes in Comput. Sci. 2567, Springer-Verlag, pp. 130–144

(2003).

11. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography, Advances in Cryptology - ASIACRYPT

2002, Y. Zheng (Ed.), Lecture Notes in Comput. Sci. 2501, Springer-Verlag, pp. 548–566 (2002).

12. C.G. Günther. An identity-based key-exchange protocol. Advances in Cryptology - EUROCRYPT’89, J.-

J. Quisquater and J. Vandewalle (Eds.), Lecture Notes in Comput. Sci. 434, Springer-Verlag, pp. 29–37

(1990).

13. F. Hu, C.-H. Wu and J.D. Irwin. A new forward secure signature scheme using bilinear maps. Cryptology

ePrint Archive, Report 2003/188, 2003.

14. G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and verifying. Advances in Cryptol-

ogy - CRYPTO 2001, J. Kilian (Ed.), Lecture Notes in Comput. Sci. 2139, Springer-Verlag, pp. 332–354

(2001).

15. G. Itkis and L. Reyzin. SiBIR: Signer-base intrusion-resilient signatures. Advances in Cryptology -

CRYPTO 2002, M. Yung (Ed.), Lecture Notes in Comput. Sci. 2442, Springer-Verlag, pp. 499–514 (2002).

16. J. Katz. A forward-secure public-key encryption scheme. Cryptology ePrint Archive, Report 2002/060. It

is an order version of the paper [6].

17. J. Katz. Binary tree encryption: Constructions and applications. Information Security and Cryptology -

ICISC 2003, J.I. Lim and D.H. Lee (Eds.), Lecture Notes in Comput. Sci., Springer-Verlag, to appear.

18. H. Krawczyk. Simple forward-secure signatures from any signature scheme. Proc. of CCS’99, pp. 108–115,

2000.

19. T. Malkin, D. Micciancio and S.K. Miner. Efficient generic forward-secure signatures with an unbounded

number of time periods. Advances in Cryptology - EUROCRYPT 2002, L.R. Knudsen (Ed.), Lecture Notes

in Comput. Sci. 2332, Springer-Verlag, pp. 400–417 (2002).

20. T. Malkin, S. Obana and M. Yung. The hiererchy of key evolving signatures and a characterization of proxy

signatures. Advances in Cryptology - EUROCRYPT 2004, C. Cachin (Ed.), Lecture Notes in Comput. Sci.

3027, Springer-Verlag, pp. 306–322 (2004).

21. D.H. Yum and P.J. Lee. Efficient key updating signature schemes based on IBS. Cryptography and Coding

2003, K.G. Paterson (Ed.), Lecture Notes in Comput. Sci. 2898, Springer-Verlag, pp. 167–182 (2003).

