
Optimal Updating of Ideal Threshold Schemes

S.G. Barwick1, Wen-Ai Jackson1∗, Keith M. Martin2

and Christine M. O’Keefe1†

1Department of Pure Mathematics
University of Adelaide, Adelaide 5005, Australia

2Information Security Group, Royal Holloway
University of London, Egham, Surrey TW20 0EX, U.K.

Abstract

We consider the problem of changing the parameters of an established ideal
(k, n)-threshold scheme without the use of secure channels. We identify the pa-
rameters (k′, n′) to which such a scheme can be updated by means of a broadcast
message and then prove a lower bound on the size of the relevant broadcast. The
tightness of this bound is demonstrated by describing an optimal procedure for
updating the parameters of an ideal scheme.

Key words: Cryptology, threshold schemes, dynamic secret sharing, distributed
cryptosystems.

1 Introduction

A (k, n)-threshold scheme [1, 2] is a system for sharing a piece of secret information,
known as the secret, amongst a set P of n participants in such a way that the secret can
be reconstructed from any k shares, where a share is a private piece of information securely
given by a trusted dealer to each participant on creation of the threshold scheme. An ideal
(k, n)-threshold scheme [3] has the desirable properties that (i) knowledge of k− 1 shares
contributes no information to knowledge of the secret and (ii) each participant’s share has
minimal size (this is equal to the size of the secret). Most well-studied (k, n)-threshold
schemes, such as the Shamir polynomial threshold schemes [2], are ideal.
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Threshold schemes are useful cryptographic primitives with many different applica-
tions. Examples include access control, protection of a cryptographic key, group signature
protocols and controlled key recovery. All these applications have in common the need to
distribute trust in a secret parameter amongst a number of different entities.

In this paper we are interested in the situation that occurs if the parameters of a
(k, n)-threshold scheme need to change after the participants have received their initial
shares. We refer to such a process as an update. Participants might need to be added or
removed from the scheme (involving a change in n) or the security policy relating to the
threshold scheme might need to be strengthened or slackened (involving a change in k),
or indeed any combination of these changes. We make a number of assumptions about
the method by which the update can take place. This clarifies the model in which we are
working and distinguishes our approach from previous work:

1. The only information held by a participant at the time of update is a share in an
ideal (k, n)-threshold scheme.

2. The dealer no longer has access to secure channels in which to transfer private
information to the participants.

3. Participants do not have access to any secure channels to communicate amongst
themselves.

The first assumption differentiates this approach from the techniques used in, for example,
[4, 5, 6], where it is assumed that the dealer anticipates the need for future updates on
initialisation of the threshold scheme and issues each participant with additional share
information in order to facilitate them. The second assumption recognises the fact that
there is a significant cost involved in the use of secure communications channels. This
assumption rules out the “trivial” solution in which the dealer simply uses secure channels
to issues “new” shares to all the participants involved in the new threshold scheme. The
last assumption rules out redistribution techniques such as those discussed in [7].

As a result of the latter two assumptions, the only technique that the dealer can
employ at the time of update is to use public channels to broadcast information that
enables participants to determine shares in the new threshold scheme. Such broadcast
information must be assumed to be readable by anyone, including non-participants in the
threshold scheme. Although broadcasting is not as expensive a communication technique
as using a secure channel, there are nonetheless environments where bandwidth is at a
premium and minimising broadcasts is highly desirable.

In this paper we will first determine to which threshold parameters it is possible
to update an ideal (k, n)-threshold scheme. We then establish the minimum size of the
broadcast message necessary to conduct the update. Finally we provide an optimal update
technique that uses this minimal broadcast.

2 Threshold schemes

We first present a summary of the background necessary for understanding the information
theoretic model of a threshold scheme first proposed in [8]. This is the most natural
model within which to prove bounds on information (in the particular case of this paper,
broadcast) size. A more thorough introduction to entropy can be found in [9].

2



2.1 Information theory background

Let A and B be two finite sets. To simplify the set notation, we will denote A ∪ B
by AB and simplify a single element set {x} to x. Let X be a finite set and let 〈X〉
be a finite collection of tuples π that are indexed by the elements of X. Let ρ be a
probability distribution on 〈X〉. For π = (πx)x∈X ∈ 〈X〉 and A ⊆ X, let πA = (πx)x∈A

and let 〈A〉 = {πA|π ∈ X}. Let ρA be the marginal distribution on A, that is, ρA is the
probability distribution on 〈A〉 such that for α ∈ 〈A〉 we have ρA(α) =

∑
{π∈〈X〉|πA=α} ρ(π).

Let [A]ρ = {α ∈ 〈A〉 | ρA(α) > 0}. We use the notation (ρ, X) to denote the set of tuples
[X]ρ indexed by X with the associated probability distribution ρ.

The entropy Hρ(A) of ρA is defined to be Hρ(A) = −
∑

α∈[A]ρ

ρA(α) log ρA(α). We remark

that the base of the logarithm is not specified here, but can be chosen to be any convenient
value. Where there is no ambiguity, we will write [A] for [A]ρ and H for Hρ. Let B ⊆ X
and let β ∈ [B]. For α ∈ [A], denote the conditional probability A|B by

ρA|B(α, β) =

∑
{π∈〈X〉|πA=α,πB=β} ρ(π)

ρB(β)
.

We may write ρA|B=β for ρA|B(α, β), so we can regard ρA|B=β as a probability distribution
on [A]ρ. The conditional entropy H(A|B = β) of ρA|B=β is defined to be

H(A|B = β) = −
∑

α∈[A]

ρA|B(α, β) log ρA|B(α, β).

The conditional entropy H(A|B) of ρA given ρB is defined to be

H(A|B) =
∑

β∈[B]

H(A|B = β)ρB(β)

and it can be shown that H(A|B) = H(AB)−H(B). For C ⊆ X, the mutual information
I(A; B |C) of ρA and ρB given ρC is defined to be

I(A; B |C) = H(A|C)−H(A|BC) = I(B; A |C).

If C = ∅, we write I(A; B) for I(A; B | ∅). The following inequalities can be shown:

I(A; B |C) ≥ 0,

H(A) ≥ H(A|B) ≥ 0.

2.2 Basic definition and examples

Let P = {p1, . . . , pn} be a set of participants, let s be the secret variable, and let k be
an integer with 1 ≤ k ≤ n. A (k, n)-threshold scheme M = (P , s, ρ) is a probability
distribution ρ defined on a collection of tuples 〈sP〉, each of which is indexed by the
elements of sP , such that for A ⊆ P,

H(s |A) =
{

0 if |A| ≥ k,
H(s) if |A| < k.

Note that threshold schemes defined as above are often referred to as being perfect. We
call the elements of [sP ] distribution rules. We call H(pi) the size of the share associated
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with pi, and H(s) the size of the secret. It can be seen (for example [10]) that in any
threshold scheme, H(pi) ≥ H(s). If H(pi) = H(s) for all such pi then we say that the
threshold scheme is ideal.

In order to implement a threshold scheme, the collection Ω = [sP ] of distribution rules
is made public. The dealer privately selects a distribution rule π = (xs, x1, . . . , xn) ∈ Ω
with probability ρ(π), then securely distributes xi as a share to pi, for i = 1, . . . , n. The
element xs is the secret, and is kept private. Ideal (k, n)-threshold schemes can be found
for all integers 1 ≤ k ≤ n [1, 2]. We give two examples:

Shamir threshold schemes[2]. Let P = {p1, . . . , pn}, let p be a prime and let Zp

be the field of integers modulo p. Suppose k is an integer with 2 ≤ k ≤ n ≤ p. A
dealer generates distinct, non-zero elements x1, . . . , xn of Zp and publishes them. The
dealer then secretly chooses elements a0, a1, . . . , ak−1 ∈ Zp and forms the polynomial
a(x) = a0 + a1x + a2x

2 + . . . + ak−1x
k−1. For i = 1, . . . , n, the share a(xi) is issued to pi

and the value of the secret is a0. It is straightforward to verify that any k participants can
determine a0 by polynomial interpolation, but any k−1 participants obtain no information
about the value of a0, additional to the fact that it is in Zp. There are qk distribution rules
(f(0), f(x1), . . . , f(xn)), corresponding to the qk values of the k-tuple (a0, a1, . . . , ak−1).
The probability distribution ρ is usually taken to be the uniform probability distribution
(so each distribution rule is equally likely to occur).

Geometric schemes. An equivalent way to construct an ideal (k, n)-threshold scheme
uses a geometric construction in Θ = PG(k−1, q) (for a background in projective geometry
see [11]). Let σ: sP → Θ be a mapping that assigns to each participant pi as share a point
pσ

i on a normal rational curve in Σ and assigns the secret s to be a further point sσ on
this curve. If k participants pool their shares, these shares span Σ and so they can obtain
the secret. If k− 1 participants pool their shares, these shares span a (k− 2)-dimensional
subspace which contains no further point of the normal rational curve, so in particular
does not contain s. They thus have no information about the secret s = sσ. To see how to
extract the distribution rules of an ideal (k, n)-threshold scheme from this configuration
of points see for example [10].

3 Updating an ideal threshold scheme

We assume now that a dealer has distributed shares of an ideal (k, n)-threshold scheme
M = (P , s, ρ) to participants P . We now investigate how to update M to a (k′, n′)-
threshold scheme under the constraints described in Section 1.

The assumptions that there are no secure channels available immediately rule out the
addition of new participants to the scheme since it is not possible for any new participant
to obtain private information by this technique. For the rest of the paper we thus assume
that n′ ≤ n and that the resulting new threshold scheme is defined on a subset P ′ ⊆ P
of participants, with the secret in this new scheme being the same as that of the original.

A (k, n)-threshold scheme M = (P , s, ρ) can be updated to (k′, n′) if for every n′-subset
P ′ ⊆ P there exists a broadcast variable b (taking values from a set [b]) and a probability
distribution τ defined on a collection 〈sPb〉 of tuples, each indexed by the elements of
sPb, such that:

(A) τsP = ρ.
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(B) for each β ∈ [b], Mβ = (P , s, τβ) is effectively an ideal (k′, n′)-threshold scheme on
P ′ with Hτβ(s) = Hρ(s), where τβ = τsP|b=β; in other words, for each A ⊆ P we
have

Hτ (s |Ab) =
{

0 if |A ∩ P ′| ≥ k′,
Hτ (s) if |A ∩ P ′| < k′.

Property (A) says that for any A ⊆ sP , Hρ(A) = Hτ (A). Since τ is thus an extension of
ρ from 〈sP〉 to 〈sPb〉, to simplify we will abuse notation (slightly!) and generally write
H for both Hρ and Hτ throughout the rest of the paper.

3.1 Parameters to which an ideal scheme can be updated

We now examine the parameters (k′, n′) to which it is possible to update an ideal (k, n)-
threshold scheme.

Lemma 1 Let M = (P , s, ρ) be an ideal (k, n)-threshold scheme that can be updated to
(k′, n′). Let b be the broadcast variable associated with P ′. Then for each p ∈ P ′ and
β ∈ [b] we have Hτβ(p) = H(p).

Proof: Since M and Mβ are both ideal, we have Hτβ(p) = Hτβ(s) = H(s) = H(p). 2

Theorem 2 Let M = (P , s, ρ) be an ideal (k, n)-threshold scheme that can be updated to
(k′, n′). Then k − k′ ≥ n− n′.

Proof: Let b be the broadcast associated with P ′. Let A ⊆ P ′ be a (k′− 1)–set and let
X = P \P ′. As |AX ∩ P ′| = k′ − 1, we have

Hτβ(s |AX) = Hτβ(s) > 0. (1)

Suppose H(s|AX) = 0. So 0 = H(s |AXb) =
∑

β∈[b] τb(β)Hτβ(s |AX). As Hτβ(s |AX) ≥
0 it follows that Hτβ(s |AX) = 0, contradicting (1). Thus H(s |AX) > 0, so |AX| ≤ k−1.
It follows that (k′ − 1) + (n− n′) ≤ k − 1, and hence k − k′ ≥ n− n′. 2

Note that an immediate consequence of Theorem 2 is that, since n′ ≤ n, we have
k′ ≤ k. It is thus not possible to update an ideal (k, n)-threshold scheme to one with an
increased threshold.

3.2 Determining the minimum broadcast

We now prove the main result of this paper by determining a lower bound on the size of
broadcast message necessary to update an ideal (k, n)-threshold scheme. First we recall an
important fact concerning ideal threshold schemes that has been proved in, for example,
[3, 12].

Lemma 3 Let M = (P , s, ρ) be an ideal (k, n)-threshold scheme. Then for any X ⊆ sP
such that |X| ≤ k − 1, the variables in X are independent.
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Theorem 4 Let M = (P , s, ρ) be an ideal (k, n)-threshold scheme that can be updated to
(k′, n′). Let b be the broadcast variable associated with P ′ ⊆ P. Then

H(b) ≥ min(k − k′, n′ − k′ + 1)H(s).

Proof: By Theorem 2, k − k′ ≥ n − n′ ≥ 0. If k = k′ then n′ = n and so the result is
trivial. We thus assume that k′ < k.

We first prove the theorem in the case k′ = 1. Let p ∈ P ′ and β ∈ [b]. As k′ = 1, by
definition we have

H(s | pb) = 0 and H(s | b) = H(s). (2)

Now

0 ≤ H(p | bs) = H(pbs)−H(bs)

= H(s | pb) + H(pb)−H(s | b)−H(b)

= H(pb)−H(s)−H(b) by (2)

= H(p | b)−H(s)

≤ H(p)−H(s) = 0.

Thus equality holds throughout and so

H(p | bs) = 0 for all p ∈ P ′. (3)

However,

H(b) = H(b | s) + I(b; s) = H(b | s) + I(s; b)

= H(b | s) by (2)

= H(b | p1 . . . pk−1s) + I(b; p1 . . . pk−1 | s),

where p1, . . . , pk−1 are distinct elements of P ′ (if n′ ≥ k−1), or are the elements p1, . . . , pn′

of P ′ plus pn′+1, . . . , pk−1 from P \P ′ (if n′ < k − 1). Thus

H(b) ≥ I(b; p1 . . . pk−1 | s) =
k−1∑
i=1

I(b; pi | p1 . . . pi−1s)

=
k−1∑
i=1

(H(pi | p1 . . . pi−1s)−H(pi | p1 . . . pi−1bs))

= (k − 1)H(s)−
k−1∑
i=1

H(pi | p1 . . . pi−1bs) by Lemma 3.

Write ri = H(pi | p1 . . . pi−1bs) for 1 ≤ i ≤ k − 1. If n′ ≥ k − 1 then pi ∈ P ′ for all
i, so by (3) we have ri = 0 for all i, 1 ≤ i ≤ k − 1. Hence H(b) ≥ (k − 1)H(s). If
n′ < k − 1 then ri = 0 for 1 ≤ i ≤ n′ and ri ≤ H(s) for n′ < i ≤ k − 1. Hence
H(b) ≥ (k − 1)H(s)− (k − 1− n′)H(s) = n′H(s). Thus,

H(b) ≥ min(k − 1, n′)H(s), (4)

proving the theorem for the case k′ = 1.
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Suppose now that k′ > 1. Let K ⊆ P ′ be a (k′ − 1)–set. Let κ ∈ [K] and Mκ =
(P \K, s, ρκ), where ρκ = ρ(sP \K)|K=κ. We show that Mκ is a (k− (k′− 1), n− (k′− 1))–
threshold scheme that can be updated to (1, n′ − (k′ − 1)).

Let A ⊆ P \K. By definition, H(s |A(K = κ)) = 0 if |A| ≥ k − (k′ − 1), and
H(s |A(K = κ)) = H(s) if |A| < k − (k′ − 1). Thus Hρκ(s |A) = 0 if |A| ≥ k − (k′ − 1),
and Hρκ(s |A) = Hρκ(s) if |A| < k− (k′−1). So Mκ is indeed a (k− (k′−1), n− (k′−1))-
threshold scheme.

Let b be the broadcast variable used to update M to Mβ = (P , s, τβ), effectively a
(k′, n′)–threshold scheme on P ′, and τ be the associated probability distribution defined
on 〈sPb〉. Let τκ = τ(sPb \K)|K=κ. Clearly τκ

sP \K = ρκ, so (A) of the definition is satisfied.

Let β ∈ [b] and τκβ = τκ
(sP \K)|b=β. We show that Mκβ = (P \K, s, τκβ) is effectively

an ideal (1, n′ − (k′ − 1))–threshold scheme on P ′ \K. Let A ⊆ P \K. First note that
Hτκβ(s) = Hτβ(s |K = κ) = Hρκ(s) = H(s), as |K| < k′. By definition of τ ,

Hτ (s |AKb) =
{

0 if |A ∩ P ′| ≥ 1
H(s) if |A ∩ P ′| < 1.

So,

Hτκ(s |Ab) = Hτβ(s |Ab(K = κ)) =
{

0 if |A ∩ P ′| ≥ 1
H(s) if |A ∩ P ′| < 1

,

satisfying part (B). Thus we have shown that Mκ is an ideal (k − (k′ − 1), n− (k′ − 1))-
threshold scheme that can be updated to (1, n′ − (k′ − 1)). Applying (4), we have

Hρκ(b) ≥ min(k − (k′ − 1)− 1, n′ − (k′ − 1))Hρκ(s)

= min(k − k′, n′ − k′ + 1)H(s).

Since
H(b) ≥ H(b |K) =

∑
κ∈[K]

ρK(κ)Hρκ(b),

the result follows. 2

3.3 An optimal update technique

To show that the bound in Theorem 4 is tight, we give an example of an update tech-
nique based on an ideal geometric scheme (see Section 2.2) that attains the bound.
Let Θ = PG(k − 1, q) and σ: sP → Θ be an ideal (k, n)-threshold scheme defined on
P = {p1, . . . , pn}. Suppose we want to update σ to a (k′, n′)-threshold scheme defined on
P ′ = {p1, . . . , pn′}, where k − k′ ≥ n− n′.

The dealer generates t = (k − k′) − (n − n′) points f1, . . . , ft on the same normal
rational curve as σ. These correspond to shares of t ‘imaginary’ participants. The dealer
is able to generate these shares provided q + 1 > n + t = k − k′ + n′ (as q is generally
large compared to n, this is not restrictive). If the dealer broadcasts a message consisting
of the shares b = {pσ

n′+1, . . . , p
σ
n, f1, . . . , ft} then the scheme effectively becomes a (k′, n′)-

threshold scheme on P ′, since any k′ participants in P ′ can pool their k′ shares with
the n − n′ + t = k − k′ broadcast shares to obtain k shares, which can then be used to
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determine the secret s in the original (k, n)-threshold scheme. By a similar argument we
can see that any A ⊆ P such that |A ∩ P ′| < k′ learn nothing about s. This broadcast
has size H(b) = (k − k′)H(s).

We can see from Theorem 4 that if n′ < k − 1 then we should be able to do better
than this, and indeed we can. Instead of broadcasting the k − k′ shares listed above, the
dealer broadcasts the subspace Π = Σ ∩ Σ′, where

Σ = 〈sσ, pσ
1 , . . . , p

σ
n′〉 and Σ′ = 〈pσ

n′+1, . . . , p
σ
n, f1, . . . , ft〉.

Note that dim Σ = min{n′, k−1} = n′ (as n′ < k−1), dim Σ′ = n−n′+ t−1 = k−k′−1
and 〈Σ, Σ′〉 = Θ. Thus Π = Σ∩Σ′ has dimension n′ + (k− k′− 1)− (k− 1) = n′− k′ and
so H(b) = n′ − k′ + 1.

Note that Π contains none of sσ, pσ
1 , . . . p

σ
n′ , as by definition Σ′ cannot contain any

further points of the normal rational curve. Suppose k′ participants X ⊆ P ′ pool their
shares. Note that < Xσ, Σ′ >= Θ and so Xσ ∩ Σ′ = ∅. Thus Xσ ∩ Π = ∅. So dim <
Xσ, Π >= dim Xσ+dim Π−dim Xσ∩Π = (k′−1)+(n′−k′)−(−1) = n′. As < Xσ, Π >⊆ Σ
and dim Σ = n′, it follows that < Xσ, Π >= Σ. That is, the shares in X together with
the broadcast Π span Σ, which contains s, and so X can obtain the secret.

Now let X ⊆ P ′ be a set of size k′ − 1 and let Y = 〈Xσ, Π, pσ
n′+1, . . . , p

σ
n〉. Let

Z = 〈Xσ, pσ
n′+1, . . . , p

σ
n, f1, . . . , ft〉. Clearly Y ⊆ Z, and Z is the span of (k′ − 1) + (n −

n′)+t = k−1 points of the normal rational curve. By the properties of the rational normal
curve, sσ /∈ Z and thus sσ /∈ Y . Hence the set X ∪ {pn′+1, . . . , pn} cannot determine the
secret s. Thus σ has been updated to (k′, n′).

Note that in the case n′ ≥ k the two techniques result in the same broadcast, since
dim Σ = k − 1, and so Σ = Θ. Thus Π = Σ ∩ Σ′ = Σ′, which was the broadcast used in
the first technique.

4 Closing remarks

We have considered the problem of updating the parameters of an ideal threshold scheme
under the assumption that only broadcast messages can be used to conduct the parameter
changes. We have established the minimum size of broadcast message necessary and
exhibited an update technique for a family of ideal threshold schemes that has this minimal
broadcast size. We make two closing remarks.

Firstly it would be nice to find an interpretation of the optimal construction exhibited
in Section 4 for the more familiar Shamir ideal threshold schemes, based on polynomials.
The Shamir ideal threshold schemes are easily interpreted as geometric schemes, but it is
not always easy to sensibly reverse this interpretation and explain geometric properties
in terms of polynomials. This problem remains open.

Secondly we observe that it is possible to update a (k, n)-threshold scheme to pa-
rameter sets other than those determined by Theorem 2 if the first assumption that the
threshold scheme be ideal is dropped. In [4, 5, 6] schemes were designed explicitly with a
future change of parameters in mind. Even if a change is not anticipated, by dropping the
requirement that the scheme be ideal and permitting larger than necessary shares, it may
be possible to exploit redundant information in the shares to enable a parameter update.
This approach was attempted in [13], but we have not considered it further here as most
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threshold schemes that are not designed to have extended capabilities are implemented
as ideal schemes.
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