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Abstract

We herein discuss two modes of attack on multivariate public-key cryptosystems. A 2000
Goubin-Courtois article applied these techniques against a special class of multivariate PKC'’s
called “Triangular-Plus-Minus” (TPM), and may explain in part the present dearth of research
on “true” multivariates — multivariate PKC’s in which the middle map is not really taken in a
much larger field. These attacks operate by finding linear combinations of matrices with a given
rank. Indeed, we can describe the two attacks very aptly as “high-rank” and “low-rank”.

However, TPM was not general enough to cover all pertinent true multivariate PRalree-
like PKC's, multivariates with relatively few terms per equation in the central map and an easy
inverse, is a superset of TPM that can enjoy both fast private maps and short set-up times.

However, inattention can still let rank attacks succeed in tame-like PKCs. The TTS (Tame
Transformation Signatures) family of digital signature schemes lies at this cusp of contention.
Previous TTS instances (proposed at ICISC '03) claim good resistance to other known attacks.
But we show how careless construction in current TTS instances (TTS/4 andl J@&lcerbates
the security concern of rank, and show two different cryptanalysis in BdéXES units.

TTS is not the only tame-like PKC with these liabilities — they are shared by a few other
misconstructed schemes. A suitable equilibrium between speed and security must be struck. We
suggest a generic way to craft tame-like PKC’s more resistant to rank attacks. A demonstrative
TTS variant with similar dimensions is built for which rank attack takez®? AES units, while
remaining very fast and as resistant to other attacks. The proposed TTS variants can scale up.

In short: We show that rank attacks apply to the wider class of tame-like PKC's, sometimes
even better than previously described. However, this is relativized by the realization that we can
build adequately resistant tame-like multivariate PKC’s, so the general theme still seem viable
compared to more traditional or large-field multivariate alternatives.

1 Introduction

In a sense, this paper describes an episode of the usual balancing act as a cryptologist veers between
requirements in speed and security. We will discuss two specialized linear-algebra based attacks
against multivariate public-key cryptosystems of a certain type, one that we will term “tame-like”.

After we define tame-like PKC'’s, we will discuss why they are desirable, and how the attacks in
question, which we will collectively call “rank attacks”, affects the security and design of a tame-
like multivariate scheme. Proper criteria for building a good tame-like PKC are given and instances
from the TTS family of signature schemes are constructed to be resistant to concerns of rank while
retaining good qualities including speed, scalability, flexibility, and minimal resource requirements.



1.1 Multivariate Public-Key Cryptosystems

RSA still “rules” all PKC some 30 years after public-key cryptography was invented ([17]). How-
ever, due to current advances in cryptography like number field sieves ([7, 42]), secure RSA applica-
tions requires ever-longer keys, which negatively affects the execution speed and cost of deployment.
Multivariate PKCs were introduced as an alternative to cryptosystems with large algebraic struc-
tures. A typical multivariate PKC (following notations of [8]) over the base figldhas a public
mapV = ¢z o0 ¢y 0 ¢y : K™ — K™. Maps¢; : w — x = Myw + ¢; andgs : y — z = M3y + ¢3
are invertible affine inK™ and K™ respectively. The security of the scheme is then based on the
NP-hardnesg[22]) in solving a large system of quadratics and the decompositidn iito compo-
nentse;, ¢, and¢s. Preimages fon, : x — y are presumed available, but the speed of the private
map depends on how fast this inversion can be. The speed of the public map and the size of the keys
depends only om andn, and key generation on the complexity@f— but of this more later.
The currently best-renowned multivariate PKC’s, SFLA5SK39]) and QUARTZ ([38]), de-
scend from Matsumoto-Imai€™* ([28]) and Patarin’s HFE ([37]) respectively. Both second-round
NESSIE ([33]) digital signature scheme candidates were designed by Patarin-Goubin-Courtois team.
The former was eventually recommended for low-cost smart cards. Alas, the security of these can-
didates is under siedeand their speed and key sizes can still use some improvement.

1.2 Tame-Like Multivariate Public-Key Cryptosystems

In C* (resp. HFE), the central mag is really taking one (resp. sum of a few) given high powers.
As a resultin HFEg, ' is painfully slow;C* has a simpler and much fastgf’, but vulnerabilities

of the C*~ family originate from its structure ([36]). In either family eaghwhen written as a
quadratic polynomial in the; has hundreds of terms, and we cannot inygrivithout treating all

of y as an element in a larger field, resulting in a time penalty.

Given that multiple variables were introduced for speed originally, it seems natural to investigate
alternatives in which each, or y; is a separate entities, rather than one component of a big field
elementyet, ' must remain quickly doable. In this way, the central map dmt$iave to be taken
over a much larger structure. Such PKC'’s we téme multivariates We will hereafter concentrate
mainly on one subclass of true multivariates, Taene-Like Multivariate PKC's.

A tame-like PKC’s is a multivariate whose central map has relatively few terms in each
equation and a speedy inverse image readily available, usually by no more than serial substitution
and solving linear system#s we shall explain, tame-like PKC’s are extremely fast and suited for
deployment in resource-poor PKI environments. The questiareishey secure enough?

Early tame-like multivariate PKC’s had included Birational Permutation Schemes ([40]) and
TTM ([29]). Coppersmithet al put paid the former ([10, 11]). Goubin and Courtois announced
cryptanalysis of TTM in particular and of all “TPM” (triangular-plus-minus) PKC'’s, a much broader
genre of similar systems, in general ([23]). The techniques they used were not new: One appears to
be due to Coppersmitét al and the other seems well-known in other circles before introduced to
cryptography by Shamir and Kipnis ([4, 10, 11, 26, 43]). But they somewhat expanded the scope and
simplified the procedures. They also conveyed the impression that the concept of a faster signature
systems thad*-based ones is beyond redemption. Little attention has been paid to tame-like PKC
since then until Chen and Yang proposed the TTS (Tame Transformation Signatures) family of
digital signatures ([8]). As usual, the truth lies somewhere in between.

We will discuss how the rank attacks of Goubin-Courtois function and how well they work in
general. We point out liabilities in current TTS instances, in partictii@rnon-obvious vulnerability

patarinet al recently announced that SFLASHis not secure enough ([15]), although the cryptanalysis ([13])
is disputed ([49]). SFLASH, its intended replacement, is supposedly still faster than RSA but has much bigger
dimensions, signatures and keys. QUARTZ, slow to begin with, also has its security called into question ([12, 20]).
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of having central equations with many linear combinations at the same r&vik show how to
cryptanalyze them on these vulnerabilities. Then we show how to construct tame-like PKC so as
to account for such possible weaknesses. In line with our suggestions, we exhibit patched TTS
instances resistant to all known attacks. The result of our suggested repair work seems promising:
still lightning-fast, especially suited for embedded implementations but can also excel elsewhere.

(m,n) | PubKey| SecKey| Rual | Rank| XL | RSA | BCC | Ben | oetup [ Verty
16,22 | 4400B| 879B| 262 287 268 512 112 34 6.4 | 0.05
20,26 | 7540B| 1254 B| 2™ 288 284 768 | 128 451 11.5] 0.09
20,28 | 8680B| 1399B| 2% 2120 1 984 | 1024 | 144 51| 15.1| 0.11
24,32 | 13440B| 1864 B|| 2% 2121 1 9% | 1536| 160 67| 25.4| 0.18
24,34 | 15096 B| 2039 B| 2% 2153 1 99 | 2048| 176 76| 32.8| 0.20
28,38 | 21812 B| 2594 B| 2% | 2154 [ 2110 | 5560| 192 91| 48.4| 0.26
28,40 | 24080 B| 2799 B| 213 | 218 | 9110 1 30721 208 || 104 | 58.6 | 0.28
32,44 | 33088 B| 3444 B| 22! | 2186 | 2125 1 4006| 224 || 121 | 90.0| 0.44
32,46 | 36064 B| 3679 B| 2'29 | 2218 | 2125 | 5120| 240 | 138 105.0| 0.48

36,50 | 47700 B| 4414 B|| 2138 | 2219 | 2136 1 §144| 256 | 157 | 143.0| 0.60

Table 1: Security and Performance of Enhanced Th5) = hash and signature sizes

As seen in Table 1 (speed tests on a 500 MHz Pentium Ill PC with gcc3), compared to RSA,
the patched TTS variant has good secdrigvels against known attacks, and it signs 3 orders of
magnitude faster (cf.Tab. 4). We did basic simulations to make sure that no estimate is out of line.
We hope to have somewhat spurred renewed interest in multivariates.

2 TTS As Tame-Like Multivariate PKC's

One (the) obvious idea is to have thgcomputable in mostly sequential ordehen giveny. We
will in Sec. 3 show this previously attempted approach ([21, 40]) to be not entirely sound.

2.1 Tame Transformations, Tame(-Like) Maps, and TTS

One candidate for a suitabfg for a tame-like PKC suggests itself naturally. In algebraic geometry
there is a type of map calledlame Transformatianwith dimensionsn > n, this is a polynomial
map’ ¢ : K — K™, takingx toy either affinely = Mx + ¢) or in de Jonquierdorm:

Y1 = T,
yi = xj+qi(x1, Ty ..., xio1), j =21
yj = qj(xl,xz,...,xn),j:n—0—1~-m.

K is thebase field If bijective, it is atame automorphisraver K, in which case obviously = n.

A tame transformation can be inverted quickly, but its inverse has high degree and is hard to
write out explicitly. This is a venerable concept — in two variables, all polynomial automorphisms
can be decomposed into compositions of tame automorphisms ([32]). It is unknown, despite the
efforts of a lot of algebraic geometers, whether a map in three or more variables is a composition of
tame automorphisms, and if so how to decompose it.

Moh harnessed this basic idea in his public-key encryption scheme TTM ([29]). Chen and Yang
adapted the underlying concept of TTM for digital signatures and for security concerns extended it

2Security Estimates for RSA and ECC taken from NESSIE ([34])
3Note that in a finite field just about any function can be represented as a polynomial.

3



slightly ([8]) to include the larger class of polynomial maps that we can easily find an inverse for
using a sequence of substitutions @adlving for linear equationsut without a low degree explicit
inverse. As in [8], we will hence term such mapsne For example, the map below

Y = Tk + Qg Tp—g Tp—1 + by Tp_7 Tp—o + Cp T Tp—3 + d Tp—s Tp—a, 8 < k < 26;

Yor =  Tor + Qo7 T1g Tog + bay Tog Tas + Coy T2y Tog + day To Tar;

is a tame map, because a preimage can be componentwise computed, straightforwardly and quickly,
after assigning any,, . .., 7 andxz, # —d,. . We see that Shamir’s Birational Permutations uses a
tame-like middle map. Tame maps are also the centerpiece of TTS ([8]):

The TTS (Tame Transformation Signatures) family of digital signature schemes are de-
fined as “a multivariate scheme with a tame map as its central, non-linear paption

¢o was sometimes also called tkernelmap, but it is too confusing here, and we will use
the name theentral mapinstead. A TTS scheme clearly fits tkeme-likeconcept (cf. Sec. 1)
whenever eachentral equationi.e. an equation giving g in x from the cental map, has relatively
few terms involving ther;'s compared to the dimensionsandm.

2.2 Current Variantsof TTS

In the notation of [8], the public or verification map of TTS has the canonical decomposition of

most multivariate PKC’s, namely : w € K" 2 x &2 y % 7 € K™. We will henceforth take the

base fieldk to be GF(2®). The currentform of TTS is “TTS/4” ([8]), using20-byte hashes and

28-byte signatures. Its central map : x = (xq, x1,..., T27) —y = (Ys, Yo, - - -, Y27) IS:
Y = Tp + Qp Th—g Tp—1 + bp Th—7 Tp—s + Ck Tp—g Th—2 + dj Tp—s Tp—3, 8 < k < 23;
Y2u = o4 + Q24 T16 Taz + bog T17 Tog + Cog T1g Too + dog Ty Tay;
Y5 = Tos + Qg5 Ti7 Tog + bos T1g Loy + Co5 T4 Taz + dos Ty Tas;
Y26 = Tog + o6 T1g Tos + bog g Tog + Co6 Ty Tog + dog Te Tae;
Yor = oy + Qo7 Tg Tos + bay Ty Taz + Cor Te Tos + doy 7 Tay.

We see that thig, is alsotamebecause from any we quickly compute one possihieby randomly
assigning a value to, ..., x7, subject to the restrictions # —d501+i fori =4-..-7, then solving
sequentially forcg, . . ., zo7. An alternative form called TT3/ uses ag, the map given in Sec. 2.1.

Both TTS instances operate ov&r= GF(2%) as follows (cf. [8]):

To Setup Keys: Generate random full-rank8 x 28 matrix M; and20 x 20 matrix M3 over K.
Similarly, generate random non-zeig b;, ¢;, d; € K fori = 8---27, and a random vector
c; € K%, Find the compositiol = ¢3 o ¢, o ¢; and in the process compute the unigye
such that” has no constant part. Save %680 coefficient ofI” as the public key. Savd; ",
M3, c1, c3, and parameters;, b;, ¢;, d; as the private key, 1312 bytes long.

To Sign: Take the messag¥, find its 160-bit hash digest vecter= H(M). Doy = M3 (z—c3),
thenx € ¢, '(y) as above, thew = M;'(x — c,). Releasé M, w).

To Verify: On receiving(M, w), compute hash = H (M) and match with/ (w).

4Compared to a straight tame transformationydor TTS seems to be missing a few equations. This is because the
public map of a signature scheme need not be injective, so some information can be compressed or projected out.
SBoldface indices are irregularities in the pattern of indices made in TTS/4 for security improvements ([8]).
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TTS/4 and TTS? claim very fast execution times, short signatures, manageable key lengths,
and reasonable security. Previous analysis ([8]) seems to show known attacks to be ineffective. The
best attacks previously came from the XL family ([14]). [8] claims good XL-resistance for the TTS
family schemes because it can be structured to have high-dimensional solution spaces at infinity
([30]). Even giving the XL-wielding attacker all benefits of the doubt, TTS/4 and Z'1s8ill have
a security level oR®® AES blocks or2®® finite field multiplications. The other powerful general
attack, the method of Gbner Bases, is hard to obtain a tight timing for. But the same properties
that guards against XL-methods also helps againgbar Basis attacks.

We will show however that there is design misjudgment in these TTS instances that leads to fast
cryptanalysis and how to patch them effectively and generically.

3 Rank Attacks vs. TPM and Other Tame-Like PKC'’s

The presentation of rank attacks [23] was very broad, one might even say ambitious. The authors
postulated a type of PKC called TPM (triangular plus-minus), which is essentially just a multivariate
PKC using for its central mapp¢) a tame transformation with some equations lopped off at the
beginning and some extraneous equations added. TPM was pronounced to be completely useless
due to very general attacks. The implication was left hanging in the air that for serious purposes, no
tame-like (or nonc™*-descended, non-HFE-derived) PKC’s need not even apply, ever.

In a nutshell,[23] showed that the private keys of TPM's and some similar tame-like PKC’s
can be distilled from the public key through seeking linear combinations of certain matrices at given
ranks.To evaluate how tame-like PKC'’s stand up to such attacks, we need to answer many questions:

e Does the TPM category really cover all the tame-like PKCs of interest?
No! In particular, TTS does not match what the authors of [23] describe as a TPM signature
scheme. T. Moh ([31]) also maintains that the description does not match TTM.

Some mismatches: A tame-like signature scheme may solve linear equations rather than
search; tame-like PKC’s need not have a sequence of increasing kernels in the central equa-
tions. The TTM central map comprise more than one part, altering its rank properties.

¢ If not, can the attack be extended to other tame-like systems?
Yes, some objections of [31] seem valid, yet the ideas are meritorious and can be applied to
decompose public maps from many PKC's, including badly designed TTS or TTM instances.

e Does the attack always work as described? Can it be faster or slower, and when?
Yes, sort of. The attacks will run on all TPM and some other tame-like systems with time
costs similar to what is given in [23]. The attack concludes successfully any time we can
find kernels corresponding to all central equations. If the central equations are tangled some-
how and finding the kernel to one central equation makes finding another one easier, we may
cryptanalyze much faster (cf. Sec. 3.3). Otherwise the search can go on for a lot longer.

e Can we construct systems of a requisite complexity under Rank and other attacks?
Yes, we can arrange for any desired complexity against rank attacks while retaining high
practical speed and resilience against other attacks; that is the subject matter of Sec. 4.

3.1 The Rank Attack: Vulnerability on the Low-Rank Side

Algorithms seeking linear combinations of matrices at a given rank have been around (cf. [4, 43]),
but was first introduced for cryptanalysis by Shamir and Kipnis in [26], against HFE. As presented
by the later [23], the basic ideas of a Rank Attack can be encapsulated as follows:
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1. When a matrix\/ € K™*™ has rankr, then there is &<’|~" probability that a random vector
w € K" lies inker M, a vector space isomorphic f6" .

2. When a quadratic function undergoes an invertible change of variablesxfronw (where
= Myw + c1), its highest-degree past’ Q;x becomesv” (MTQ;M;)w, or we can say that
the new matrix); = MTQZMl gives the quadratic part gfin w, andrank (); = rank Qz

Usually we want)); or Q,- written as symmetric form. Whethar X' = 2 as most often is the
case, we cannot do so, but the symmetric matriées: Q); + Qr, H, =0, + QT are uniquely
determined (no matter how we choageor ;) and also satisfyd; = M7 HM,.

3. Whenm < n, we expect the system of equations” | a;(H;w) = 0 to have no non-trivial
solutions for(a;) most of the time ifw is randomly chosen, because there are too many
equations. In contrast, if. > n, we can always find sucdfa;) regardless of; andw.

That given, let the public map tak€™ to K™, i.e.m andn be the number of equations and vari-
ables respectively. Also let = |K|, andr be the smallest rank possible in a central equation
or a linear combination of central equatiorfr a TPM, but not for a general tame-like system,
this will be the initial central equationWe borrow an illustration from [8], showing the rank of
Ys = Ty + agxox7 + by x1 x5 + €3 T2 x5 + dg w3 14, from TTSL' (Sec. 2.2):

We can write the quadratic part gf as(x” Qx) in any
way, and(Q + Q) will be as shown to the left, and
its kernel iszy = 1 = --- = 27 = 0. Indeed, if a
quadratic has the formd,,z,x, + Ceqroxg + -+ - With

0 all indicesa, b, ¢, d, ... distinct, then the kernel of the
corresponding symmetric matrix willbec : 0 = z, =

Ty =T, =x9="---}, hence for TT or TTS/4,{x :
xp-g = - = x,_1 = 0} can be said to be the kernel
of y in x-space. For ease of reference we will use the
0 0 shorthandker y;, or kery y; if there may be confusion.

co o oo
coc oo
Sooo

L oo
g o
5
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We see that the rank of (the symmetric matfix corresponding toys in x-space is 8. This rank
is unchanged inw-space. Indeed, if the kernel gf in x-space isS then the kernel inw-space is
(M;)~1S. In general for? cross-terms with distinct indices, the rank of the matrids [23] then
gives an attack to break a TPM in expected titig' = I"m?). The steps outlined therein are:

1. Let D; be the symmetric matrices representing the homogeneous quadratic portions of the
public keys. That is, if; = w’ D,w plus lower terms, the®), = D + D”. TakeP to be
>, AiD;, an undetermined linear combination of the

2. Guess at a randomrtuple (w1, ..., wy) of vectors inK™, wherek = [™], then setPw, =
- = Pwj; = 0 and attempt to solve fox; via Gaussian elimination.

3. In a TPM, the first linear combination located usually represents the initial central equa-
tion. For a tame-like system in general we should have found the central equation(s) or linear
combination(s) thereof with the rankthat is the smallest possible.

If we only use one test vecter in the case of an encryption scheme, a non-trivial solutigh
will always exist for the systemh ", \;D;w = 0, sincem > n (more variables than equa-
tions). l.e. everyw belongs to the kernel of some combination of ihe We need multiple
test vectors so that their common membership in a kernel of some matrix is significant.

SupposeP is a linear combination of th®; with rank, then its kernel has dimension-— 7,
so the probability that the-tuple of vectorgwy, ..., wy) will all fall in ker P is¢~*". Since
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the rank usually goes up two at a time, the odds should be overwhélthimigve have found
a multiple ofy,, and the coefficients; (essentially, a row of1; ' up to a factor).

For a TPM,ker Hy C ker(Hy + k1Hy) C ker(Hs + koHo + k1Hy) C - -+ with dimensions
usually increasing in twos. So odds &% : 1 in favor of this being a multiple off; and not
any linear combination involving/,. We can argue similarly for other tame-like PKC's.

Also, in general we can tell if we hit a non-minimal kernel (one containing other kernels),
because this is exactly when tikewe find will not be unique up to a constant factor.

Proposition 1 (Time to Find a Vector in any Given Kernel) Suppose one unique linear combina-
tion H = 221 «; D; has the minimum rank then the algorithm described above will fiktf HM;,

or rather some vector(s) in the dimensiom— r) kernel[M; " (ker H)], with an expected cost of
~ ¢ (m*(nk/2 — m/6) + mn?k) multiplications in the finite field.

Proof. For eachk-tuple(wy, ..., wi) and each paifi, j) we must evaluat®,w,; with n* multipli-
cations each, then do Gaussian eliminatiomérequations andh variables. The requisite number
of multiplications can be found in numerical analysis texts (e.g. [3]). O

According to [23] the kernels corresponding to egcform an increasing chain by containment, so
once the largest kernel has been found, the scheme should unravel in its entirety. After that one could
find M3, and thenM; by searching in each kernel space for the next smaller kernel. We note that
square terms in the central map are eliminated during symmetriZatimhdoes not affect a rank
attack. One expects a rank attack to do its worst against a signature schemeg,-sincélowever,

the TPM schemes being attacked do not represent the actual schemes cotiectbe, we need

to evaluate how well they actually apply to the point where we can make a real decomposition or
forgery. We will try to compute the actual effort in attacking a TTS instance on rank in Sec. 3.3.

3.2 Other Concerns in a Rank Attack

Clearly attacking on low rank is devastating when the conditions are met. But it is no panacea and
needs some corrections and proper care in implementation. In particular, these can all go wrong:

1. In [23], the target scheme has= 2. It can be a lot higher. For example= 8 in TTS/4 and
TTSR'; furthermore, often we can increase this parameter with relative ease. According to
[29], the dimensions of a TTM instance can be suchthat[ ] = 3. Suppose every central
equation has at least two cross-terms, then4 and we are talking aboyt” = 2% already.

2. Normally, in a PKC everything except the secret key is known. But when trying to break a
multivariate PKC, the attacker may not know in advance what scheme a public key represents,
only the base field(, the dimensionén, m), and a set of public-map polynomials. E.g.aTTS
central map can spawn (in addition to parameters) adjustible indices or even optional terms.

3. In a TPM scheme of [23], the kernels of the central equations form a decreasing sequence:
kery;.1 C kery;. In a well-designed scheme, the kernels of the central equations may not
form such a sequence, and there may beomino effectlf an attacker need to find evepy
then a lot more effort is necessary (see below). This is intimately connected to the next point.

4. While we assume that, has the smallest rank othery; and even many linear combinations
of they; (hence theH;) with different kernels can also share the same minimum rank

6at least whem? is usually fairly large §5536 here)
In a sense, square terms are fundamentally linear.



This is a very double-edged sword. In TE2S/for non-zeroa (and most:), the rank of
Yi+oyi1 andy;+ay;.o are bott8. Soisy;+ay;1+Lyiv2 if aPaip1ci1dip = B(bidip1bivat
d;a;11d;y); in TTS/4, we also have (most of theynk (y; + ayii1) = rank (y; + ayips) = 8,

but there are no three-term combinations with rank 8. We see that in either scheme there are
thousands of combinations of theat rank 8 whose kernels are for the most part disjoint

If we can not make use of the relationship between the combinations, just keeping track of
everything is a major chore; if we can, then the cryptanalysis may become substantially easier.

3.3 The “Crawling” Rank Attack vs. TTS/ 2" and TTS/4

It is on this last point — multiple equal-sized kernels — that we shall show how to extend the
venerable technique of rank attack to a cryptanalysis of Z7Te8/d TTS/4 with an even lower cost.
Take any given rank 8 central equation, then whea 28 andm = 20, according to Prop. 1, we
should nee@®56°® - [20% - (28/2 — 20/6) + 20 - 28%] ~ 278 field multiplications to hit this equation.
NESSIE ([33]) requirements are not counted in field multiplications however, but in AES blocks.
Using data from the NESSIE performance report ([35]), and comparing with actual operations, we
obtain the exchange rate of one AES block to betwee®® and2° finite field multiplications if
these are done with tables of logarithms and exponentials. All told, we can expect a time complexity
of ~ 27 if we want to find a vector in any given rank-8 kernel. Howevbere are many kernels
to choose from, and any single one work®r simplicity in illustration, letus = a9 = a19 = bg =
«o-=djo=1InTTSL', then we have

keryg = {X:x(]:q;l:...:x7:0};
keryy = {x:x;=a9="- =125 =0}
keryi,p = {X:x2:x3:...:x920};
ker(ys +ayg) = {x:@mi=a3=a5=a7=0,20: 02 24 : 06 35 =0":0": 0’ 1};
ker(ys +oy0) = {x:ma=a3=a¢=a7=0,20: 74 : 05 =21 : 35 : 79 =0’ : a: 1}.

With these coefficients there is no rank-8 combinationy9fys, y10; when such a combination
exists, the kernel vectosswould haver, = 7 = 0andxg : x4 : x5 : x5 = 21 : X3 : x5 : X9 IN fixed
ratios. In the case of TTS/4, we have instead the kernels

ker(ys +ayo) = {X:mi=a5=a¢=a7=0,20:03: 29 :14: 205 =0’ :a®:a?:a:1};

ker(ys +ayyg) = {X:axs=a4=a7=29=0, 2108 =a:1,20:25:76: 79 =0 :0a%:a:1}.
These kernels show the way to cryptanalysis along these steps:

1. Run the algorithm of Sec. 3.1 to find a vectoand the associated quadratie= ) . \;z; of
rank 8. VerifyU = ker z to be of codimension 8, and find a basis farThe expected number
of multiplications needed is roughf/® divided by the number of rank-8 forms, er2%.

We note that kernels of these 10,000+ rank-8 forms are largely distinct. Since there are only 20
rank-8 formsy;, but about000 rank-8 formsy; + ay;, 1 and almost as many forms—+ ay; .o,

so it is with good probability that the first vector yielding a codimension-8 kernel will come
from a mixed form rather than from one of thgs, and we need to isolatg’s thence.

2. Repeat the same algorithm as above, except that now we only test random veetbrsintil
v lies in more than one kernel; i.e., when we sovea; D;v = 0, the();) are not unique up

to a constant factor. Find a basﬁsagj))izl...m}jzl...s for this solution set inv-space, where
s > 1, and translate it intdg;),—..... in quadratic forms, vig; = Y7, (! z;). When this
does happen, we expect the dimensida be 2 or 3.
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In the unlikely case that we find two distinct sets of reswitsud(7;)) in maybe 5000 tests,
the initial (\;), or rather the quadratic fortn_;" ;| \;z; that these coefficients correspond to, is
likely a multiple of somey; where9 < i < 25. The two different kernels we find should be
{X X9 = Lj_g = 0 = Tim1 = 0} and{X T Ty = v = Tjm1 = Ty = O} The two
solution spaces must then corresponepton (y;, y;+1)-

More likely we locate only a single multi-dimensional solution space for(th¢ in 20000
tries, that should bepan(y;, y;11) or span(y;, yi11, yir2) depending on its dimension. For
example, assume that we initially hit a vector that lies in the kdvnefl ys + a9 and no other
quadratic form. With probabilit2—® a random vectox < U will lie in kerys N keryy =
{x:29 =21 = -+ = x5 = 0}. The same applies for any = y; + ay;1. Similarly if

z = y; + ay,12, OF any three-term combination that has rank 8, the odds to hit a vecator
more than one kernel 5%, and what we find igker ;) N (ker y;11) N (ker y;12).

The expected number of field multiplications needed for this step is very small, equivalent to
trying 2!'° random vectorsv in Sec. 3.1, or about*® multiplications here.

3. Of all the linear combinations of quadratic formswe find, modulo constant factors, we find
the kernelg; associated with them. There will be eith&i7 or 2562 4 256 + 1 = 65793
distinct linear combinations. Among the formiswe should have either two or three of the
y;'S. Repeat the search in eathas above until we find the kernels that corresponds to the
y;'s. Suppose we che@k? vectors from each of the 2! kernelsU; to see if any of them is a
y;, that would take no more thatt? multiplications.

4. Say we have found the form fgg, sinceyg = xg + agx128 + bgaxy + cor3w6 + dox 425, WE
should be able to identify one linear combination ofth@sxy and eight others as, . . ., zs,
so in short, finding any, should yield in very short order ajl; andz; wherej < i. Even if
we can’'t do the decomposition, the same incremental search going up and down the indices
will locate all the formsgy; andz;, i.e. the matriced!; andMjs, for us.

With the abovecrawl process aiding our attack, the chance of finding a kernel vector is essentially
multiplied by abou®!* as compared to the attack in [23]. The upshot is that a solution can be located
in betweer2%* to 25 multiplications (0r28 to 2°° AES blocks).

We experimented with 2- and 3-term analogues to PT&hemes. We were unable to complete
the whole run with2*® field multiplications for a three-termr(= 6, n = 22, m = 16) TTSE/
analogue, but the incremental search technique works, and on (Pentium or Athlon) PC's, the above
projected cryptanalysis process was in reasonable accord with what happened during our testing.
With 2-term TTS2’ type sample scheme (= 4, n = 16, r = 12) identifying the initial vector
actually takes less time<(23? multiplies) than the search for each new(~ 24° multiplies).

3.4 The Dual Rank Attack: Vulnerability on the High-Rank Side

A natural converseof the Rank Attack — finding a large kernel shared by a small subset of the
space spanned by the matridés— is to find a small kernel shared by a large subset of the linear
combinations of thé7;. Let the fewest number of appearances of all variables in the cross-terms of
the central equations be a totatimes, and without loss of generality let this be the last variable
Tn_1. IN TTS/4, this isro7, which only appears in»;. In the earlier TTS/2 (cf. [8])z27 does not
appear in any cross-term . In Birational Permutation Schemes ([40]), the last central variable appear
in only one equation. Here we try to describe concisely winannot be too small:

8We can rephrase the above asdok at a linear combination of the (duals af) with low rank when expressed as
a linear mapping from thev; to z;, so the name “Dual Rank Attack” seems apt.



1. If z,,_, does not appear in any, then every matrixif[j will have zeros for the entire last row
and column. Thus the intersection of all ke, z; (and hence th&er,, z; = ker D;) will be
non-empty and contain the subspace correspondibyto = {x : 2o = - -+ = z,,_o = 0}.

2. Supposer,,_; only appear in a cross-term in one central equationysay. Then whenever
an—1 = 0, the matrixP = >, a,; H; will again contain the subspacg,_,. Indeed, denote by
m;; the (7, j)-entry of M3, and we see that for every pair of indicgs;) there will be a linear
combination, namelyn; ,,_1 D; — m; ,—1 D; whose kernel contain the same subspédge, .

We can extend the above téor all indices: < j, if we cannot find a;; such thatlU,,_, C
ker(D; + ¢;;D;), thenm, ,,_, = 0 — so we can quotient,_; out of the system.

3. In general, with almost anft. + 1)-subset picked from th®;, there is a unique linear combi-
nation of these matrices with a kernel containing the common subgpace

Now we must exploit this critical weakness ([11]) by finding linear combinatjohsy; z; whose
kernels share a non-empty intersection, which Coppersmith-Stern-Vaudenay ([10, 11]) did elegantly
without needing to searcim a way that can be extended to find an ascending chain of kernels in the
matrix algebra over a ring. This neatly broke Birational Permutations. The basic C-S-V lemma is:

WhenP = D; + AD; is the linear combination whose kernel contaifis ;, thenP has
a characteristic polynomigi(z) = det(D; — AD; — =I) with double roots Hence, if
we solve the resultant gf (z) and f(z) as an equation in, that should be out;;.

[23] carried out the same Dual Rank Attddky searching, while mistakenly comparing the C-
S-V idea to those in Sec. 3.1. As an equivalent formulation, the essence of the more plebian G-C
version of the Dual Rank Attack (to find,_,) can be distilled as follows:

1. Form an arbitrary linear combinatidh = ) . ; D;; find V' = ker P by Gaussian elimination.

2. Whendim V' > 1, set(3_; A\;D;)V = {0} and check if the solution séf of the ()\;), also
found via a Gaussian Elimination, form a subspace dimensienu.

3. With probabilityg— we havel” = U,,_,. We can then expand to find bigger kernels.

One trial costs an elimination plus possible testing, so total C%Sﬁg + % + %(m3/3 + an)] q*.

We can cut down to a little more tha(run2 + %3) q" (in field multiplications) if we only consider

linear combinations of onlyu + 1) of the matriced);, and don't get too unlucky.

The method of Coppersmittt alis still applicable in expanding to larger kernels, but for a TPM,
or even the non-TPM TT3/and TTS, it is a lot easier. The next bigger kernel up the chain, which
isUss = {xg = 21 = - -+ = x5 = 0}, can be found by looking at subspaced/of U,;, which will
get usUys with probability 1/q. After we have the entire sequence of kernels, the cryptanalysis is
almost complete, so for TTS/4 and TR2Sthe cryptanalysis can be almost instant.

3.5 Further Discussion about Rank Attacks

Cryptanalysis of TTS/4 proceeds identically as TX S¢xcept that there seems to be no three-term
combinations of rank 8. We can use ttrawl to fish out successivg once one combination with a
rank-8 kernel has been found. The complexity should obviously be comparable to that £ TTS/

We can cryptanalyze improperly constructed instances of TTM very easily. Quite a few variants
of TTM had been proposed by T. Madt al. Some of them have central equations of the form

9Suggested by someone asked to review an earlier version. It seems more suitable than High or Max Rank Attack.
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y; = x; + Ajxpze. That is an equation of rank 2. The presentation in [23] does not make it very
clear, but the attack does not necessarily have to work on the initial equations. If there is no other
central equation of rank 2 with eithey, or x, in a cross-term, the kernel attack will easily locate

y;, Tn, T, andz; after an expectedh62* attempts at guessing some kernel vectors, whete[ ™|

is 2 or 3, that's abou?®® multiplications max. Suppose we have many equations of rank 2, whose
sole cross-terms argx;,, z;z;,, ..., z;z;,. By the same arguments as in Sec. 3.3, we will locate

a kernel vector of a quadratic form that looks lik§a, z;, + oz, + -« - + a,x;,) after2562—s+1
attempts. Even with two cross-terms in each equation, if there ageiations of which any linear
combination will still be rank 4, the cost is ordj(**—+1) attempts, where the effort in each attempt

is some substitutions plus a Gaussian Elimination.

There is a moral to learn from this episode. People noticed the impact of rank in multivariate
cryptography early on. For example, Theobald was impressed enough to issue a warning ([44])
“varying ranks of quadratic forms”comprising the non-linear portion of a multivariate PKC is
dangerous. However, with great trepidation we venture this humble opinion:

Expert cryptographers were warning agaivstying ranks however, the dangers that
they saw may really have beehains of kernels ordered by containmeantd in partic-
ular, such a chain of kernels with some vulnerability at either end.

Note that we said either end. When you have a long chain of kernels, the smallest as well as the
largest can be the weakness, like we expanded on, as above.

4 Tame-Like Signatures Free from Rank Concerns

What kind of Tame-Like Signature Schemes can we build that are secure to Rank Attacks? Clearly,
being non-TPM is not sufficient, since no TTS instance discussed so far is a TPM. Neither is TTM.
The conclusion we can draw from Sec. 3 is: To be safe, the minimumramkhe matrices
representing the central equations and their linear combinations must be high; so must the minimum
non-reducible number of equationsvhere any given variables shows in cross-terms. What else?

4.1 Criteria for a Safe, Fast Multivariate Signature Scheme

Aside from Rank Attacks, main concerns for a tame-like multivariate PKC must surely be the pow-
erful method of Gobner Bases and its distant cousin, the linearization or XL based methods.

Proposition 2 In a Tame-Like Digital Signature Scheme needing a complexity estiméate of
1. Each equations should have as many cross-terms with no repeated indices as possible.

2. Almost all linear combinations of central equations should result in quadratic forms of higher
rank, only a relatively small number can have equal rank.

If & linear combinations of central equations share a minimal rank 2/, then we need
q" - (m*(n/2 —m/6) + mn*) /k > C. (1)

3. If the minimum number of appearances:ig central equations for any variable;, then
q“ (un2 + n3/6) >C. (2)

These sum up what we were doing in the last section.
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4. Let A be the smallest maximal set ofindices0 < i < n such that every cross-term in the
central map has at least one index4n then we require

q2vfn71<n _ U)4 > C. (3)

This is to avoid concerns that plagued Oil-and-Vinegar (OV) and unbalanced OV schemes
([24, 25]). Within this restraint, lowep means higher XL/FXL complexity (see Appendix).
5. LetDy = Do(m, k) := min{D : [tP] (1 — )k~ (1 4+6)™), T := (" 5°), R = (")
then
mkin ¢ -m*RT(co+c,1gT) < C 4)

wherecy ~ 4, ¢; ~ 1/4 are constants.

Item 5 results from XL/FXL ([12, 13, 14, 47, 49]) and @mer-based attacks ([2, 19, 20]). One
should refer to [30] for some algebraic geometry on XL-type attacks, and to [5, 6, 27]dm&r

Bases theory. For now see Table 1 for estimated security levels for conformant tame-like schemes
under XL. An explanation of these estimates can be found in the Appendix.

4.2 Tame-Like Digital Signature Schemes Built To Rank Specifications

NESSIE requires a complexity af’® AES blocks, or abou?®*® multiplications. Because of birthday
attacks, the hash length needs td be-bit, orm > 20. Obviouslyn > m in a signature scheme like
TTS. We need- < 10, so there should be at least 5, probably 6 or 7 cross-terms in each equation.
But we don’t wantn too large, because (&) — m too large can lead to searching-like concerns
(see [8]); (b) makes securing them against XL attacks harder (see Appendix 5.2); and (c) obviously
means longer keys and times (alln?). In all, we want(n, m) no bigger thar(28,20) or perhaps
(32,24).

Is this possible? Yes, by adopting a segmented design. The inisalz,, ..., x7) are essen-
tially random (see below). The initial equations (starting wighare solved as a linear system for
xg and subsequent;’s, with six plus cross-terms each; then the some “tame” equations yield more
x;’s through only serial substitution; then the last block of equations is solved as a linear system for
the finalx;’s (at least nine, which is also the minimum number of cross-terms in this block). For
ease of programming, the two systems to solve should have the same number of equations.

What is the security assessment by Rank Attack? Each equation has2rankmore. Even
if linear combinations of two consecutive equations in the first segment all have the sani@ rank
we have a comfortable cushion sing&!? = 2%, If the last block ha$ equations, the Dual Rank
Attack take256° - (9 - 282 + 283/3) or arounc® multiplications~ 25° AES blocks.

Can we ensure a signature for any hash? ¥ashot user, until the final segment of equations.
Make up the first segment with non-zero constant multiples oh the main diagonal of the system
matrix, no other appearances fer. Then set up the final segment so that it has constant multiples
of zy as the main diagonal of its system matrix and no other appearances ®his will do.

We exhibit an illustrative TTS instance with central map with two blocks of nine equations
each (and 7 and 10 terms per equation respectively) sandwiching two tame equations.

7 . )
Yi = T+ Do) PijTiTs (i) mod 9); @ = 8-+ 16;
Y17 = T17 T P17,101%6 + P172%T2%5 + P17,3T3T4
+P17,4T9%16 + P17,5T10%15 + P17,6T11%14 + P17,7212T13;
Y18 = T18 + P18,1%2T7 + P18 2X3%6 + P18,3T4T5
+P18,4C10T17 + P18,5C11%16 + P18,6T12%15 + P18,7L13T14;
i1
Yi = Xi+PioTi-11Ti—9 + Zj:w Dij—18 T2(i—j)—(i mod 2) Lj T Pi,i—18T0T;

27 ,
JFZ:j:z‘+1 Pij—18 Ti—j+19 Tj, © =19---27.
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To seep, more clearly and that it meets our requirements, we tabulate it differently in Table 2.
Of course, we will need to scale up the new variant if our estimate is somewhat off, or to meet future,
higher security requirements. We will discuss this next in Sec. 4.3.

y |8 9 10 11 12 13 14 15 16 y |19 20 21 22 23 24 25 26 2[7 Cross
8|11 2 3 4 5 6 7 19/ 0 18 17 16 15 14 13 12 11 8,10
9 1 2 3 4 5 6 7 2002 0 18 17 16 15 14 13 12 9,11
10 1 2 3 4 5 6 7213 1 0 18 17 16 15 14 1310,12
11| 7 1 2 3 4 5 6|26 4 2 0 18 17 16 15 1411,13
12|16 7 1 2 3 4 5237 5 3 1 0 18 17 16 1512,14
13|5 6 7 1 2 3 424|110 8 6 4 2 0 18 17 1613,15
1414 5 6 7 1 2 3)25|112 9 7 5 3 1 0 18 17 14,16
153 4 5 6 7 1 22614 12 10 8 6 4 2 0 1815,17
6|2 3 4 5 6 7 12715 13 112 9 7 &5 3 1 0]16,18

Table 2: Table Form of a Possible Central Map of an Enhanced TTS

The ¢, given above can be inverted as follows:

1. Assignzy, ..., x7 and try to solve the first nine equations fQyto x .

2. If we fall to solve the first system of equations, just redo everything from scratch. The prob-
ability is around255/256 that this system can be solved. At the very least the determinant
of the first system (for any choice af throughz;) is a degree-9 polynomial in; there can
only be at mos® choices ofr; to make the first system degenerate, so the odds to solve this
system is at leas¥47/256 and we will eventually hit upon a solution.

3. Solve serially forz;; andxg using the next two equationg;¢ andys).

4. Assign a random, and try to solve the second system of nine equations fpthroughz,;.
Again, there will be at most ning, that makes the determinant of the second system zero.
So, if the first attempt to solve it fails, try otheg until a solution is found.

Otherwise this signature scheme is identical to that of TTS/4 and2l' € can call this€nhanced
TTS The public key is stilR680 bytes, and the private key399 bytes (with167 variable non-zero
parametersl 184 parameters in the matrices, adtlbytes in the vectors). In this, we haveh = 15

as in Item 4 above (all cross-terms vanishjf= 2, = 24 = 26 = 0 = z;, i = 8---18), and the
“dimension of solution set at infinity"dim H,) parameter i, = 4 after 8 variables are guessed.

4.3 Scaled-Up Versions of Enhanced TTS

We were unable to fing, with n = 28, m = 20 in two systems of 10 equations that can be easily

constructed with regular patterns in its indices, unless we accept repetitive cross-terms (there are no

repeats now). However, more irregular instances exist, and an example is given in Appendix A.
However, we can scale the above up to provide for a whole sequence of TTS instances, which

we will call the “odd sequence” because the parametsrodd. We have (fof > 4) the (m,n) =

(4¢,6¢ — 2), with security parameter(s:, r) = (20 — 1,4/ — 6)

Yi = :171+Z] 1 PifTiT0—24(i+j+1 mod 20-1), fOr 20 — 2 <4 < 46 — 4;
Vi = Tit Dyt DiTisj—(i—3)Timj20)
+ Z?é:eg 1Pz‘jffz‘+j—3€+6xi+é’ st =4E—30rdl =2,
Vi = T+ DioTi— 2041 L0201 +Zg =101 Pij—(40-2)T2(i—j)~(i mod 2)Tj + Pii~(44-2)T0Ts

+Z] z+1pl7] (40—2)T46—1+i— Ty, ford¢ —1<i<60-—3.
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There is a different sequence of Enhanced TTS instances with the same Rank Attack estimates,
accounting for an even more conservative estimate for XL/FXL attacks, as in the equations below

7 .
Y = x; + ijl DijTj T84 (i4+j+1 mod 10), L = 8-+ 17;
Yi = T+ PaTi-17Ti-14 T PaTi-16Ti-15 T Pi3Ti—10Ti—1 + PiaTi—9Ti—2
+DisTi—8Ti—3 + Pi6Ti—7Ti—a + PirTi—eTi—s5, © = 18-+ 21;
Yi = T+ PioTi-10Ti-14 + ZJ —o9 Dij—21 T2(i—j)—(i mod 2) Lj T Pii—21 ToT;

+ZJ i+1 Pij—21 Ti—j+21 Tj, 1 =22---31.

This largerg, (also cf. Tab. 3) hagn, m) = (32, 24) and an FXL complexity abo@'¢ x higher.

y |8 9 10 11 12 13 14 15 16 1fy |22 23 24 25 26 27 28 29 30 3{1 Cross
8|1 2 3 4 5 6 7 221 0 21 20 19 18 17 16 15 14 18 §,12
9 1 2 3 4 5 6 7 2311 0 21 20 19 18 17 16 15 14 9,13
10 1 2 3 4 65 6 7 2414 2 0 21 20 19 18 17 16 1510,14
11 1 2 3 4 5 6 7|25/5 3 1 0 21 20 19 18 17 1611,15
12 | 7 1 2 3 4 5 6268 6 4 2 0 21 20 19 18 1712,16
13|6 7 1 2 3 4 52719 7 5 3 1 0 21 20 19 1813,17
14|5 6 7 1 2 3 4|28|12 10 8 6 4 2 0 21 20 1914,18
15/4 5 6 7 1 2 3)29|13 11 9 7 5 3 1 0 21 201519
163 4 5 6 1 230|116 14 12 10 8 6 4 2 0 2116,20
1712 3 4 143117 15 13 11 9 7 5 3 1 017,21

y |terml term2| term3 term4 term5 term6 termf7
18| 1,4 2,3 817 9,16 10,15 11,14 12,13
19| 2,5 3,4 | 9,18 10,17 11,16 12,15 13,14
20| 3,6 4,5 | 10,19 11,18 12,17 13,16 14,15
21| 4,7 56 | 11,20 12,19 13,18 14,17 15,16

,
5 6 7
|

Table 3: A More Conservative Central Map for Enhanced THS(32, m = 24)

We give the central map at higher dimensions for these Enhanced TTS instances, called the
“even sequence” because the parametereven. In the givem, below, we have (fof > 5) the
(m,n) = (4¢,6¢ — 4), with security parameters, r,v) = (2¢ — 2,4¢ — 10,4( — 2).

i = xi+ Zfi_{r’ DijTjT20—d+(i4+j+1 mod 20—2), TOr 20 —4 <7 < 40— 7,
Yi = T+ Zﬁj DijTitj—(46—6)Ti—j—(2041)
S DTt s T, TOT 40— 6 < i < AL —3;
v = +p20$16€2(€+1)x1 2(6—1) + Z] —40—2 Pij—(40-3)T2(i—5)—(i mod 2)Tj T Pii—(40—3)T0T;

+ZJ —i11 Pij—(40—3)Tar—2+4i—jT5, for 4¢ — 2 <7 <60-5.

5 Discussion and Conclusion

We provide an executive summary of what we see in tame-like PKC’s and especially signature
schemes, which we will (hopefully) justify in what remains of this section:

Advantages of tame-like PKC’s are speed, ease of implementation, and avoiding old attacks.

Fast Signing: In SFLASH?, the signing action includes multiplying and raising to the-th
power in(GF(2))3” many times. Atame-likePKC makes this stage faster.
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Fast Setup: In SFLASH?, the set-up process is a complex and round-about affair, involving
evaluatingyp, — itself a non-trivial procedure! — almost a thousand times. This is no
problem on a modern PC, but setting up on-card for the SFLA%kkes dongtime. In
a tame-like PKC, with few terms per equations, we can setup quickly by brute-force.

Avoidance of Previous Liabilities: There are many possible tame-like mas so we can
dodge or alleviate some weaknesses including those that SF{2Afil$t design around.

Drawbacks of tame-like PKCs are (mostly) possible new vulnerabilities on rank.

5.1 Does Our Patched TTS Instances Measure Up?

The answers seems to be: yes in all categories, as shown in Tab. 4 below:

Scheme || Signature| PublKey | SecrKey| Setup| Signing | Verifying
RSA-PSS || 1024 bits| 128B 320B| 2.7sec| 84 ms 2.0ms
ECDSA 326 bits 48 B 24B| 1.6ms| 1.9ms 5.1 ms
ESIGN 1152 bits| 145B 96B| 0.21sec| 1.2ms| 0.74ms
QUARTZ 128 bits| 71.0kB| 3.9kB| 3.1sec| 1l1sec| 0.24ms
SFLASH* 259 bits| 15.4kB| 2.4kB| 1.5sec| 2.8ms| 0.39ms
TTS(20,28)|| 224 bits| 8.6 kB| 1.3kB| 1.5ms| 51us| 0.11ms
TTS(24,32)|| 256 bits| 13.4kB| 1.8kB| 25ms| 67us| 0.18ms

Table 4: TTS and NESSIE round 2 candidates signature schemes on a 500MHz Pentium 1l

The public (encryption) does not change from TTS/4 to TTS (20,28), but the running time listed
here differ from the data in [8]. We may attribute most of the speed up to the improvements in
version 3 of gcc, the very popular GNU comptifethat we had upgraded to.

TTS verifies fast due to its smaller dimensions. E.g. SFLASi¢quires larger dimensions
chiefly to cater to the vagaries of security requirementgfoderivatives. In checking (verifying)

a signature we run the public map which takes time approximately equabt@2 multiplications,
which depends only on the hash and signature size and not on any details of central map.

TTS signs fast due to the structure of its public map. Like other multivariatésand¢; ' costs
aboutn? andm? (784 and400 for TTS (20,28)) multiplications respectively whilg ' does about
nl+2(0%/3+¢%), wherel ~ m/2. As the dimensions grow, ~ 3m /2. The entire signing operation
will take aroundm?(c, + m/12) multiplications in the field, where the quadratic term coefficient
co is aroundd.5, and will be larger thad. The implication is that for practical ranges, the speed of
signatures in TTS goes down in speed, more inversely quadratidivan the cubic.

Signing inn-bit RSA should cost a sequence of exponentiations and multiplications of length
proportional ton, when each multiplication costs 2n2 in multiplications or division§. So we
expect signing time to b& n®. Assuming that we multipliies and divides bybit chunks, the cost
should be greater thaim?/c*> multiplicative operations, which for = 32 andn = 1024 is about
2,000,000. TTS (20,28) does about 2,000. So TTS should be 1,000 times faster. Since the security of
each scheme increases in similar fashion, this should hold at all equivalent practical security levels.

We see that the above rough guide is good to the order of magnitude (cf. Tab. 4). Now look at
SFLASH?2. Out of several proposed methods, the most expedious inverse map for its central map
involves solving a system of linear equations that can be written as

xy!" = xqby, x,y € (GF(q))"

1%0ur previous tests used gcc-2.96, but gce3 was used by some other NESSIE entrants for their timings.
HExample: an expert, Prof. Brad Lucier of Purdue U., opines that better algorithms (e.g. FFT or Karatsuba) start to
multiply very slightly better tham? at around 1400 bits and divide better thanonly at around 6800 bits.
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wherea, b are parameters roughly proportionalto Raising to any;*-th being linear with a fixed
matrix, the system can be set up and solvedhi multiplications, wherev has the order of “a few”.

SinceC*~~ signature schemes also seems to follow roughty 3m /2, a back-of-the-envelope
computation shows that at roughly equal security levels, TTS would be about two orders of magni-
tude faster than SFLASH, and this is again in accord with Tab. 4. Since SF{?Asid been the
signing speed demofi,TS (20,28) — while a factor of two slower than the superseded versions in
[8] — is indubitably snappy. On a smart card, we can likely make do with lower-rated hardware
and without crypto co-processors, and still work faster than with RSA or ECC.

One might say that the Achilles’ heel for the extended family of multivariate PKC’s has always
been the novelty and untested status, but the next weakness to be mentioned will likely the size
of the public keys. To a large extent, this is no longer a problem for non-embedded applications,
even though 100-kilobyte public keys might conceivably sometimes pose a problem for electronic
commerce. The most practical way around this bugbear for smart cards is to avoid having the public
key stored on-card. However, since modern security often dictates keygembeatedn-card, we
prefer greatly that it be possible to generate public keys from a small amount of stored information.

The next question is: Why is the generation of keys fast for tame-like systems (again cf. Tab. 4)?

Let the (¢, j)-position matrix element irD;, be R;;;, and that forH, be Rijk. ThenR,j, =
ZZ(M?,)MRW, computable by:? matrix multiplications atn? multiplications per, and

Rye="Y . p-((MD)ai(M1)g; + (Mi1)aj(M1) ).

P Taxg iN Yy

Where the sum is taken over all the cross-terms in the central equation gjvinfjthe average
number of cross-terms (total cross-terms divided by equatiorts)tfi@n we can do this iAtmn?
multiplications, for a total ofn(m + 3t)n?. For the dimensions involvedjs usually proportional to

m, S0 the growth in time is quartic. According state-of-the art ([46]) key generation for multivariates
using other methods (variations of polynomial interpolation) is sixth-order, so we can expect a dif-
ference of at least two orders of magnitudes in setup timings for TTS (or another tame-like signature
scheme) and SFLASH, which is borne out by Tab. 4.

We wish to point out: the fact that verification and key generation varies respectively as the
cubic (nn?) and the quartici,?>n?) in the dimensions can be seen from Tab. 1. The eventually cubic
behavior of signing time is not apparently visible at the dimensions that we are using, but it can be
seen that the increase is somewhat more than in the quadratic.

5.2 Security for Tame-Like Signature Schemes and Especially TTS

There are two classes of attacks against multivariates cryptosystems: general and specific attacks.
Specific attacks cannot function if we design our schemes carefully. General schemes should always
function but can be slow. For example,dbner Bases can always be computed, but in the general
case has a woefully high time bound. We list what we know of attacks against multivariates, and
aside from Rank considerations, we refer the reader to the summaries given in [8].

General Attacks: of the following general types

Grobner Bases Methods:References at [1, 2, 5, 6, 27]. See Appendix B.

Searching vs. Signature SchemesDominated by algebraic methods and in general not prac-
tical against tame-like systems ([8]).

Rank Attacks: As discussed in the text.
Linearization-Type: Traceable from [26] and developing to XL attacks. Appendix B below.
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Specific Attacks: Bilinear Relations ([36], used againsSt and TTM) not functional against TTS;
Separation of Oil and Vinegar ([24, 25], guarded against; Patarin’s IP Approach ([37]), not
functional against TTS (see [8]); Attacks on 2R schemes, nonfunctional against TTS; Sub-
space Attack against SFLASH (see [8]), nonfunctional against TTS.

The discussion above should not be limited to TTS but is concordant with all tame-like systems
constructed according to the rules given in Sec. 4.2. What we can say about the security of TTS?

The main condition for XL and current @Gbner Bases methods to operate is given in the Ap-
pendix. If we assume an optimistic bound for the equation-solving phase, the XL/FXL family of
methods will take the amount of time as given in Tab. 1.

5.3 A Summary

We have described how to construct a tame-like signature scheme less susceptible to attack on rank.
The results look quite promising and we think that it bears another look by cryptographers, notwith-
standing the apparent slowdown in the research of multivariate PKC of recent.

Remark: We thank Prof. J. Ding of U. Cincinnati for helpful discussion about possible vulnerabili-
ties. This preprint will be suitably updated soon.
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A An Instance of a Differently-Formed Enhanced TTS

Each row in Tab. 5 specifies a central equation, for the initial equation of the two blocks are:

Ys = @y -+ agTyrg + begXeTg + CyT5x10 + dgxaT1y + €3T3T12 + f3T12
Yis = T1g + a18T18To + D18 19T4 + C18T20T5 + digT21T15 + €18T22T14 +

fi8Ta3w13 + G18T24T12 + h1sTasT11 + 118TasT10 + J18TorTo + k1sT7Ts

We estimate this to have a security estimate of aBSutinder Rank and Dual Rank attacks, but
still the same XL complexity of arounzi®.
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y |7 6 5 4 3 2 1ljcross| y |18 19 20 21 22 23 24 25 26 27 cross
818 9 10 11 12 1,218 0 4 5 15 14 13 12 11 10 7,8
919 10 11 12 13 2,3(19|{10 0 3 4 16 15 14 13 12 11 8,9
10|10 11 12 13 14 3,4} 20|12 11 O 2 3 17 16 15 14 18 9,10
11|11 12 13 14 15 4,5 21|14 13 12 0O 5 2 8 17 16 1510,11
12| 12 13 14 15 16 5,6 22|16 15 14 13 0O 4 5 9 8 1711,12
13| 13 14 15 16 17 6,223} 9 8 17 16 15 0 3 4 11 1012,13
14|14 15 16 17 8 1,31 2412 10 9 8 17 16 0 2 3 1213,14
15|15 16 17 8 9| 2,4|25{13 12 11 10 9 8 17 O 5 14,15
16| 16 17 8 9 10| 3,5| 26| 2 14 13 12 11 10 9 8 O 15,16
17| 17 8 9 10 11 46| 27| 3 5 15 14 13 12 11 10 9 16,17

Table 5: A Different Central Map for Enhanced TTS

B Assessing Tame-Like Signatures for XL-Like Attacks

XL-like attacks are techniques in whithe original equations are multiplied by all monomials up to
some degree, then all these resultant equations is solved as a linear system of equation considering
every monomial to be a different independent variabtfiéghere are enough independent equations,
the result is a solution of the system if possible, and a return value of “impossible” otherwise. To
help the method terminate earlier, it is a good idea to guess at some variables (FXL variant).

This approach was first proposed in [14] as a refinement of its precueBoearization([26]).

XL only operates on determined or over-determined systems; () = - - - /,,,(x) = 0, where
n(< m) is the dimension ok. With more variables than equations, we must guess at enough
variables so as to have at least as many equations as variables. XL at Daheregoes:

1. Take all monomials® = z%'2%? - - - 2%+ with total degregb| = >°,b; < D — 2, and generate
all equationsc”/;(x) = 0. Call these equatioriR(?).

2. The set7 = 7(P) of monomials of total degree& D hasT = ("*DD) elements. Run an

elimination on the? = m ("*0~?) equationsR(?), treating each® € 7(V) as a variable/,
The number of independent equations cannot ex@éedl when the system is solvable. We
may conclude the elimination with an equation to solvesfpfsay), if the row echelon form
has a final equation containing up to the+ 1 termsl, 4, ..., 2P. To achieve this we only

need/ > T — D (instead of' = I — 1).
3. If necessary, solve the univariate equation givingand repeat as needed.

Since there ar& monomials (including) and R equations, the time complexity of XL is whatever
time to solve a system of equations that big. For some rave reviews, see [13] and other papers.

We have however some reason and expert opinions to believe ([9, 41]), that the general approach
is slightly overhyped. There are two problems with XL-like attacks. One is the so-chlled/ .,
parameter, which needs to be eliminated, usually by guessing at variables. The other is that there
are more dependencies in the system of equations than what the author counted in [13] and earlier
papers. For example, attacking Enhanced TTS with 28, m = 20 even after guessing #tirteen
variables, (i.en = 15, m = 20) using a maximum degree of 6 (resp. 5), there are 54264 (resp.
15504) monomials and only 52820 (resp. 13280) of them are independent out of 77520 equations
found. One must get to a degree of 7, in which case using the formulas in [13] and using some
blocking optimizations, it takes 2% AES block equivalents to do the entire cryptanalysis.
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According to our computations ([16, 47, 49]) a rough guide is for XL methods to operate only if

7] {0 (= 3 (1 (m e 1) (Dm )

g J —J

goes negative. According to the latest reports, the advanc@on@r Bases methods Bf, andF5

are almost equivalent to the XL+XL2 combination. These algorithms (XL+X.2,andF'5) have

a slightly lower operative degree, but cannot use sparse matrix algorithms as well as the original
XL. Furthermore, all of these must be combined with guessing at an optimized number of variables.
Please see [49] for an analysis. Assuming Strassen-like elimination oflgrdee 2.8, XL/FXL

will beat F4 andF5 by a small margin.

If we assume that we don’t have to worry about thex H, situation and consider all sorts of
optimizations including the sparse matrix techniques, the best time bounds we can get (which are
computed case-by-case) are as listed in Table 1. Thus, the minimal XL-Like Attack time bounds are
roughly concordant with that of Dual Rank Attack time bounds.
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