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Abstract

Several efforts have been made recently to put forward a set of cryptographic
primitives for public key encryption, suitable to be standardized. In two of them
(in the first place the NESSIE european evaluation project, already finished, and
in the second place the standardisation bodies ISO/IEC), the methodology by
Victor Shoup for hybrid encryption, known as Key Encapsulation Method-Data
Encapsulation Mechanism (KEM-DEM), has been accepted. In this work we
re-evaluate the elliptic curve based KEMs studied to become standards, which
are called ACE-KEM, ECIES-KEM and PSEC-KEM. Their security is based
on different assumptions related to the elliptic curve discrete logarithm (ECDL)
problem on a random elliptic curve. First of all, we fix some inexact results
claimed in the previous literature. As a consequence, the performance features
of PSEC-KEM are dramatically affected. In second place, we analyse both their
security properties and performance when elliptic curves with computable bi-
linear maps (pairing curves for short) are used. It turns out that these KEMs
present a very tight security reduction to the same problem, namely the ECDH
problem on such curves; moreover, one can even relate their security to the
ECDL problem in certain curves with a small security loss. It is also argued
that ECIES-KEM arises as the best option among these KEMs when pairing
curves are used. This is remarkable, since NESSIE did not include ECIES-KEM
over a random curve in its portfolio of recommended cryptographic primitives.
It is concluded that for medium security level applications, which is likely the
case for many embedded systems (e.g. smart cards), implementing these KEMs
over pairing curves should be considered a very reasonable option.

Keywords: public-key cryptography, key encapsulation mechanisms, pairings, stan-
dardization, smart cards.

1 Introduction

A key encapsulation mechanism (KEM) is a probabilistic algorithm that produces
a random symmetric key and an asymmetric encryption of that key. Using this
random key in a suitable encryption scheme (referred to as a data encapsulation
mechanism-DEM), a secure hybrid encryption of arbitrary long messages is obtained.
The problem of designing secure DEMs in the standard model is efficiently solved



using well-known cryptographic techniques (cf. [CS]). Therefore, designing secure hy-
brid encryption schemes within the KEM-DEM methodology is reduced to designing
secure KEMs.

As far as we know, there are three elliptic curve based KEMs that have been
considered for standardisation so far (in particular in ISO/IEC 18033 [Sho04] and
NESSIE! [NES03a]), namely, ACE-KEM, ECIES-KEM and PSEC-KEM. Their se-
curity relies on different problems related to the elliptic curve discrete logarithm
(ECDL). PSEC-KEM and ECIES-KEM use the Random Oracle (RO) heuristic [BR93]
in their security proofs, while ACE-KEM is proven secure in the standard model but
based on a decisional assumption. They were first proposed as KEMs in [Sho01], the
ISO standard draft for public key encryption by Victor Shoup, while in their original
form they were submitted by IBM, Certicom and NTT corporations, respectively.

The hardness of these ECDL problems closely depends on the elliptic curve gener-
ation method used. Indeed, special families of elliptic curves with easy point-counting,
such as supersingular curves or anomalous curves, turned out to be insecure (as
shown, among others works, in [MOV93] and [Sma99]). How these negative results
must be interpreted is a quite debatated question. The conservative approach is to
avoid special families of curves: future developments may show inherent weaknesses
in particular curves. The proposal is then to generate curves at random. A more
efficient approach is to build curves with known order using complex multiplication
techniques [AM93, LZ94], but then some randomness is lost in the way. Finally, the
most appealing approach from a practical point of view is to use any curve which has
not been proven insecure.

In [Jou00] a special family of curves, namely, elliptic curves with an efficiently
computable non-trivial bilinear map (which will be hereafter referred to as pairing
curves), were found a positive application in cryptography: the design of a one-round
tripartite Diffie-Hellmann protocol. A breakthrough in this constructive direction was
made in [BF01], presenting the most complete and practical identity-based encryption
scheme to the date. Since then, pairing curves have found a lot of applications in
cryptography (see [DBS04] for a comprehensive account).

But in [Jou00] was also pointed out that in such curves the Decisional Diffie-
Hellman (ECDDH) problem becomes easy. Again, this negative result allows differ-
ent interpretations. The conservative choice is to intepret this result as an inherent
weakness of these curves, and therefore one should avoid using them in cryptography.
However, in [JNO3] pairing curves were presented for which the ECDL is believed to
be hard, and the Computational Diffie-Hellman (ECDH) problem is equivalent to the
ECDL. Since there are not known attacks against ECDL on these curves if appropi-
ately generated, hardness assumptions related to pairing curves are being given more
and more confidence by the cryptographic community.

Our contribution. We aim at getting an insight into the use of elliptic curve
cryptography in the context of KEMs. We revisit the security proofs of the elliptic
curve based KEMs when they are performed over pairing curves. As a result, all
these KEMs can be proven secure in the RO heuristic with respect to the ECDH
assumption on a pairing curve. Thus, the different security nature of these KEMs

"We point out that NESSIE is a not standardisation body, that is, it does not produce standards,
although its results are helpful for standardisation bodies.



on a random curve is made uniform in the set of pairing curves, allowing a more
natural comparison among them. The security reduction obtained turns out to be
very tight, improving the concrete security claimed over a random curve. This en-
ables the schemes to use smaller keys, and therefore make these KEMs suitable for
implementation in constrained memory devices. We rigorously derive secure key sizes
for each of these KEMs on pairing curves. It is worth pointing out that although the
schemes are implemented over a pairing curve, and we use efficient pairing compu-
tations to obtain the concrete security results, no pairing computations are involved
in a real implementation. The crucial point is that ECDDH problem is solvable in
these groups.

We also find out that the key size for PSEC-KEM claimed in NESSIE is inexact.
More precisely, there is no evidence supporting that the 160 bits key size used up
to now for PSEC-KEM over a random curve results in a secure implementation.
Following our security analysis, a larger key size is needed. As a consequence, the
efficiency of PSEC-KEM is negatively affected.

On the other hand, using [Mau94] there are elliptic curves where ECDL can be
reduced to ECDH. Then, it is possible to give an exact security result relating the
IND-CCA security of these KEMs to the ECDL problem. The good news is that they
are closely related, due to small security losses in the reduction. From a theoretical
point of view, this gives more confidence on the security of these KEMs over pairing
curves. In particular, we show that for the current security level (that is, 250),
breaking ECIES-KEM is equivalent to solving the ECDH or ECDL problem on a
pairing curve with a prime order subgroup with a 280 security of the ECDH or a 2192
security of the ECDL respectively. We point out that such a concrete estimation with
respect to the ECDL is rarely found in the literature (to the best of our knowledge,
only in [GJ03, MSV04] appear similar results).

Since ECIES-KEM has the best perfomance, it is concluded that ECIES-KEM s
preferable among the others if pairing curves are used. This is interesting, since when
using a randomly generated curve a different result is obtained. In fact, ECIES-KEM
has not been selected in the evaluation carried out by NESSIE, while ACE-KEM and
PSEC-KEM have been positively evaluated. We argue that in environments where a
high security level is not important but efficiency is critical (which is likely the case
for smart cards applications), implementing these KEMs over pairing curves should
be considered a very reasonable option.

2 Security properties of existing elliptic curve based KEMs

We first summarize some notation. If p is a positive integer, then |p| denotes the
length of its binary representation. If A is a non-empty set, then x,y <+ A denotes
that =,y have been uniformly and independently chosen from A. On the other hand,
if A is a probabilistic polynomial time (PPT) algorithm, then = < A denotes that
x is the output of A. Hash and K DF denote a hash function and a key derivation
function, respectively (cf. [CS]).

IND-CCA security of a KEM. A KEM consists of three algorithms:

— A key generation algorithm K, a probabilistic algorithm which takes as input a
security parameter 1¢ and outputs a public/secret-key pair (pk, sk).



— A encapsulation algorithm &, a probabilistic algorithm taking as inputs a secu-
rity parameter 1¢ and a public key pk and returning an encapsulated key-pair
(K,C), with K € {0,1}?), ¢ € {0,119 for some polynomials p, q € Z[/].

— A decapsulation algorithm D, a deterministic algorithm that, on inputs a se-
curity parameter 1¢, an encapsulation C' and a secret key sk; outputs a key K
or a special symbol reject meaning there was a failure in the execution of the
algorithm.

It is required to be sound, that is, for almost all (pk,sk) « C(1¢), and almost all
(K,C) « &£(1%, pk) we have that K = D(1¢, C, sk).

Here follows the description of the attack game used to define the IND-CCA
security of a KEM:
— The adversary queries a key generation oracle, which computes (pk,sk) « (1)
and returns pk.
— The adversary makes a sequence of calls to a decryption oracle, submitting encap-
sulations C' of its choice, for which the decryption oracle responds with D(1¢, C, sk).
— The adversary queries an encryption oracle, which computes:

(Ko, C*) — £(1%,pk);  K; — {0,1}*9); b —{0,1}

and returns the pair (K3, C*).

— The adversary issues new calls to the decryption oracle, subject only to the restric-
tion that a submitted ciphertext C' # C*.

— The adversary outputs b’ € {0,1}.

For a PPT adversary A we define

AdVKEM’A(g) =

Pr[A(lg):l\b:O}—Pr{A(lf):l\b:IH.

We say that a KEM is IND-CCA secure if for all PPT adversaries A the function
Advigwm, () grows negliglibly in ¢. A quantity €(¢) is negligible if for any polynomial
p € R[{], there exist M, € R such that €(¢) < %, forall ¢ € ZT.
Elliptic curve discrete logarithm problems. Let E,;(F,;) denote the group of
points of the elliptic curve

Eq.p : y2 =24+ az+b
over the prime finite field Fy, ¢ > 3. For finite fields with characteristic 2 or 3, the
equation defining an elliptic curve takes different forms [Men93]. Let G), = (P) be a
cyclic group of prime order p, where P € E, ,(F;). Then:

— The discrete logarithm (ECDL) is the problem of finding u when given (P, uP).

— The computational Diffie-Hellman problem (ECDH) is the problem of finding
uvP when given (P,uP,vP).

— The decisional Diffie-Hellman problem (ECDDH) is the problem of distinguish-
ing (P,uP,vP,uvP) from (P,uP,vP,wP).

— The gap Diffie-Hellman problem (gap-ECDH) is the problem of finding uvP
when given (P,uP,vP) and an oracle O that correctly solves the decisional
Diffie-Hellman problem.



It is assumed that u,v,w < F,. Notice that all three KEMs are intended to be
performed on random elliptic curves, so all these problems are assumed to be in-
tractable. All of them are well established, except for the gap-ECDH problem, which
was formally introduced in [OP01]. It is an open problem to establish all the relations
between them. In fact, we rigorously know little more than the obvious reductions,
which are ECDDH infeasible = ECDH infeasible = ECDL infeasible; and gap-ECDH
infeasible = ECDH infeasible. Thus, the better way known to attack these problems
in a general elliptic curve is to solve ECDL. The fastest method for solving ECDL
on a random elliptic curve is the Pollar p method [Pol78], which runs in exponential
time y/mq/2 for a group with ¢ elements. It is unknown whether there exist groups
for which the ECDH problem is substantially easier than the ECDL problem, while
the ECDDH problem appears to be easier than the ECDH problem in general. We
refer the reader interested in the state of the art to [MWO0O].

Concrete security. The efficiency of a reduction is the relationship between an
attacker who breaks the cryptosystem with probability at least € in time ¢, doing less
than gp calls to a decryption oracle, and less than gx calls to an oracle for a hash
or a KDF function; and the implied (¢, €’) solver against the corresponding trusted
cryptographic assumption. Such an attacker is referred as a (t,¢,qp,qo,) attacker
for short. Following the usual terminology, the security reduction is tight if E—i = %,
and not tight if z—i > qDE. It is also stated that a scheme is very tight if € ~ ¢’ and t/
is equal to t plus a linear quantity in the number of oracle calls. The tighter is the
reduction, the smaller is the gap between the computational efforts needed to break
the scheme and to solve the underlying problem. The optimal tightness is achieved
with wvery tight reductions.

To be consistent with the time units commonly used in the literature, we use
the sentence a problem P has a 2t security level to say that, an attacker against P,
running in time less than 2¢ 3-DES encryptions (cf. [LV01]), has a negligible success
probability.

Known results about elliptic curve based KEMs. The first step of the key
generation algorithm in the three schemes studied is to build a suitable curve FE,
together with a point P that generates a secure cyclic subgroup G, of E, with prime
order p. Moreover, p is of size £, where £ is the security parameter. So we will assume
that the key generation algorithm takes the group parameters (F, P,p) as input.

A so-called key derivation function K DF has been used in these KEMs. This
function can be considered as a hash function for our purposes (for further details
see [Sho04]). In Table 1 we summarize the exact security results known for the
KEMs we are interested in, along with the reference where these results come from.
In these expressions, qx denotes the number of queries made to the KDF oracle,
L¢ is the time needed to check a Diffie-Hellman triple in G, and SR, is the time
needed to compute a square root modulo q. We point out that in the ECIES-KEM
security reduction claimed in [Den02], the authors do not take into account the time
to compute a square root in F,, which is needed in order to obtain the two points in
E(F,) that have a given z-coordinate.

As we can see, ACE-KEM offers several security reductions, depending on which
problem its security is based. In the case of the NESSIE evaluation, the emphasis



Schematic description of the elliptic curve KEMs

(pk,sk) «— K(FE, P,p,{) (K,C) «— E(pk) K «— D(C, sk)
1. w,z,y,z — Zy 1.r—17Z, 1. Parse C as (C1,C2,C3)
2. W:=wP, X :=zP, 2. Cy:=rP 2. a:= Hash(C1||C?)
Y :=yP, Z :=zP 3. Cy:=rW 3.t =z +ya
3. pk:= (B, P,p,W,X,Y,Z,0) | 4. Q :=rZ 4. 1f Cy # wCh,
4. sk := (w,z,y, z, pk) 5. a:= Hash(C1]|C2) output reject and halt
5. Output (pk, sk) 6. C3:=rX +arY 5. If C3 # tCh,
7. C:=(C1,C2,C3) output reject and halt
8. K := KDF(C1HQ) 6. Q = ch
9. Output (K,C) 7. K := KDF(C1]|Q)
8. Output K
Description of ACE-KEM
(pk,sk) — K(E, P,p,£) | (K,C) «— E(pk) K «— D(C, sk)
1. s —17Zj; 1.r—17Z; 1. Q:=sC
2. W:=sP 2. C:=rP 2.fQ=0
3. pk:=(E,P,p,W,¢) | 3. Set x the output reject and halt
4. sk := (s, pk) x-coordinate of rW | 3. Set z x-coord. of rWW
5. Output (pk, sk) 4. K = KDF(C||lz) | 4. K = KDF(C||z)
5. Output (K, C) Output K
Description of ECIES-KEM
(pk,sk) — K(E, P,p,t) | (K,C) — E(pk) K «— D(C,sk)
1. s —17Zy 1. r—{0,1}° 1. Parse C as (C1, Cb)
2. W :=sP 2. H := KDF(032]|r) 2. Q:=sCq
3. pk:=(E,P,p,W,¢) | 3. Parse H as t||K 3. r:=C2® KDF(1]|C1]|Q)
4. sk := (s, pk) 4. a:=tmodp 4. H :== KDF(0||r)
5. Output (pk, sk) 5 Q:=aW 5. Parse H as t||K
6. Ci :=aP 6. a:=tmodp
7. Cy ::TEBKDF(132||01||Q) 7. If C #Oép,
8. C:=(C1,C?) output reject and halt
9. Output (K, C) 8. Output K

Description of PSEC-KEM

is put on the ECDDH problem, since in this case the security is achieved in the
standard model. On the other hand, ECIES-KEM presents a very tight reduction to
the gap-ECDH problem, while PSEC-KEM has a not tight reduction to the ECDH
problem. Both schemes are analysed within the RO heuristic. In Table 2 we have the
key length in bytes for a 280 IND-CCA security bound in each scheme. To compute
them, the usual way is to set that in a random curve ECDDH, gap-ECDH or ECDH
problems have complexity similar to the ECDL problem. Although this is widely
believed, these computational equivalences are far from being proved. K DF’s out-
put has been set to be 16 bytes. In computing the expected number of elliptic curve
additions involved in encapsulation/decapsulation, the binary exponentiation algo-
rithm has been used, that is, 3/2logp additions are expected to compute a random
multiple 7P in G,. Finally, note that from the values in Table 2, both ACE-KEM
and ECIES-KEM need a group G, with a p ~ 2190 cardinality, while PSEC needs
p ~ 2270 (although the values appearing in the table are referred to the definition field
[y, is usually desired that |p| ~ |¢|). This important difference between PSEC-KEM



Scheme Assumption | Reduction Random | Reference
Oracle
ACE-KEM ECDDH very tight No [CS]
gap-ECDH | ¢ = ¢ Yes [Sho01]
t' ~t+qx(2Le + SRq) [Den02]
ECDH not tight Yes [Sho00]
ECIES-KEM | gap-ECDH | € ~ ¢ Yes [Den02]
t' ~t+qx(2Lg + SRy)
PSEC-KEM | ECDH S — Yes [Sho01]
t/ ~ Z‘:D 9K

Table 1: IND-CCA KEMs concrete security over a random curve

and the others KEMs is due to the fact that the security proof of PSEC-KEM is not
tight. We notice that NESSIE parameter length estimation for PSEC-KEM is not
exact (it is stated that a 160-bit prime is enough), and we argue it in Section 4.

KEM Problem Exponentiations | (K,C) length | Public/Secret | EC additions
in Enc/Dec 16-Byte Keys key length in Enc/Dec
ACE ECDDH 5/3 76 80/80 1200/720
ECIES | gap-ECDH 2/1 36 20/20 480/240
PSEC | ECDH 2/2 66 34/34 810/810

Table 2: Performance features over random curves (byte lengths using a point compression
technique)

Comparing these results is somewhat contrived, since different assumptions are
involved. On the one hand we can compare them using their performance and,
on the other hand, by using the hard problems they are based on. In terms of
performance, ECIES-KEM is clearly the best option. Not only does it present the
smallest computation time, but also the smallest parameter length. For instance,
ECIES-KEM is roughly 2.5 and 3 times faster in encapsulation and decapsulation
respectively than ACE-KEM. When compared to PSEC-KEM, we must take into
account that they use different field sizes. To make the comparison possible, it is used
than an elliptic curve addition is equal to a constant number of multiplications in the
corresponding field F,; and that a multiplication in a field of 270 bits length takes

(%)2 times a multiplication in a field of 160 bits length. Therefore, ECIES-KEM
is roughly 5.5 and 10 times faster in encapsulation/decapsulation than PSEC-KEM.
However, since the security of ECIES-KEM is based on the gap-ECDH, a quite new
assumption, NESSIE did not include ECIES-KEM in its portfolio of cryptographic
primitives, while accepted ACE-KEM and PSEC-KEM, since these schemes base their
security on well-studied assumptions. We emphasize that in NESSIE evaluation the
performance features we present here were not considered, and maybe this could have
changed their final decision. In the next section we provide evidence that if these
KEMs are implemented over pairing curves, ECIES-KEM should be considered the
best candidate.



3 Security analysis over pairing curves

Let E,(Fq) be the group of points of an elliptic curve over the prime finite field Fy.
Let G, = (P) be a cyclic subgroup of E, (F,) with p elements, where p is a large
prime. Let G be a cyclic group with p elements. We say that F is a pairing curve
over Fy with respect to Gy, if there exists a map e : G, x G, — G with the following
properties:

— Bilinear: that is, e(uP,vQ) = e(P,Q)", for all P,Q € Gy, and all u,v € Z.

— Non-degenerate: The map does not send all pairs in G, x G, to the identity in

G.

— Computable: There is an efficient algorithm to compute e(P, Q) for any P,Q €

Gp.
We call them pairing curves because the usual way to implement the map e is using
the Weil or Tate pairings [Men93]. In this case, the group G is the multiplicative
group of a certain finite extension F x. The number k is called the embedding degree
and is the smallest positive integer such that p|(¢¥ — 1). Given a generation method
for pairing curves, ECDL problems on these curves can be described. We use the
notation ProblemP?""8 to say that a given Problem is defined with respect to a certain
probability distribution in the set of pairing curves, while the absence of superindex
means that the problem is defined over an elliptic curve generated at random.

With the map e, the ECDDHP?""8 problem is solvable in Gyp. The non-degeneracy
property of the Weil and Tate pairings implies that e(P, P) is a p-th root of unity, and
then (P,uP,vP,wP) is a valid Diffie-Hellman quadruple if and only if e(uP,vP) =
e(P,wP). It turns out then that gap-ECDHP2""& and ECDHP" "8 problems are poly-
nomial time equivalent in G, since there exists a polynomial time algorithm replacing
the ECDDH oracle solver. We use this fact positively to tightly relate the security
of ACE-KEM, ECIES-KEM and PSEC-KEM to the ECDH problem in these curves.

Another consequence of the map e is that solving the ECDL problem in G,
can be transformed into solving the DL problem over the finite field F x, which
can be computed using an index calculus algorithm running in subexponential time.
This has been applied to attack the ECDL problem over supersingular curves in
[MOV93, FR94]. We should take this into account when computing secure key sizes
for each scheme.

Revisiting concrete security with respect to ECDHP¥""8, We already know
that gap-ECDHP?""& and ECDHP2""& problems are equivalent. According to the
results summarized in Table 1, this implies that ACE-KEM and PSEC-KEM are
straightforward secure with respect to the ECDHP?""& problem. Indeed, they present
a very tight reduction to the ECDHP?""& and the concrete security estimation is
obtained by replacing L, with twice the time needed to compute the map e, which
will be denoted by Te.

In the case of the PSEC-KEM security proof in [ShoO1], the solver of the ECDH
problem makes use of a (¢,qp,qx,€) adversary against the IND-CCA security of
PSEC-KEM to generate a list of ¢p 4+ qx elements containing the solution wvP to
the instance (P,uP,vP) with probability roughly €. Since in a random curve the
ECDDH problem is assumed to be intractable, we were forced to output an element
of the list chosen uniformly at random, so the probability was decreased by a factor
gp+qx. The reduction was then not tight. Since ECDDHP?""8 is efficiently solvable,



we can find the correct value uvP by testing the entries on the list, obtaining thus
a solver of ECDHP?""& with probability roughly e within time ¢ + 2(qx + ¢p)T%.
Therefore, PSEC-KEM presents a very tight security reduction, allowing the use of
shorter ciphertexts than on a random curve, as we shall see in the next section. In
Table 3 these concrete security results are summarized. We do not find out if this
reduction can be improved using the ECDDH solver in the simulation, since our
reduction is already very tight.

Scheme Assumption | Reduction

ACE-KEM ECDHP¥™ | ¢’ ¢

t' ~t+qx(4T. + SRy,)
ECIES-KEM | ECDHP*"™ | ¢ ~ ¢

t' =~ t+qx(4T. + SR,)
PSEC-KEM | ECDHP¥"™ | ¢ ~ ¢

t' ~t+2(gx +qp)Te

Table 3: Security results over a pairing curve

Hardness of the ECDHP?""8 problem. When working with pairing curves we are
restricting the set from which the elliptic curves are drawn, and then “some random-
ness” is lost with respect to the original key generation algorithm in these KEMs.
Therefore, we obtain a different ECDH problem, which we have called ECDHP?""e
problem, and that could be easier to solve than the ECDH problem. Must we trust the
hardness of the ECDHP?" "8 problem? We answer to this question positively taking
into account the current status of ECDL problems over pairing curves in cryptog-
raphy research. As the survey [DBS04] shows, they are being intensively applied to
proof the security of new appealing protocols. The new assumptions arising in these
protocols are at least stronger than the assumption that ECDHP2""& problem is hard.
As a consequence, the trustness on these new assumptions implies trustness on the
ECDHP?""8 hardness assumption.

4 Efficiency and key size considerations

Computing the security parameter. Let us assume that the IND-CCA security of
any of these KEMs is (¢, ¢p, gx, €)-broken by some adversary A. Since this adversary
can be run repeatedly (with the same input and indepedent internal coin tosses),
the expected time to distinguish a real encapsulation from random with advantage
roughly 1 is ¢/e. Thus, the security parameter of the scheme is nxgpyv = log(t/e) =
n + m, where n = logt and m = log(1/e).

Usually, ¢p < 230 (that is, up to one billion decryption queries are allowed), and
g <t =2%. We also consider that evaluating a KDF function is a unit operation
(that is, takes the same time as a 3-DES encryption). Using Miller’s algorithm,
computing a pairing in E(F,) with embedding degree k can be done in O(klogq)
multiplications in F, (cf. [Men93]), while computing a square root modulo ¢ takes at
most O(log® ¢) multiplications in F, (cf. [Coh93]). Assuming that a multiplication
in IF, takes 10 times longer than one hash query, and that k£ ~ 10, we obtain

thomps &t 4+ 2% - 102 - (4log g + log? q) = 2" + 2%2 - log? ¢
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for ACE and ECIES-KEM, and
thepe ~ t+ 2% -10% - log g ~ 2" + 253 - log ¢

for PSEC-KEM. In the following, we compute the exact security only for ¢ = 289 for
ECIES-KEM and PSEC-KEM, since the result for ACE-KEM is equal to the former.
Setting m = 0 and n = 80, we obtain ngcigs = 80 (respectively npggc = 80), that
is, a 280 security level in each scheme. Let us compute the minimal parameter length
to obtain this security level. An advantage roughly 1 in the IND-CCA game implies
that the solver computes CDH successfully with probability roughly 1 in time tjqpg
(respectively tpgpc)- Assuming that |g| &~ 200, then

thoms ~ 250 #2022 and  thgpo & 250 4 203 . 28,

Both reductions are pretty meaningful and then, to get a 289 security level on any

of these KEMs a group G is enough with at least a 280 security of the ECDHP?ine
problem. If we make the additional assumption that the ECDHP""8 and ECDLP"ne
problems have comparable security, then we need a group G with 149 < |p| < 165
following [LVO1]. In the case of PSEC, this is a great improvement compared to a
length of roughly 270 bits needed over a random curve, as we are going to show next.

PSEC-KEM parameter length over a random curve. Let us study now PSEC-
KEM key size for a random curve using the tools introduced above. Let us assume
the IND-CCA security of PSEC-KEM is (¢, ¢p, gk, €)-broken by some adversary A.
Setting m = 0 and n = 80 (that is, a 280 security level in the scheme), we obtain

t'~t=2% and ¢ ~1/2%.

From the last expression, an advantage roughly 1 in the IND-CCA game implies that
the solver computes ECDH succesfully with probability roughly 27°° in time ¢/ = 2%,
However, an algorithm solving ECDH with probability roughly 1 is needed to find
the parameter length. Running this algorithm with independent internal coin tosses
2% times and returning the most frequent answer, ECDH is solved with probability
roughly 1. The computational effort needed to do this is 2°° - 280 = 2135 Agsuming
that ECDH and ECDL problems have equivalent hardness over a random elliptic
curve, we conclude that PSEC-KEM needs a subgroup G, with [p| ~ 270, since the
best attack known is using the Pollard p method.

Security reduction to ECDL. Using a technique due to Maurer [Mau94], one
can build certain elliptic curves with a cyclic group G, for which ECDH and ECDL
problems are equivalent. As it was claimed in the previous section, the running time
of this reduction is O(B - (log(p)?) group operations in G, and field operations in
Fp, and O(log(p)?) calls to the ECDH solver for G, [MWO00]. Since in our case the
computation of ECDH instances is by far the most expensive operation, the reduction
to the ECDL problem can be carried out with a 222 factor decrease in security for
all three schemes, therefore with a total time of 280 -2%2. Due to this somewhat small
factor, the security of the scheme and the ECDL problem are tightly related. This
allows to conclude that all three KEMs achieve provable security in the RO model,
with the 289 IND-CCA bound, in a group G, with a 2102 gecurity of the ECDL prob-
lem, provided that the ECDL to ECDH reduction of [Mau94] holds for this group.
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This theoretical equivalence gives us a good indication about the hardness of the
ECDHP'""& problem, since the reduction factor is small enough.

Curves Related Assumptions Minimal
Problem security level

Pairing curves ECDHP"™® | RO 280

Maurer pairing curves | ECDLP®™" | RO 2103

Table 4: Discrete log KEMs for the 289 security bound

Performance. It is now time to study the performance of each scheme over pairing
curves. Since all three security reductions are very tight, we have seen that a 280
IND-CCA security is achieved under a 230 security level for the ECDHP2""& problem.
Assuming that ECDHP?""& and ECDLP?""8 problems have comparable security in
a pairing curve, and that the embedding degree is large enough to keep the DL
infeasibility in F x (in which case, the best attack known is to use the Pollard p
method in G,), a pairing curve E,(F,) with a group G, with |p| ~ 160 is needed.
However, as explained in the next section, the state of the art in pairing curves
prevents us for claiming that in general |p| ~ |q|, but |p| < |q| < 2|p|.

In the following section we quote some methods for generating pairing curves
where |p| = |q| = 160. With these values, the performance features of ACE-KEM
and ECIES-KEM are equivalent to those of Table 2, while in PSEC-KEM (K, C)
length is reduced from 66 to 52 bytes, and public/secret keys are reduced from 34
to 20 bytes, thus obtaining a great improvement. From these values, we easily see
that ECIES-KEM presents the best performance in every feature. Since all three
KEMs base their security on the same problem, that is, the ECDHP¥""8 problem, we
conclude that ECIES-KEM should be considered the best option among these KEMs
if they are implemented over pairing curves.

5 Generating suitable pairing curves

In this section we indicate how to generate curves in which the schemes can be
performed, and we also discuss why they are suitable. Our aim is to find out how to
generate pairing curves E, ,(F,) to perform the schemes and where the ECDHP?irine
problem is assumed to be hard. We start by describing the conditions that a candidate
curve must hold. In the first place, we want pairing curves with a small embedding
degree k, in order to obtain an efficient pairing computation. However, we cannot
use embedding degrees as small as possible: we must take into account that the
field Fx has to be large enough to fit into the required security level. In our case,
we are looking for a 280 security level of the DL problem, which corresponds to
1024 < |¢*| < 1464, using the estimates by Lenstra and Verheul [LV01] and the
parameters used nowadays.

Unfortunately, curves with a small embedding degree are extremely rare, as shown
in [BK98]. An exception are supersingular elliptic curves [Men93], which have k < 6.
However, inasmuch as we are looking for small security parameters, only supersingular
elliptic curves with k = 6 can fit our purposes. Nevertheless, it is not easy to generate
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such curves over prime finite fields, and the popular constructions use the field Fgm
(cf. [GalO1]).

Following [Gal04], an algorithm for generating curves with arbitrary k and with
a large prime factor p of any form is proposed in [CP01]. Although it solves the
embedding degree problem, it has the drawback that it produces curves with ¢ > p?.
For instance, this means that for £ = 10 and |p| = 160, the algorithm returns a curve
Eqp(Fy) with |g| > 320. It is an active area of research to obtain pairing curves in
which |g| = |p| and k > 7. First steps in this direction have been taken, for instance,
in [DEMO02, BW03, SB04]. In [SB04] a method for generating pairing curves with
Ip| =~ |q| and k = 6 is described, while in [BWO03] curves are generated with & > 7
and |q| << 2|p|.

6 Conclusions

In this paper we have studied the performance and security properties of the elliptic
curve KEMs proposed to be standardized when they are implemented on pairing
curves. First of all, we have summarized the properties claimed in the recent litera-
ture, and we have fixed some inexact results. One important contribution has been
to point out that there is no evidence supporting that the 160 bits key size used up to
now for PSEC-KEM over a random curve results in a secure implementation. In fact,
a rigorous security analysis shows that a secure key size must be near 270 bits. This
new value has a negative impact on PSEC-KEM performance. Another contribution
has been to show that, on the one hand, despite their different behaviour from a se-
curity point of view in a random curve, the elliptic curve KEMs present a very tight
security reduction to the ECDHP""& problem; and, on the other hand, to suggest
that ECIES-KEM should be considered the best option among these KEMs in envi-
ronments using pairing curves (where the ECDDH assumption does not hold). This
could seem quite suprising, since ECIES-KEM in a random curve was not included
in the portfolio of recommended cryptographic primitives by NESSIE [NES03b].

We have discussed the hardness of the ECDHP""8 problem taking into account
the current state of the art in protocol design and cryptanalysis. Even though the
ECDHP?""& problem may be easier than the standard ECDH problem, it is harder
than the usual problems considered in provably secure schemes using bilinear maps.
In contrast to the gap-ECDH problem, which in the context of KEMs is mainly a
theoretical tool (there is no ECDDH solver anywhere), ECDHP""8 is defined within
the cryptographic practice. We think that if ECDL problems over pairing curves are
considered secure to built on cryptographic protocols (which is the current trend), we
could use pairing curves to implement protocols that were designed to be implemented
in a more general context but which present better performance properties when
restricted to pairing curves. A major breakthrough in the efficient implementation
of these KEMs would be to find methods to generate pairing curves with embedding
degree at least 7 and |q| =~ |p| .

Finally, we hope that the results presented here along with the known properties
in the literature will help to find the most suitable contexts for the use of each elliptic
curve KEM.
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