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Abstract. We present a fast addition algorithm in the Jacobian of a
genus 3 non-hyperelliptic curve over a field of any characteristic. When
the curve has a rational flex and char(k) > 5, the computational cost
for addition is 148M +15SQ+2I and 165M +20SQ+2I for doubling.
An appendix focuses on the computation of flexes in all characteristics.
For large odd q, we also show that the set of rational points of a non-
hyperelliptic curve of genus 3 can not be an arc.

Introduction

Thanks to the papers [2, 7, 12, 8, 25] of Gaudry, Enge and others, the
only curves considered to be suitable for cryptographic purposes have genus
1, 2 or 3. As a prerequisite to create a discrete logarithm framework in the
Jacobian of such a curve, its group law should be efficiently computable.
Many papers were already devoted to this problem [18, 13, 19, 17, 23]. As
far as the authors know, the only incomplete case was that of genus 3 non-
hyperelliptic curves (there existed fast algorithms for Picard curves and C3,4

curves already, see [9, 3, 5, 6]). Thanks to the algorithm given in this paper
for the addition in the Jacobian of a genus 3 non-hyperelliptic curve, and the
preceding ones on hyperelliptic curves, everyone can now create an efficient
cryptographic system based on any presumably suitable algebraic curve.

The paper begins with a discussion on the general framework where our
algorithm applies (see also the Appendix). In the second part, we describe it
geometrically. In the next part, which is the core of the paper, we write down
an algebraic version of the algorithm. Lastly, we present two applications,
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related to point counting: one to make AGM algorithm complete, and the
other one on simple factors of dimension 3 of Jacobians of modular curves.

1. General framework for the algorithm

Let C be a non-singular curve of genus g over a field k. Let D∞ be an
effective k-rational divisor of degree g. A consequence of Riemann-Roch
theorem is the following representation of divisors :

Fact (Representation of divisors). Let D be a degree 0 divisor of C over k
(i.e. an element of Div0k(C)). Then there exists an effective divisor E over
k of degree g such that E −D∞ ∼ D. Generically, the divisor E is unique.

We now restrict ourselves to the case where C is a genus 3 non-hyperelliptic
curve. Thanks to the canonical embedding, we may assume that C is a
smooth plane quartic (this is example 5.2.1 of [14]). We denote by x, y, z
(or sometimes x1, x2, x3) the chosen coordinates in P2.

We denote by (∗) the following condition : There is a rational line l∞

which crosses C in four (not necessarily distinct, but with multiplicity then)
k-points P∞1 , P∞2 , P∞3 , P∞4 .

In the following, we will choose D∞ to be the divisor P∞1 + P∞2 + P∞3 .
This special case will allow us to find a geometric description of the group
law on the Jacobian of C (see the theorem in the next section). Moreover,
k will denote a finite field Fq (with q = pn for a certain prime p).

Recall that for a quartic, there are 5 possibilities for the intersection
divisor (l∞ · C) = P∞1 + P∞2 + P∞3 + P∞4 :

(1) The four points are pairwise distinct. This is the generic position.
(2) P∞1 = P∞2 , then l∞ is tangent to C at P∞1 .
(3) P∞1 = P∞2 = P∞4 . The point P∞1 is then called a flex. As a linear

intersection also represents the canonical divisor, these points are
exactly the ones where a regular differential has a zero of order 3.
They are thus the Weierstrass points of C.

(4) P∞1 = P∞2 and P∞3 = P∞4 . The line l∞ is called a bitangent of the
curve C. It is well known (see for example [20]) that if char(k) 6=
2 then C has exactly 28 bitangents. If char(k) = 2, then C has
respectively 7, 4, 2, or 1 bitangents, according to the 2-rank of its
Jacobian (resp. 3, 2, 1, 0).

(5) P∞1 = P∞2 = P∞3 = P∞4 . The point P∞1 is called a hyperflex. Gener-
ically, such a hyperflex does not exist (i.e. the set of quartics with
at least one hyperflex is of codimension 1 in the space of quartics).

The efficiency of the algebraic version of the algorithm will depend on the
choice of l∞ (see section 3). We now look for situations where the condition
(∗) is fulfilled:
Proposition 1. The condition (∗) is fulfilled in the following cases:

Condition on p Condition on n Condition on q Condition on |C(k)|
p > 2 q ≥ 106

p > 2 q > 8 |C(k)| ≥ q −√q/4 + 7/4

p = 2 n > 3 q > 8 |C(k)| ≥ q + 3
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In particular for large odd q, there is always four collinear points on a non-
singular quartic.

Proof. Suppose that condition (∗) fails. Then no three points in K = C(k)
are collinear, and the set C(k) is called a |C(k)|-arc. Following [15], this
implies that |C(k)| ≤ q + 2 if p = 2 (from which the last row of the table
follows), and that |C(k)| ≤ q + 1 if p is odd. Moreover, if p is odd, one can
give an explicit bound m′(2, q), such that every r-arc with r > m′(2, q) is a
subset of the rational points of a conic (see [15, Tab 1.3]). Thus, if |C(k)| ≥
max(9,m′(2, q)+1), the quartic through these points has to properly contain
a conic, but this contradicts its irreducibility. The second row of the table in
the proposition immediately follows from this remark and from [15, Tab 1.3].
We now deal with the first row, for which we do not want a condition on
the curve. We may suppose that |C(k)| ≤ m′(2, q). As q ≥ 106, one has

(3q + 5)/4 < |C(k)| ≤ m′(2, q)

(the first inequality is obtained from Hasse-Weil formula, and is already true
for q > 242).
We will use the results of [26], for which we refere for both notations and
propositions. It is classical to associate to the arc K a plane curve E in the
dual plane, which is the enveloppe of the 1-secants of K (the rational lines
which cut K in one point). As the condition (∗) fails, every tangent of C
at a point of K is a 1-secant. By Bézout theorem, the dual curve C∗ is an
irreducible component of E . Let P0 be a point of C(k). As the condition (∗)
fails, P0 is neither on a bitangent nor a flex. Let l0 be the tangent of C at
P0. By the properties of the dual curve, the point l∗0 ∈ C∗ is a non-singular
rational point. Moreover, by [26, Th. 5.2.(3)], i(E , P ∗0 ; l∗0) = 2 = i(C∗, P ∗0 ; l

∗
0)

so C∗ is not a multiple component of E . Moreover, the point l∗0 is a special
point and C∗ is an irreducible enveloppe associated to l∗0. Using the notations
of [26, Sec. 5.2], we deduce that ν4 ≤ 2 deg(C∗) (where ν4 is the 4th positive
Fq-Frobenius order of a certain linear series), and thus ν4 ≤ 24 (the degree
of the dual of a degree n non-singular curve is equal to n(n− 1)). We now
apply [26, Prop. 5.11]:

|C(k)| ≤ min

(

q − 1

4
ν4 +

7

4
,
28 + 4ν4
29 + 4ν4

q +
32 + 2ν4
29 + 4ν4

)

.

For q ≥ 106, |C(k)| < q + 1− 6
√
q which is absurd. ¤

Remark 1. The given bounds may be improved, especially in the case p = 2
(see [15] ; note that (the dimension one part of) a hyperoval is a paramet-
ric curve). It is possible that one may extend the preceding argument to
characteristic 2.

2. Geometric description of the algorithm

From now on, we assume that condition (∗) is fulfilled.
We recall that we then choose D∞ = P∞1 + P∞2 + P∞3 . For an element

D in Div0k(C), let D+ be an effective divisor (generically unique) such that
D+ −D∞ ∼ D. By abuse of language we say that a curve C ′ goes through
nP if i(C,C ′;P ) = n, where i(C,C ′;P ) denotes the intersection multiplicity
of C and C ′ at P .
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Theorem. Let D1, D2 ∈ Div0k(C). Then D1 +D2 is equivalent to a divisor
D = D+ − D∞, where the points in the support of D+ are given by the
following algorithm:

(1) Take the unique cubic E which goes (with multiplicity) through the
support of D+

1 , D
+
2 and P∞1 , P∞2 , P∞4 . This cubic also crosses C in

the residual effective divisor D3.
(2) Take the unique conic Q which goes through the support of D3 and

P∞1 , P∞2 . This conic also crosses C in the residual effective divisor
D+.

Proof. C being canonically embedded, (E ·C) ∼ 3K, where (E ·C) denotes
the intersection divisor of E with C, and where K is the canonical divisor
of C. Therefore we have

D+
1 +D+

2 + P∞1 + P∞2 + P∞4 +D3 ∼ 3K.

Similarly, (Q · C) ∼ 2K so

D3 + P∞1 + P∞2 +De ∼ 2K

and (l∞ ·C) = P∞1 +P∞2 +P∞3 +P∞4 ∼ K. Combining these three relations,
we obtain

D+
1 +D

+
2 +P

∞
1 +P∞2 +P∞4 +D3 ∼ D3+P

∞
1 +P∞2 +De+P

∞
1 +P∞2 +P∞3 +P∞4

so

D+
1 +D+

2 ∼ De +D∞.

Now we subtract 2D∞ on both sides :

D1 +D2 ∼ De −D∞ ∼ D

So De = D+. ¤

3. Algebraic description

In this section, we give an algebraic transcription of the algorithm. It
depends slightly on the line l∞. In fact, the fastest algorithm is the one
for the hyperflex case, and then that of the flex case. We first look for
simple representations of the curve and its divisors: we may suppose (after
a k-linear transformation) that P∞1 is a point at infinity (i.e. such that its
z-coordinate is 0), and that l∞ is the line z = 0. Let f(x, y) = 0 be an
affine equation of C. We now come to the representation, called Mumford
representation, of a divisor D ∈ Div0k(C) by a couple (u, v) of polynomials.
It is unique under the following generic assumptions on D, which define a
typical divisor :

(1) The three points in the support of D+ are non-collinear. In this case
D+ is unique: in fact if P1 + P2 + P3 + (f) = Q1 + Q2 + Q3 then
f ∈ L(P1 + P2 + P3) and f has to be constant by Riemann-Roch
theorem.

(2) There is no point at infinity in the support of D+. Let Pi = (xi :
yi : 1) (i = 1, 2, 3) be the three points in the support of D+ and
u =

∏

(x− xi). Since D
+ is a rational divisor, u ∈ k[x].
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(3) The (xi)i=1,2,3 are distinct. In this case, there exists a unique poly-
nomial v ∈ k[x] of degree 2 such that yi = v(xi) for i = 1, 2, 3 (it is
just the interpolation polynomial).

Conversely, given a couple (u, v) such that

- u, v ∈ k[x],
- u =

∏

(x− xi) is monic of degree 3 and with simple roots,
- deg(v) = 2,
- u|f(x, v(x)),

then P1 + P2 + P3 − D∞ is a rational typical divisor of C (where, for i ∈
{1, 2, 3}, we have Pi = (xi : v(xi) : 1)).

At last, it is obvious that the addition of two typical divisors is generi-
cally a typical divisor. As we had cryptographic applications in mind, we
implemented our algorithm only in that case.

3.1. The tangent case. After a linear transformation, we may suppose
that l∞ is tangent at P∞1 = (0 : 1 : 0) and goes through P∞4 = (1 : 0 : 0).
An equation for C is then of the form

y3 + h1y
2 + h2y = f4,

where h1, h2, f4 ∈ Fq[x] and deg(h1) ≤ 2, deg(h2) ≤ 3, deg(f4) ≤ 4. If
deg(f4) = 4, we can assume in addition that f4 is monic.
We then have

Lemma 1. The cubic E from the theorem is generically of the form

y2 + s · y + t,

where s and t are polynomials in x, with deg(s) ≤ 2 and deg(t) ≤ 2.
The conic Q is of the form

y − v,

where v ∈ Fq[x] and deg(v) = 2.

This gives the following algorithm, which is a slight adaptation of the one
for Picard curves [9]:

Algorithm 1 Algorithm for Addition.

Input: D1 = (u1, v1) and D2 = (u2, v2)

Output: D1 +D2 = (uD1+D2
, vD1+D2

)

1. Computation of the cubic E

Addition

compute the inverse t1 of v1 − v2 modulo u2

compute the remainder r of (u1 − u2)t1 by u2

solve the linear equations given by the following conditions
{

degx(−v1(v1 + s) + u1δ1) = 2 (2 eq.)
v1 + v2 + s ≡ rδ1 [u2] (3 eq.)

where s, δ1 ∈ k[x] with deg(s) = 2 and deg(δ1) = 1. Then

E = (y − v1)(y + v1 + s) + u1δ1
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Doubling

compute ω1 = (v3
1 + v2

1h1 + v1h2 − f4)/u1

compute the inverse t1 of ω1 modulo u1

compute the remainder r of (3v2
1 + 2v1h1 + h2)t1 by u1

solve the linear equations given by the following conditions
{

degx(−v1(v1 + s) + u1δ1) = 2 (2 eq.)
2v1 + s ≡ rδ1 [u1] (3 eq.)

where s, δ1 ∈ k[x] with deg(s) = 2 and deg(δ1) = 1. Then

E = (y − v1)(y + v1 + s) + u1δ1

2. Computation of the conic Q

compute u′ := Res∗(E,C, y)/(u1u2)

compute the inverse α1 of t− s2 − h2 + sh1 modulo u′

compute the remainder v′ of α1(st− th1 − f4) by u′

3. Computation of D1 +D2

vD1+D2
:= v′

uD1+D2
:= ((v3 + v2h1 + vh2 − f4)/(u

′))∗

D1 +D2 = (uD1+D2
, vD1+D2

)

For a polynomial g, we used the notation g∗ to symbolize the quotient of
g by its leading coefficient.

One may wonder about the special choice of the divisor D∞. It was cho-
sen so that the conic Q be of the form y−v. It thus gives directly the second
part of the Mumford representation of the final divisor. Other choices imply
using an auxiliary conic to find the representation.
We stress the fact that algorithm 1 is valid for any base field (e.g. charac-
teristic 0 fields).

Comments. To make the algorithm of the theorem more efficient, we used
the following optimisations:

(1) In order to reduce the number of field inversions, we used Mont-
gomery’s trick to compute simultaneous inversions. For the same
reason, we computed almost inverses (using Bézout matrix), rather
than inverses.

(2) We used either Karatsuba or Toom-Cook (in case p 6= 2, 3, 5) trick
to multiply two polynomials, and we computed only the coefficients
we needed in the algorithm. For instance, as we only need to known
the quotient of the resultant of ω and C by u1u2, the degree ≤ 5 part
of this resultant is irrelevant.

3.2. The flex case. This case is the most interesting. Indeed, we will see
that it seems to happen quite often. Moreover the expressions involved in
the algorithm are very similar to those in the Picard curves [9] case, and
decrease the number of operations.
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Unfortunately, we don’t know how to compute the probability for a quar-
tic to have at least a rational flex. But we can have a guess on that number,
coming from heuristic remarks from one side, and relying on numerical evi-
dences from the other side. Here we suppose that char(k) > 3.

Conjectural fact. The probability that a smooth quartic has at least one
rational flex is asymptotically, when q tends to ∞, equals to 1 − e−1 + α,
with |α| ≤ 10−25.

Let C : f = 0 be the curve and H : h = 0 its Hessian (see Appendix).
The curve H is of degree 6 and the (C ·H) are the 24 flexes with multiplic-
ities. Generically when q >> 0 we may suppose that no two flexes have the
same abssicae. Then there is a rational flex if and only if the polynomial
Res(f, h, y) has a root in k. If we suppose that these polynomials are uni-
formly distributed among the classes of splitting of polynomials of degree 24,
then one only has to compute the probability that a polynomial of degree
24 has at least one linear factor in Fq. Let (αi)i∈{1,··· ,q} be an enumeration
of Fq.

Let S be the set of all monic polynomials of degree n and Si the subset of
S of polynomials having one or more factors of the form x−αi, i = 1, · · · , q.
Then |S| = qn and |Si| = qn−1.With the principle of inclusion and exclusion
the number N(n, q) of monic polynomials of degree n with one or more linear
factors is equal to

N(n, q) =
n
∑

i=1

(

q

i

)

qn−i(−1)i−1 if n < q,

and

N(n, q) =

q
∑

i=1

(

q

i

)

qn−i(−1)i−1 if n ≥ q.

After straightforward computations, one computes that the probability
P (n, q) that a monic polynomial of degree n has at least a linear factor in
Fq is

P (n, q) = 1−
(

1− 1

q

)q

− αn(q), where lim
n≥q

q→∞

αn(q) = 0.

Already for n = 24 and q ≥ 210 we have |αn(q)| ≤ 0.62 · 10−25.
Remark 2. Computations realised with a bench of 106 non-singular quartics
over F10092 and over F217+29 give the right percentage. In characteristics 2
and 3 the computation of flexes is a bit harder since H(f) ≡ 0. We refere
to the appendix for a good replacement for the polynomial H(f). Though
the heuristic approach seems to extend also in these cases.

p n Probabilities

2 17 632074/106 = 0.632074

3 11 632344/106 = 0.632344

1009 2 631358/106 = 0.631358

217 + 29 1 632921/106 = 0.632921
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As in the tangent case, we can assume (after a linear transformation) that
l = l∞ is tangent at the flex P∞1 = (0 : 1 : 0), such that the curve is of the
form

y3 + h1y
2 + h2y = f4,

where h1, h2, f4 ∈ Fq[x] and deg(h1) ≤ 1, deg(h2) ≤ 3, deg(f4) ≤ 4.
In the same way as for the Lemma 1 we obtain

Lemma 2. The cubic E is generically of the form

y2 + s · y + t,

where s and t are polynomials in x, with deg(s) ≤ 1 and deg(t) ≤ 3.
The conic Q is of the form

y − v,

where v ∈ Fq[x] and deg(v) = 2.

The only difference with Algorithm 1 is that s and δ1 have now degree
1. Computations are thus a lot easier: the linear system in step 1 consists
only of 4 equations, and consequently, the resultant res(ω,C, y) is easier to
compute.

Furthermore, if char(k) 6= 3, we can also assume (thanks to Tschirnhaus
transformation) that C is of the following form:

y3 + h2y = f4,

with h2 and f4 as above. If in addition char(k) 6= 2, then we can assume
that f4 has no x3 term. Using this form, computations of steps 2 and
3 will be much faster (both for addition and doubling). Moreover, step
1 will be slightly faster for doubling. In that case, an addition requires
148M + 15SQ + 2I and a doubling 165M + 20SQ + 2I. The interested
reader can find a program in MAGMA at the following webpage:

http://www.exp-math.uni-essen.de/~oyono

Remark 3. As explained in [4], one can try to use −2-adic expansion rather
than usual 2-adic expansion, in order to save time for scalar multiplication.
But this is only worthwile if the computation of −(D1 +D2) is easier than
that of D1 + D2. This only happens in the theorem if P∞1 = P∞2 = P∞4 .
In that case (and only in that case), this leads to a saving of at least 10%
for the computation of scalar multiples mD, assuming a ratio of 10 : 1 for
inversions and 2 : 3 for squarings, in relation to multiplications.

3.3. The hyperflex case. The algorithm is a special case of the version for
flex. We recall that a generic non-singular quartic has no hyperflex. Still, if
it has one, this point is automatically rational.

Proposition 2. A non-singular plane quartic C with a hyperflex P is k-
isomorphic to a C3,4-curve of genus 3.

Proof. By a linear rational transformation, we may suppose that P is the
point (0 : 1 : 0) and that the tangent in this point is the line at infinity.
Therefore the equation of C is of the form

y3 + h1y
2 + h2y = f4

where hi is a degree i polynomial and f4 is a degree 4 monic polynomial. ¤
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In case char(k) 6= 3, we can assume that h1 = 0 (and that f4 has no x3

term if in addition char(k) 6= 2). Addition then requires 131M +14SQ+2I
and a doubling requires 148M + 19SQ + 2I. We refer to [9] for explicit
formulae in the case of Picard curves. Note that thanks to the new remarks
made in this paper, we can reduce the cost for addition in the case of Picard
curves to 116M + 14SQ+ 2I and to 133M + 19SQ+ 2I for doubling.

Remark 4. Since there is only one point at infinity, there is an isomorphism
between Jac(C)(k) and the Ideal Class group of k[x, y]/f(x, y).

Remark 5. One may like to characterize Picard curves among C3,4. It ap-
pears that Picard curves are exactly the C3,4-curves with one hyperflex P∞

and 4 distinct flexes (Pi)i=1,··· ,4 whose tangents are all concurrent at P∞.
To prove that, it is enough to see that the four flexes are collinear : indeed,
since P∞ + 3Pi ∼ K ∼ 4P∞, it follows P1 + P2 + P3 + P4 ∼ 4P∞, so
(Pi)i=1,··· ,4 are collinear. We take this line as the y = 0 line. The equation
is then of the form y3 = f4(x), with f4 a monic polynomial in x of degree 4.

4. Two applications

We give here two applications of our algorithm, based on the fact that
computing fastly in the Jacobian is of course linked to point counting.

4.1. AGM-method. In [24], a quasi-quadratic time algorithm for point

counting on a genus 3 ordinary non-hyperelliptic curve C̃ over k = F2n

is described. The algorithm ended with a sign problem for the Frobenius
polynomial χC̃(±X). Determinating this sign can be done by answering

to the following question: χC̃(1) ·D
?∼ 0 where D is a generic degree 0 k-

divisor. The curve C̃ is given by an equation of the form Q2 = xyz(x+y+z)
where Q is a conic. In particular the seven bitangents βi are x, y, z, x +
y, x + z, y + z, x + y + z, and are thus rational. If we assume that at least
one of the intersections (βi · Q) consists of two k-points then we can apply
Algorithm 3.1.

Example 1. Here is an illustration of the algorithm: let C̃ over k = Fq,
q = 2N with N = 100, be defined by

(ωx2+(ω3+1)y2+ω2z2+ω4xy+(ω3+ω2)xz+ω6yz)2−xyz(x+y+z) = 0,

where the generator ω of k is a root of (X101 − 1)/(X − 1).
Thanks to the AGM-algorithm, we recover the Frobenius polynomial up to

a sign in 2 minutes

χC̃(±X) = X6 + 377276036264709 ·X5 + 3455351061169045838894227937403 ·X4

+ 929793021972276691307766666464616872277691871 ·X3

+ 3455351061169045838894227937403 · 2100 ·X2

+ 377276036264709 · 2200 ·X + 2300.

We can now use the algorithm presented in this paper to prove that the
present χC̃ has the accurate sign. The computation lasts about 4 seconds.
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Remark 6. On the same computer, if one uses rather MAGMA general
algorithms, it takes more than 2 minutes to determine the sign.

4.2. 3-dimensional factors of Jnew(X0(N)). Let f be a new form of
X0(N). Following a construction due to Shimura, one may associate to
this new form a factor of J0(N) (the Jacobian of X0(N)), denoted Af . If
dimAf ≤ 3, it is easy to determine whether it is the Jacobian of a curve
Cf or not (see for example [11] or [10]). In particular, if dimAf = 3, and
if the curve Cf is non-hyperelliptic, an equation of Cf seems to be often
given by linear relations in S2(f)

⊗4. These computations carry out a first
part towards a cryptosystem based on such curves: indeed, thanks to the
Eichler-Shimura relation, fast computation of Hecke operators Tp leads to
a fast determination of |Af ⊗ Fp|. If the current algorithms fail to reach
cryptographic size, new techniques allow us to hope for a breakthrough.

Example 2. We consider the curve X0(203). There is only one simple
factor of dimension 3. We find one quartic relation between the associated
cusp forms :

C : y4−(x+3z)y3+y2(x2−3xz+6z2)+y(4xz2−3z3)−x3z+3x2z2−4xz3+2z4 = 0

We choose p = 25033. We denote C̃ = C ⊗ Fp and C̃f = Cf ⊗ Fp.

The computation of the characteristic polynomial of Tp leads to |C̃f (Fp)| =
15692826275509, which is prime.
The curve C̃ has a rational flex. After a linear transformation, and by
denoting new coordinates still by x, y, z, we have

C̃ : y3z + y2(5057xz + 22616z2) + y(6567x3 + 18877x2z + 162xz2 + 14333z3)

= 8673x4 + 24517x3z + 20295x2z2 + 17815xz3 + 3799z4

Choosing a random rational divisor, and computing its order, we may check
that this curve has the correct cardinality in 0.14 seconds.

Remark 7. Our p is far from the cryptographic size. It is basically due to
the use of MAGMA. Current algorithms reach 109.

Remark 8. For a ’general quartic’ over Q, the density of primes p such that
the reduction of the quartic modulo p has a rational flex is approximately
0.63. A proof of this result may be find in [22].

5. Conclusion

In the first two rows of the following table we summarize the amount of
computation of our algorithm for a given quartic of the form y3 + h2y = f4.

Operation
hyperelliptic C3,4 generic quartic
of genus 3 Picard deg(h2) = 1 deg(h2) = 2 deg(h2) = 3

Our Add 2I+130M 2I+138M 2I+145M 2I+163M

Methods Dbl 2I+152M 2I+160M 2I+167M 2I+185M

Previous Add I+70M [13] 2I+140M [6] 2I+147M [6] 2I+150M [6]

Work Dbl I+71M [13] 2I+164M [6] 2I+171M [6] 2I+174M [6]

Remark 9. Our first intention was to develop an algorithm for DLP based
cryptosystems, and hence to efficiently perform scalar multiplication. It
should be noted that, for that matter, and on the contrary to that of [6],
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our algorithm benefits from the −2-adic expansion [4], which speeds up the
algorithm up to 10%.

Remark 10. In addition, in the case of Picard curves, we can use the fast
automorphism σ of order 3 to speed up scalar multiplication. All in all,
those two tricks approximately halve the complexity of scalar multiplication.
Consequently, the gap between the efficiency of DLP-Cryptosystems based
on hyperelliptic curves of genus 3 and those based on Picard curves can be
deemed negligible.

6. Appendix

We now show how to compute the flexes of an algebraic curve over any
field using algebraic methods. An article of Abhyankar [1] gives another
formula when the characteristic is different from 2.

Definition 1. Let k be an algebraically closed field of characteristic p ≥ 0.
Let f ∈ k[x1, x2, x3] be a homogeneous polynomial of degree n. We denote
by fi the derivative of f with respect to xi. We call the Hessian matrix of f
the matrix (fij)i,j and we call its determinant H(f) the Hessian of f .

Lemma 3. Let g ∈ GL3(k) be a linear transformation. Then H(f ◦ g−1) =
(det g)2H(f) ◦ g−1.
Proof. Apply the chain rule. ¤

Lemma 4. x21H(f) =

∣

∣

∣

∣

∣

∣

n(n− 1)f (n− 1)f2 (n− 1)f3
(n− 1)f2 f22 f23
(n− 1)f3 f23 f33

∣

∣

∣

∣

∣

∣

Proof. Apply twice the Euler’s formula x1f1 + x2f2 + x3f3 = (deg f)f . See
for example [21]. ¤

Definition 2. Let C be a plane curve, and P a non-singular point of C.
The point P is a flex if the intersection multiplicity at P of the tangent at
P with the curve is greater than or equal to 3.

If f = 0 is an equation of C of degree n ≥ 3, then there exists a linear
transformation g which sends a non-singular point P = (p1 : p2 : p3) on
(1 : 0 : 0) and its tangent to the line x2 = 0. Then in affine coordinates

f ◦ g−1 = x2 + rx22 + sx2x3 + tx23 +R(x2, x3)

and R has only terms of degree greater or equal to 3. Then P is a flex if
and only if r = 0.

Proposition 3. Suppose that char(k) does not divide 2(n− 1). Then P is
a flex if and only if H(f)(P ) = 0.

Proof. Suppose that the x1-coordinate of P is not 0 (otherwise you do the
same proof with an other coordinate). We have

(x21H(f) ◦ g−1)(g(P )) = (det g)−2(x21H(f ◦ g−1))(g(P ))
by Lemma 3 and because the xixj (i, j 6= 1) terms in (x21) ◦ g−1 are 0 at
g(P ) = (1 : 0 : 0). Then by Lemma 4 and the form of f ◦ g−1

(x21H(f))(P ) = −(det g)−22(n− 1)2r.
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So H(f)(P ) = 0 if and only if r = 0 (i.e P is a flex).
¤

Now we want to deal with the cases where char(k) may divide 2(n − 1).
Let k be an algebraically closed field of characteristic p > 0. We denote K a
complete local field of characteristic 0, O its ring of integers,M its maximal
ideal such that O/M' k (O may be the ring of Witt vectors of k).

Proposition 4. Let f̃ ∈ k[x1, x2, x3] be an homogeneous polynomial of de-

gree n. Let C̃ = V (f̃) and C/O be a model of C̃ given by a polynomial
f ∈ O[x1, x2, x3]. We denote G the polynomial

G =
x21H(f)− n(n− 1)f(f22f33 − f223)

2(n− 1)2
.

Then G is in O[x1, x2, x3]. We call G̃ its reduction modulo M.

Let P̃ = (p̃1 : p̃2 : p̃3) ∈ C̃ be a non-singular point such that p̃1 6= 0. The

point P̃ is a flex if and only if G̃(P̃ ) = 0.

Proof. First we prove that G is in O[x1, x2, x3]. By Lemma 4,

x21H(f)− n(n− 1)f(f22f33 − f223) = (n− 1)2(2f2f3f23 − f22 f33 − f23 f22).

So 2(n− 1)2 divides x21H(f)− n(n− 1)f(f22f33 − f223).

Let P̃ be a non-singular point of C̃ such that p̃1 6= 0. Since P̃ is non-
singular, it exists P ∈ C(O) lifting P̃ and p1 /∈ M. Let g ∈ GL3(O) a
linear transformation that sends P on (1 : 0 : 0) with tangent x2 = 0. The
reduction of this point is a flex if and only if the corresponding r is in M.
Now G(P ) = ur with u ∈ O∗ by the computations of Proposition 3. So P̃

is a flex if and only if G̃(P̃ ) = 0. ¤

Remark 11. Strange things may appear when the characteristic divides n−1.
A curve such that all points are flexes is called a funny curve. Homma proved
in [16] that a funny quartic is isomorphic to the Klein quartic.
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