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Abstract. For the last two decades the notion and implementations
of proxy signatures have been used to allow transfer of digital signing
power within some context (in order to enable flexibility of signers within
organizations and among entities). On the other hand, various notions of
the key-evolving signature paradigms (forward-secure, key-insulated, and
intrusion-resilient signatures) have been suggested in the last few years
for protecting the security of signature schemes, localizing the damage
of secret key exposure.
In this work we relate the various notions via direct and concrete secu-
rity reductions that are tight. We start by developing the first formal
model for fully hierarchical proxy signatures, which, as we point out,
also addresses vulnerabilities of previous schemes when self-delegation
is used. Next, we prove that proxy signatures are, in fact, equivalent to
key-insulated signatures. We then use this fact and other results to es-
tablish a tight hierarchy among the key-evolving notions, showing that
intrusion-resilient signatures and key-insulated signatures are equivalent,
and imply forward-secure signatures. We also introduce other relations
among extended notions.
Besides the importance of understanding the relationships among the
various notions that were originally designed with different goals or with
different system configuration in mind, our findings imply new designs
of schemes. For example, many proxy signatures have been presented
without formal model and proofs, whereas using our results we can em-
ploy the work on key-insulated schemes to suggest new provably secure
designs of proxy signatures schemes.

1 Introduction

Characterizing relationships among cryptographic notions is an important task
that increases our understanding of the notions and can contribute to con-
crete designs. In this work we look at two paradigms, proxy signatures and
key-evolving signatures, that were suggested at different times for totally dif-
ferent purposes. After developing the first formal model for fully hierarchical
proxy signatures and addressing a vulnerability in previous proxy schemes, we
prove that proxy signatures are equivalent in a very strong sense to key-insulated



signatures (one of the key-evolving notions). We also relate the various notions
within the key-evolving paradigm, that were originally suggested for different
system architecture settings and adversarial assumptions, establishing a tight
hierarchy among them (tight in the sense of no security loss in the reductions).
In the rest of the introduction we elaborate on these primitives, our results, and
their significance.

Proxy Signatures and Our Contributions in Modeling them. The paradigm of
proxy signature is a method for an entity to delegate signing capabilities to other
participants so that they can sign on behalf of the entity within a given context
(the context and limitations on proxy signing capabilities are captured by a
certain warrant issued by the delegator which is associated with the delegation
act). For example, Alice the executive might want to empower Bob the secretary
to sign on her behalf for a given week when Alice is out of town. Such proxy
capability transfer may be defined recursively to allow high flexibility in assigning
limited entitlements. The notion is motivated by real life flexibility of “power of
attorney” and other mechanisms of proxy.

The notion has been suggested and implemented in numerous works for about
20 years now: one of the early works to be published was presented in [6], whereas
for a cryptographic treatment see [13]. Most of the past work is informal and
without complete proofs. The first (and to the best of our knowledge, only) work
to formally define the model of proxy signatures, is the recent work of Boldyreva,
Palacio, and Warinschi [3]. Their definition is of proxy signature, with only one
level of delegation, and without using the warrants as part of the model (though
warrants are used in the common scheme of delegation by certificate, a notion
that was analyzed by [3]).

We provide the first definition of fully hierarchical proxy signatures with war-
rants, supporting chains of several levels of delegation. Furthermore, the fully
hierarchical approach illuminates an important aspect of proxy signatures, re-
garding self-delegations, which was previously overlooked. Specifically, we iden-
tify a vulnerability in previous solutions (both in existing proxy signature im-
plementations such as the delegation by certificate, and in the formal model
which rendered them secure). This weakness, which results in enabling a dele-
gatee to possibly take “rogue actions” on behalf of a delegator, does not exist in
our model, and we point out how the delegation by certification implementation
(and other schemes with the same problem) can be modified in a simple way so
as to avoid such attacks, and satisfy our strong notion of security.

Key Evolving Signatures. The paradigm of key evolving signatures started with
Anderson’s suggestion in [1], towards mitigating the damage caused by key ex-
posure, one of the biggest threats to security of actual cryptographic schemes.
Indeed, if the secret key in a standard signature scheme is exposed, this allows for
forgery, invalidation of past and future signatures, and thus repudiation through
leaking of the secret key. To limit the damage, the key evolving paradigm splits
the time for which the signature is valid (say, 5 years) into well defined short



periods (say months, days, or a period per signature, as required by the applica-
tion). The secret key can then evolve with the periods (see details below), while
maintaining the same public key. This idea gave rise to three well-defined notions
of protection against key exposure, compartmentalizing the damage. The three
notions have different configurations and different adversarial settings, achieving
different properties:

1. Forward-Secure Signature Schemes (FS) [1, 2]: Here the system is comprised
of a single agent holding the private signing key, and at each period the key is
evolved (via a one-way transformation) so that the exposure does not affect
past periods. This notion has the advantage that even if all the key material
is completely exposed, past signatures are still valid, and cannot be forged
or repudiated. On the other hand, such a complete exposure necessarily
compromises the validity of all future signatures, and the public key cannot
be used any more.

2. Key-Insulated Signature Scheme (KI) [5]: Here the system is made out of
two entities: the signer and a helper (base). At the start of the period the
signer is updated by the helper to produce the next period’s key. The helper
is involved only in the updates. In fact, the helper can give the signer access
to any period at any time (random access capability). The exposure of up
to t of the N periods, chosen adaptively by the adversary, still keeps any
period that was not exposed secure. The limitation of necessarily exposing
all future keys, as in forward security does not apply anymore; this limitation
is removed by the introduction of the helper (base) which is never exposed.
The optimal t achieved by some of the schemes is N−1 where the remaining
period is still secure. Note that here the keys at the helper and the signer
are not forward-secure. This model was first considered in [4]. We remark
that the notion of strong KI which protects the signer from the helper is
irrelevant here (and there is a simple transformation from KI to strong KI).

3. Intrusion-Resilient Signature Scheme (IR) [9]: Here the scheme is also made
out of a signer and a helper (base). Now the exposures of both the helper
and the signer are allowed. If the exposure is alternating (i.e., at each pe-
riod at most one of the signer or the helper is exposed) then the scheme
remains secure for all unexposed signing periods. If the exposure is of both
the helper and the signer simultaneously, then the system becomes forward-
secure from that period on: the past is protected (excluding the periods
where the signer was directly exposed) but the future is now necessarily in-
secure. Note that unlike KI, this notion allows exposure of the helper, and
that both the helper’s key and the signer’s key are forward-secure.

Our Reductions: A Characterization of Proxy Signatures, and The Hierarchy
of Key Evolving Signatures. Our goal is to explore the relations among the
key evolving signature notions and proxy signatures, towards gaining a better
understanding of the primitives, and obtaining practical constructions. From a
complexity-theoretic point of view, one can establish equivalences using the fact
that these notions have implementations based on a generic signature scheme



(typically less efficient than implementations based on specific number theoretic
assumptions). For example, see the generic constructions of [2, 12, 5, 7] for key
evolving signatures, and the delegation by certificate scheme for proxy signatures
that was suggested with different variations in numerous works (see Section 2.1).
Thus, the notions are equivalent to the existence of one-way functions in terms
of computational assumptions [14, 15]. However, our goal is to establish direct
reductions, both from a practical point of view (namely, given an implementation
of one primitive, construct the other primitive using the first almost “as-is”,
with a straight-forward and efficient transformation), and from a theoretical
point of view: analyzing the efficiency and the concrete security guarantees. In
particular, we consider direct reductions between paradigms so that there is a
concrete security evaluation of one scheme based on the concrete security of the
related scheme to which it is reduced, while minimizing the loss of the concrete
security value, and minimizing overhead in efficiency. Under this notion of direct
reduction we found that:

– Proxy signatures are equivalent to KI signatures. In particular, we show that
proxy signatures imply KI signatures via a tight reduction achieving the same
concrete security, and that KI signatures imply proxy signatures via a tight
security reduction. Our characterization of proxy signatures immediately
provides a suite of provably secure proxy signature schemes, based on the
previous (and future) schemes for KI signatures. For example, all the schemes
of [5] can be used, including the efficient ones based on trapdoor-signature
schemes, and their instantiations (based on RSA, identity-based signatures
from the Gap Diffie-Hellman group, etc.). This is a significant contribution,
since only few provably secure proxy schemes were known before (e.g., [3]
for the non-hierarchical case).

– We show a direct and tight hierarchy for key evolving signature schemes.
Specifically, we show that IR implies KI implies FS, and KI implies IR with-
out loss in concrete security. The implication KI → FS was left as an open
problem in [5], and our proof of it utilizes our result about the equivalence of
KI and proxy signatures.1 Note that while proving IR→ FS is trivial, relat-
ing them to KI is not. For example, the naive approach of unifying the signer
and helper of the KI model into the single signer entity of the FS model,
does not work. This is because the keys of the signer and helper together
are not forward-secure, by definition. In fact, the opposite is true since the
helper keys with the signing key for any period should be able to provide
the signing key for all other periods through the random-access property.

The relationships we establish are summarized in Figure 1 on the left side. In
addition, on the right side is a diagram summarizing our technical results which
are employed in the derivation of these relationships, showing the structure of our
proofs (and may be helpful to obtain the best constructions from an engineering

1 Once we established this result through the connection to proxy signatures, we also
succeeded in showing that KI → IR, which together with the trivial IR → FS gave
an alternative proof that KI → FS directly within key evolving signatures.
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Fig. 1. The left diagram is a summary of our main results, and the right diagram is a
summary of our technical reductions used to established them.

point of view). In particular, we introduce an intermediate notion between IR
and KI, denoted KI-FS, which has helped us to conceptualize the IR → KI
relation (and it may be of independent interest for certain applications). The
dashed line refers to the trivial implication of FS from IR, which together with
our result that KI implies IR gives an alternative proof that KI implies FS. We
believe that directly relating proxy signing (which is a trust management and
flexibility mechanism) to that of key evolving signatures (which are mechanisms
to protect against key exposure attacks) is somewhat surprising and conceptually
interesting. This was also a crucial step in answering the question about the
relation between KI and FS, a recognized open question about seemingly closer
notions.

Organization We provide the definitions for proxy signature schemes in Sec-
tion 2.1, together with motivations and discussions of the model. This includes
the differences and generalizations of our model compared with the previous
single-level model, the weakness of previous schemes, how it is addressed by our
model, and how to modify previous schemes to achieve security. In Section 2.2
we briefly review definitions for the key-evolving notions of IR, KI, and FS. In
Section 3 we present the characterization of proxy signatures as equivalent to
KI. Finally, in Section 4 we present the hierarchy of key evolving signatures,
by showing that IR implies KI (which is a consolidation of our proofs that IR
implies KI-FS and that KI-FS implies KI, given in the appendix), KI implies IR,
and by showing that Proxy implies FS (and therefore KI implies FS).

2 Definitions of Proxy Signatures and Key Evolving

Signatures

2.1 Proxy Signature

Model Proxy signature scheme ΠPS = (GenPS, SignPS, VrfyPS, (DlgDPS, DlgPPS),
PSigPS, PVrfPS, IDPS) consists of the following eight algorithms.

GenPS, the key generation algorithm, which takes security parameters k ∈ IN
as input, output an signing key SK and a public key PK .



SignPS, the signing algorithm, which takes a signing key SK and a message M

as input, outputs a signature sig on M .
VrfyPS, the verification algorithm, which takes the public key PK , a message

M , and a candidate signature sig as input, outputs a bit b, where b = 1 iff
the signature is accepted.

(DlgDPS, DlgPPS), (interactive) proxy-designation algorithms (where DlgDPS and
DlgPPS are owned by the designator iL−1 and the proxy signer iL, respec-
tively.)
DlgDPS takes public keys of a designator PK iL−1 and a proxy signer PK iL

,
the signing key of which the designator delegates its signing right (i.e., the
signing key is either a signing key SK iL−1 or a proxy signing key SKP i099KiL−1

depending on whether iL−1 is original signer or proxy signer), a warrant up
to previous delegation WL−1 and a warrant ωL set in current delegation as
inputs. DlgDPS has no local output. Note that the warrant usually contains
the information on “valid period”, “limitation”, etc. We say that a message
violates a warrant if the message is not compliant with the contents of the
warrant.
DlgPPS takes public keys of a designator PK iL−1 and a proxy signer PK iL

,
the secret key of the proxy signer SK iL

as inputs and outputs a proxy signing
key SKP i099KiL

and a warrant WL. Note that no secret key is given when the
type of the designation is “self delegation” in which the designator designates
its signing right to itself with limited capability2.

PSigPS, the proxy signing algorithm, which takes a proxy signing key SKP i099KiL
,

a message M and a warrant W as input, outputs a proxy signature psig.
PVrfPS, the proxy verification algorithm, which takes a public key PK i0 of the

original designator, a message M , a warrant W , and a proxy signature psig

as input, outputs a bit b, where b = 1 iff the proxy signature is accepted.
IDPS, the proxy identification algorithm, which takes a warrant W and a proxy

signature psig as input, outputs a list of identity (i.e., public key) PK ∗ in
the delegation chain.

Correctness: We require that all message M and any delegation chain j0 →
j2 → · · · → jL, PVrfPS(PK i0 , M, WL, PSigPS(SKP i099KiL

, M, WL)) = 1 and
IDPS(W, PSigPS(SKP i099KiL

, M, WL)) = (PK i0 , . . . ,PK iL
) if the proxy signing

key SKP i099KiL
and the warrant WL is the output of consecutive executions of

(SKP i099Kil
, Wl) ←

[

DlgDPS(PK i
l−1

,PK i
l
,SK i

l−1
,Wl−1,ωl),

DlgDPS(PK i
l−1

,PK i
l
,SK i

l
)

]

; and the message M

does not violate the warrant WL.

Definition of Security Let F be a probabilistic polynomial-time oracle Turing
machine with the following oracles:

– Osig, the signing oracle, which

2 This is significant since if the proxy signer (or device) has the original signing key
in self delegation it is impossible for the designator to limit the signing capability of
the proxy signer.



1. on input (“s”, M, j), outputs SignPS(SK j , M).

2. on input (“p”, M, (j1, . . . , jL), W ), outputs PSigPS(SKP j199KjL
, M, W ).

– Osec, the key exposure oracle, which on input

1. (“s”, j), outputs (SK j ,PK j).

2. (“sd”, j, L, (ω1, . . . , ωL−1)), outputs the pair of self proxy signing key and
the warrant (SKP j99Kj , W ) where the length of the delegation chain is
L.

– ODlg, the designation oracle, which

1. on input (“d”, (j1, . . . , jL, W, ω)), interacts with DlgPPS(PK jL−1 ,PK jL
,

SK jL
) on behalf of DlgDPS(PK jL−1 ,PK jL

,SKP j199KjL−1 , W, ω).

2. on input (“p”, (j1, . . . , jL)), interacts with DlgDPS(PK jL−1 ,PK jL
, SKP j199KjL−1 ,

W, ω) on behalf of DlgPPS(PK jL−1 ,PK jL
,SK jL

).

Let Q = (Qsec, QDlg) where Qsec and QDlg be the set of F ’s valid query to the key
exposure oracle and designation oracle, respectively. We say that the scheme is

– (j, Q)-signable if and only if (“s”, j) ∈ Qsec.

– ((j1, . . . , jL), W, Q)-proxy-signable if and only if either of the following holds

1. (“s”, j) ∈ Qsec (for all j such that 1 ≤ j ≤ L)

2. there exists L′(≤ L) such that

• (“d”, (j1, . . . , jL′ , W ′, ω′)) ∈ QDlg

• W ′, (W ′, ω′) do not contradict W

• jl = jl−1 or (“s”, jl) ∈ Qsec (for L′ ≤ l ≤ L)

3. there exists L′(≤ L) such that

• j1 = . . . , jL′ and (“sd”, L′, (ω1, . . . , ωL′−1)) ∈ Qsec

• ωi do not contradict W

• jl = jl−1 or (“s”, jl) ∈ Qsec (for L′ < l ≤ L)

Let SuccΠPS

F (k) be defined as follows,

SuccΠFS

F (k) =

Pr

[
(σ = (M, s,PK ) ∧ VrfyPS(PK , M, s) = 1) ∨

(σ = (M, W, ps,PK ) ∧ PVrfPS(PK , M, ps) = 1)

∣
∣
∣
∣

(SK j ,PK j)← GenPS(1
k)

σ ← F Osig,Osec,ODlg(1k)

]

where

– M is never queried to Osig and the scheme is not (j, Q)-signable if σ =
(M, s,PK j).

– ((i1, . . . , iL), M, W ) is never queried to Osig and the scheme is not ((i1, . . . , iL),
W, Q)-proxy-signable if (“s”, iL) 6∈ Qsec where σ = (M, W, ps, PK ) and
IDPS(W, ps) = (PK i1 , . . . , PK iL

).

We say ΠPS is (τ, ε, q)-secure proxy signature if SuccΠPS

F (k) < ε for any proba-
bilistic polynomial time Turing machine F with running time at most τ and the
number of the queries to Osig is upper bounded by q.



Discussion: Delegation by Certificate, and the Self-Delegation Attack
Delegation by certificate is a well-known simple notion. It achieves delegation by
the fact that the delegator computes a warrant W = Sign(SK d, (PK p, limitation))
with its secret key where SK d is the secret key of the delegator and PK p is the
public key of the proxy signer. The proxy signer can computes a proxy signature
ps for the message M simply by ps = Sign(SK p, (W, M)).

Delegation by certificate works well in many setting, however, we must be
aware that a naive implementation leads to an attack, even on the delegation by
certificate scheme. Specifically, we must take care of implementing self-delegation
securely. For example, the scheme in [3] is not secure under our security defi-
nition, and it can be easily broken simply by querying (“sd”, 2, Λ) from the
Qsig oracle (we will use Λ to denote null data.) Since the scheme of [3] is con-
structed in such a way that the proxy signing key is exactly the same as the
original signing key of the proxy signer even in the case of self-delegation, an
adversary can forge (non-proxy) signature for any message simply by querying
the self-delegation signing key. We must carefully consider the meaning of the
self-delegation, which is usually used for delegating limited signing capability.

The model proposed in [3] also possesses the problem of self-delegation.
Namely, the oracles defined by [3] only allows giving transcript of DlgDPS and
DlgPPS. Therefore, there is no way for the adversary to get the self-delegation
key. This is not the case in real life since self-delegation is needed when the sign-
ing key is stored in insecure environment (e.g. laptop PC get delegation from
a host). Therefore, the scheme must be secure even if the self-delegation key is
exposed. In contrast, our model allows the adversary to gain self-delegation keys
to reflect this real life setting. Our implementation of proxy signature based on
KI also takes care of this problem. Namely, in our implementation, new key pair
is always generated in self-delegation, which prevents the attack above.

In defining the model of proxy signatures the most crucial point is how to
treat the semantics of the warrant since the warrant usually contains application
specific information. Therefore, in the model level, it is desirable not to define
the detailed semantics. In our model no semantics is defined for the warrant,
it is only defined as input and output of the algorithm and a messages can be
in agreement or in violation with the warrant. Further, not having access to a
warrant prevents the usage of the delegated key, which is part of our model.

We also note that, in the general case, the chain of warrants may have ar-
bitrary information in it and one needs to read it to understand whether a
message is in agreement with the warrant. In this cases the length of verification
of a proxy signature must be linear in the size of the delegation chain. (Of course,
if warrants are of special semantics, e.g if they are not present at all, then this
may be improved, e.g using aggregate signatures as suggested by [3].)

2.2 Definitions of Key-Evolving Signatures

In this section we briefly review the definition of key-evolving signatures. These
definitions are the same ones as introduced in the original papers, except that
we unify them following the notations of [9].



Forward-Secure Signature (FS)

Model Forward-secure signature scheme ΠFS = (GenFS, UpdFS, SignFS, VrfyFS)
consists of the following four algorithms.

GenFS, the key generation algorithm, which takes a security parameter k ∈ IN,
the total number of periods N as input, outputs an initial signing key SK 0

and a public key PK .
UpdFS, the update algorithm, which takes a secret key of the previous period

SK j−1 as input, outputs a secret key of the current period SK j .
SignFS, the signing algorithm, which takes a signing key SK j , an index of a

time period j and a message M , outputs a signature 〈j, sig〉 on M for time
period j.

VrfyFS, the verification algorithm, which takes the public key PK , a message
M , a pair 〈j, s〉, outputs a bit b, where b = 1 iff the signature is accepted.

Definition of Security Let F be a probabilistic polynomial-time oracle Turing
machine with the following oracles:

– Osig, the signing oracle, which on input (M, j) (j ≤ N), outputs SignFS(SK j , j, M).
– Osec, the key exposure oracle, which on input (“s”, j) for j ≤ N , outputs

SK j .

Let Q be the set of valid key exposure query of F . We say that the scheme
is (j, Q)-compromised if and only if (“s”, j ′) ∈ Q for some j′ ≤ j. Further, let
SuccΠFS

F (k) be defined as follows,

SuccΠFS

F (k) = Pr

[

VrfyFS(PK , M, 〈i, s〉) = 1

∣
∣
∣
∣

(PK ,SK 0)← GenFS(1
k),

(M, 〈i, s〉)← F Osec,Osig(PK )

]

where (M, i) is never queried to Osig and the scheme is not (i, Q)-compromised.

We say ΠFS is (τ, ε, q)-secure forward-secure signature if SuccΠFS

F (k) < ε for
any probabilistic polynomial time Turing machine F with running time at most
τ and the number of the queries to Osig is upper bounded by q.

Key-Insulated Signature (KI)

Model Key-insulated signature scheme ΠKI = (GenKI, Upd∗KI, UpdKI, SignKI, VrfyKI)
consists of the following five algorithms.

GenKI, the key generation algorithm, which takes security parameters k ∈ IN, t

and the total number of periods N as input, outputs a master key SK ∗, an
initial key SK 0 and a public key PK .

Upd∗KI, the device-key update algorithm, which takes the master key SK ∗, in-
dices i, j for time periods (1 ≤ i, j ≤ N) as input, outputs a partial secret
key SK ′

i,j .



UpdKI, the user-key update algorithm, which takes a secret key SK i, a partial
secret key SK ′

i,j and indexes i, j as input, outputs the secret key SK j of the
time period j.

SignKI, the signing algorithm, which takes a signing key SK j , an index of a time
period j and a message M as input, outputs a signature 〈j, sig〉 on M for
time period j.

VrfyKI, the verification algorithm, which takes the public key PK , a message
M , a pair 〈j, s〉 as input, outputs a bit b, where b = 1 iff the signature is
accepted.

We also define the model of forward-secure key-insulated signature (KI-FS for
short). The functionality of the forward-secure key-insulated signature ΠKI-FS =
(GenKI-FS, Upd∗KI-FS, UpdKI-FS, SignKI-FS, VrfyKI-FS) is almost same as key-insulated
signature except that the update algorithm Upd∗

KI-FS can provide a partial secret
key SK ′

i,j only if j = i + 1.

Definition of Security Let F be a probabilistic polynomial-time oracle Turing
machine with the following oracles:

– Osig, the signing oracle, which on input (M, j) (j ≤ N), outputs SignKI(SK j , j, M).
– Osec, the key exposure oracle, which on input (“s”, j) for j ≤ N , outputs

SK j .

Let Q be the set of valid key exposure query of F . We say that the scheme is
(j, Q)-compromised if and only if (“s”, j) ∈ Q. Further, let SuccΠKI

F (k) be defined
as follows,

SuccΠKI

F (k) = Pr

[

VrfyKI(PK , M, 〈i, s〉) = 1

∣
∣
∣
∣

(PK ,SK 0,SK ∗)← GenKI(1
k),

(M, 〈i, s〉)← F Osec,Osig(PK )

]

where (M, i) is never queried to Osig and the scheme is not (i, Q)-compromised.

We say ΠKI is (τ, ε, q)-secure (t, N)-key-insulated signature if SuccΠKI

F (k) < ε

for any probabilistic polynomial time Turing machine F with running time at
most τ and the number of the queries to Osig, Osec are upper bounded by q and
t, respectively.

Intrusion-Resilient Signature (IR)

Model Intrusion-resilient signature scheme ΠIR = (GenIR, Upd∗IR, UpdIR, Refr∗IR,

RefrIR, SignIR, VrfyIR) consists of the following seven algorithms.

GenIR, the key generation algorithm, which takes security parameters k ∈ IN
and the total number of periods N as input, outputs an initial signer key
SKS0.0, an initial base key SKB0.0 and a public key PK .

Upd∗IR, the base-key update algorithm, which takes a base key SKB (j−1).r of
the previous time period as inputs, outputs a base key SKB j.0 of the current
time period and a key update message SKU j−1.



UpdIR, the signer-key update algorithm, which takes a signer key SKS (j−1).r of
the previous time period and a key update message SKU j−1, outputs the
signer key SKS j.0 of the current time period.

Refr∗IR, the base-key refresh algorithm, which takes a base key SKB j.r of the
current time period, outputs new base key SKB j.(r+1) of the current time
period and a key refresh message SKRj.r.

RefrIR, the signer-key refresh algorithm, which takes a signer key SKS j.r of the
current time period and a key refresh message SKRj,r, outputs new signer
key SKS j.(r+1) of the current time period.

SignIR, the signing algorithm, which takes a signer key SKS j.r, an index of a
time period j and a message M as input, outputs a signature 〈j, sig〉 on M

for time period j.
VrfyIR, the verification algorithm, which takes the public key PK , a message

M , a pair 〈j, s〉, outputs a bit b, where b = 1 iff the signature is accepted.

Definition of Security Let F be a probabilistic polynomial-time oracle Turing
machine with the following oracles:

– Osig, the signing oracle, which on input (M, j.r) (j ≤ N, r ≤ RN (j), where
RN (j) denote the number of times the keys are refreshed in the time period
r), outputs SignIR(SKS j.r, j, M).

– Osec, the key exposure oracle, which
1. on input (“s”, j.r) for j ≤ N, r ≤ RN (j), outputs SKS j.r.
2. on input (“b”, j.r) for j ≤ N, r ≤ RN (j), outputs SKB j.r.
3. on input (“u”, j) for j < N , outputs SKU j and SKRj+1.0.
4. on input (“r”, j.r) for j ≤ N, r < RN (j), outputs SKRj.r.

Let Q be the set of valid key exposure query of F . We say that SKS j.r is Q-
exposed if the one of the following holds.

– (“s”, j.r) ∈ Q

– (“r”, j.(r − 1)) ∈ Q(r > 1) and SKS j.(r−1) is Q-exposed.
– (“u”, j − 1) ∈ Q(r = 1) and SKS (j−1).RN(j−1) is Q-exposed.

Similarly, we say that SKB j.r is Q-exposed if the one of the following holds.

– (“b”, j.r) ∈ Q

– (“r”, j.(r − 1)) ∈ Q(r > 1) and SKB j.(r−1) is Q-exposed.
– (“u”, j − 1) ∈ Q(r = 1) and SKB (j−1).RN(j−1) is Q-exposed.

We say that the scheme is (j, Q)-compromised if and only either

– SKS j.r is Q-exposed for some r (1 ≤ r ≤ RN (j)) or
– SKS j′ .r and SKB j′.r are both Q-exposed for some j ′ < j.

Now, let SuccΠIR

F (k) be defined as follows,

SuccΠIR

F (k) = Pr

[

VrfyIR(PK , M, 〈i, s〉) = 1

∣
∣
∣
∣

(PK ,SK 0,SK ∗)← GenIR(1k),

(M, 〈i, s〉)← F Osec,Osig(PK )

]



where (M, i) is never queried to Osig and the scheme is not (i, Q)-exposed.

We say ΠIR is (τ, ε, q)-secure intrusion-resilient signature if SuccΠIR

F (k) < ε

for any probabilistic polynomial time Turing machine F with running time at
most τ and the number of the queries to Osig is upper bounded by q.

We refer the reader to the original papers [2, 5, 9] for the original definitions.

3 Characterization of Proxy Signatures

In this section we give the characterization of proxy signature. Namely, we prove
that proxy signatures are equivalent to key-insulated signatures by constructing
a key-insulated signature based on any proxy signature with concrete security
reduction and vice versa.

3.1 Proxy → (N − 1, N) KI

We construct (N − 1, N) key-insulated signature as follows. The signing key of
time period j corresponds to proxy signing key with delegation chain of length
j + 1. The important point is that the proxy signer is changed every time when
the period changes, which prevents the attacker who gets the signing key of
period j from forging the signature of the other periods.

The complete construction of ΠKI = (GenKI, Upd∗KI, UpdKI, SignKI, VrfyKI) from
proxy signature ΠPS = (GenPS, SignPS, VrfyPS, (DlgDPS, DlgPPS), PSigPS, PVrfPS, IDPS)
is as follows.

GenKI(1
k, N)

(SK (PS)
∗

,PK (PS)
∗

)← GenPS(1
k); (SK

(PS)
0 ,PK

(PS)
0 )← GenPS(1

k);

(SKP
(PS)
∗→0, W0)←

[

DlgDPS(PK (PS)
∗

,PK
(PS)
0 ,SK (PS)

∗
, Λ, Λ),

DlgPPS(PK (PS)
∗

,PK
(PS)
0 , Λ)

]

;

SK ∗(KI) ← (PK (PS)
∗

,SK (PS)
∗

); SK
(KI)
0 ← (SKP

(PS)
∗→0, W0);

PK (KI) ← PK (PS)
∗

;

output (SK ∗(KI),SK
(KI)
0 ,PK (KI));

Upd∗KI(SK ∗(KI), i, j)

(PK (PS)
∗

,SKP)← SK ∗(KI);
W ← Λ;
for n = 0 to j do

(SKP , W )←

[

DlgDPS(PK (PS)
∗

,PK (PS)
∗

,SKP , W, Λ),

DlgPPS(PK (PS)
∗

,PK (PS)
∗

, Λ)

]

;

(SK
(PS)
j ,PK

(PS)
j )← GenPS(1

k);



(SKP , W )←

[

DlgDPS(PK (PS)
∗

,PK
(PS)
j ,SKP , W, Λ),

DlgPPS(PK (PS)
∗

,PK
(PS)
j ,SK

(PS)
j )

]

;

SK
′(KI)
i,j ← (SKP , W );

output SK
′(KI)
i,j ;

UpdKI(SK
(KI)
i ,SK

′(KI)
i,j )

output SK
′(KI)
i,j ;

SignKI(SK
(KI)
j , j, M)

(SKP
(PS)
∗99Kj , W )← SK

(KI)
j ;

ps← PSigPS(SKP
(PS)
∗99Kj , M, W );

output 〈j, (W, ps)〉;

VrfyKI(PK (KI), M, 〈j, s〉)

PK ∗ ← PK (KI);

(W, ps)← s; PK ∗ ← ID
(PS)
PS (W, ps);

if (PK ∗ 6= (PK ∗, . . . ,PK ∗
︸ ︷︷ ︸

j+1

, ·)) then

output 0;
else

output PVrfPS(PK ∗, M, W, ps);

The following theorem holds for the above construction.

Theorem 1. Suppose there exists (τKI, εKI, q
sig
KI , q

sec
KI )-Adversary FKI against KI

as constructed above with probability εKI, with running time τKI, q
sig
KI queries

to the signing oracle, qsec
KI queries to the key exposure oracle then there exists

(τPS, εPS, q
sig
PS, q

sec
PS , q

Dlg
PS )-Adversary FPS against PS with τPS = τKI, εPS = εPS,

q
sig
PS = q

sig
KI , qsec

PS = qsec
KI , q

Dlg
PS = qsec

KI .

Proof. We construct the signing oracle OKI
sig and the key exposure oracle O

(KI)
sec

from O
(PS)
sig , O

(PS)
sec and O

(PS)
Dlg as follows.

O
(KI)
sig (M, j)

output O
(PS)
sig (“p”, (∗, ∗, . . . , ∗

︸ ︷︷ ︸

j+1

, j).M, Wj);

O
(KI)
sec (query)

if (query = (“s”, j)) then

(SK j ,PK j)← O
(PS)
sec (“s”, j);

(SKP∗99Kj , Wj+1)←






O
(PS)
Dlg (“d”, (∗, ∗, . . . , ∗

︸ ︷︷ ︸

j+1

), Wj , Λ),

DlgPPS(PK ∗,PK j ,SK j)




 ;



output (SKP∗99Kj , Wj+1);
else

output ⊥;

Then F
O

(PS)
sig

,O(PS)
sec ,O

(PS)
Dlg

PS (PK (PS)
∗

) = (M, W, σ,PK (PS)
∗

) where (M, 〈j, (W, σ)〉) =

F
O

(KI)
sig ,O(KI)

sec

KI (PK (PS)
∗

) is the adversary as desired. Since if FKI can forge a valid
signature 〈j, σ〉 for the message M then it is easy to see from the construction
that σ = (W, ps) is also a valid pair of a warrant and a proxy signature for
the message M . Further, the scheme ΠPS is not ((∗, . . . , ∗

︸ ︷︷ ︸

j+1

, j), W, Q(PS))-proxy-

signable where QPS = (Q
(PS)
sig , Q

(PS)
sec Q

(PS)
Dlg ) is a set of valid query to the oracles

of ΠPS and (“p”, (∗, . . . , ∗
︸ ︷︷ ︸

j+1

, j), M, W ) is never queried to O
(PS)
sig .

Further, the scheme is (N − 1, N) KI since if the adversary who gets the
signing key of periods j1, . . . , jN−1 can compute the signature of the period
jN 6∈ {j1, . . . , jN−1} then the adversary can compute the proxy signature which
is not proxy signable. ut

Efficiency: The running time of each algorithm GenKI, UpdKI, SignKI and VrfyKI

becomes as follows, where τ
(SIG)
Alg denotes the running time of the algorithm Alg

for the signature scheme SIG.

τ
(KI)
Gen = 2 · τ

(PS)
Gen + τ

(PS)
DlgP

+ τ
(PS)
DlgD

, τ
(KI)
Upd∗ = (N + 1) ·

(

τ
(PS)
DlgD

+ τ
(PS)
DlgD

)

+ τ
(PS)
Gen ,

τ
(KI)
Upd = O(1), τ

(KI)
Sign = τ

(PS)
PSig , τ

(KI)
Vrfy = τ

(PS)
PVrf + τ

(PS)
ID

3.2 KI → Proxy

PS with n designators can be constructed constructed from (c ·n− 1, c ·n) KI as
follows (where c is the total number of self delegation allowed for each delegator.)
In key generation phase, c signer keys SK j·c,SK j·c+1, . . . ,SK (j−1)·c−1 is assigned
to designator j. the signer key SK j·c is used for (ordinary) signing, proxy signing
and delegation. The other key is used for self proxy signing and self delegation.

Delegation is simply based on so-called “certificate chain”. That is, to dele-
gate the signing right of user i to user j, the user i simply compute the warrant
containing information of the public key of user i, the limitation of the delegation
and the signature of user j. In our construction the warrant W is of the form
W = (W ′, ω, SignKI(SK , (W ′, ω))) where W ′ is the warrant of previous delega-
tion and ω = (l1, l2, usage) describes the limitation of the current delegation,
namely, l1 and l2 denote the range of possible secret keys used for self proxy
signing (therefore, l1, l2 only make sense in the self delegation.) This type of
warrant prevents the user i with warrants W1, . . . , Wn from computing a valid
proxy signature of any warrant other than W1, . . . , Wn.



Note that different signer key of KI is assigned for each self delegation. This
prevents the attacker who gets a signer key which can be used with some self
delegation from computing a valid proxy signature for the other self delegation.
The concrete security reduction can be shown by the following theorem.

Theorem 2. It is possible to construct PS (with n designators and the total
number of self delegation allowed for each delegator is less than a constant c)

from (c ·n− 1, c · n) KI in such a way that if there exists (τPS, εPS, q
sig
PS, q

sec
PS , q

Dlg
PS )-

Adversary FPS against PS then there exists (τKI, εKI, q
sig
KI , q

sec
KI )-Adversary FKI against

KI with τKI = τPS, εKI = εPS, q
sig
KI = q

sig
PS + q

Dlg
PS and qsec

KI ≤ qsec
PS + c · qDlg

PS

Proof. We construct proxy signature ΠPS = (GenPS, SignPS, VrfyPS, (DlgDPS, DlgPPS),
PSigPS, PVrfPS, IDPS) from (c · n− 1, c · n) key-insulated signature ΠKI = (GenKI,

Upd∗KI, UpdKI, SignKI, VrfyKI) as follows.

GenPS(1
k)

if (SK ∗(KI) = Λ) then

j ← 0;

(SK ∗(KI),SK
(KI)
0 ,PK (KI))← GenKI(1

k, c · n);
if (j = n) then

output ⊥;
for l = 0 to c− 1 do

SK ′(KI) ← Upd∗KI(SK ∗(KI), j · c, j · c + l);

SK j,l ← UpdKI(SK
(KI)
0 ,SK ′(KI), j · c, j · c + l);

SK ′(KI) ← Upd∗KI(SK ∗(KI), j · c, (j + 1) · c);

SK j+1,0 ← UpdKI(SK
(KI)
0 ,SK ′(KI), j · c, (j + 1) · c);

SK (PS) ← ((j, 0,SK j,0), (j, 1,SK j,1), . . . , (j, c− 1,SK j,c−1));

PK (PS) ← (j,PK (KI));

output (SK (PS),PK (PS));
j ← j + 1;

erase SK (PS);

SignPS(SK (PS), M)

((j, ·,SK j,0), . . . , ·)← SK (PS);

output SignKI(SK
(KI)
j,0 , 0, (“s”, M));

VrfyPS(PK (PS), M, sig)

(j,PK (KI))← PK (PS);
〈l, s〉 ← sig;
if (l 6= j · c) then

output 0;
else

output VrfyKI(PK (PS), (“s”, M), 〈l, s〉);



DlgDPS(PK
(PS)
iL−1

,PK
(PS)
iL

,SK (PS), W, ω)

((l,SK l), . . . , ·)← SK (PS);
(PK , L′, usageL)← ω;
% L′ denotes the number of self-delegation allowed by the delegator.

if (PK 6= PK iL
) then

output ⊥;
if (PK iL−1 = PK iL

) then % self delegation

((iL−1, l,SK iL−1,l), . . . , (iL−1, l
′,SK iL−1,l′))← SK (PS);

if (l > l′ − L′) then % invalid warrant

output ⊥;
SKP ← ((iL−1, l

′ − L′ + 1,SK iL−1,l′−L′+1), . . . , (iL−1, l
′,SK iL−1,l′));

SK (PS) ← ((iL−1, l,SK iL−1,l), . . . , (iL−1, l
′ − L′,SK iL−1,l′−L′));

l′′ ← l′ − L′;
else

SKP ← Λ;
l′′ ← 0;

ωL ← (PK , l′′, l′, usageL);
W ← (W, ωL, SignKI(SK iL−1,l, iL−1 · c + l, (“d”, W, ωL)));

send (W,SKP) to DlgPPS;

DlgPPS(PK
(PS)
iL−1

,PK
(PS)
iL

,SK
(PS)
iL

)

receive (W,SKP) from DlgDPS;

if (PK iL−1 = PK iL
) then

output (W,SKP);
else

output (W,SK iL
);

PSigPS(SKP
(PS)
i199KiL

, M, W )

((iL, l,SK iL,l), . . . , ·)← SKP
(PS)
i199KiL

;
ps← SignKI(SK iL2, iL · c + l, (“p”, M, W ));

output (W, ps);

PVrfPS(PK
(PS)
i1

, M, W, psig)

(W ′, ω, s)←W ; (PK , l, , ·, ·)← ω; (j,PK (KI))← PK ; 〈t, ·〉 ← psig

if (t 6= j · c + l or VrfyKI(PK , (“p”, M, W ), psig) = 0) then

output 0;
while (W ′ 6= Λ) do



if (W ′ contradicts (ω, s)) then

output 0;

(W ′, ω, s)←W ′; (PK , l, ·, ·)← ω; (j,PK (KI))← PK ; 〈t, ·〉 ← s;
if (t 6= j · c + l or VrfyKI(PK , (“d”, W ′, ω), s) = 0) then

output 0;

if (PK 6= PK
(PS)
i1

) then

output 0;
else

output 1;

IDPS(W, psig)

PK ∗ = ();
while (W 6= Λ) do

((W, (PK , ·, ·, ·), ·)←W ;
PK ∗ ← (PK ,PK ∗);

output PK ∗;

We construct an adversary which breaks KI constructed above as follows.

F
O

(KI)
sig

,O(KI)
sec

KI (PK )

σ ← F
O

(PS)
sig ,O(PS)

sec ,O
(PS)
Dlg

PS (1k);

output σ

where oracles for PS are constructed as follows.

O
(PS)
sig (query)

if (query = (“s”, j, M)) then

output O
(KI)
sig ((“s”, M), j · c);

else if (query = (“p”, (j1, . . . , jL−1, jL), M, W ))
(·, (PK jL

, l, ·, ·), ·)←W ;

output O
(KI)
sig ((“p”, M, W ), jL · c + l);

O
(PS)
sec (query)

if (query = (“s”, j)) then

SK ← Λ;
for n = 0 to c− 1 do



SK ← (SK, (j, j · c + n, O
(KI)
sec (“s”, j · c + n)));

output SK ;
else if (query = (“sd”, j, L, (ω1, . . . , ωL−1))) then

SKP ← Λ;
for n = 1 to L− 1 do

l ← c− 1;
(PK j , L

′, usage)← wn;
(·, (PK j , l, ·, ·), ·)←W ;
ωn ← (PK j , c− L′ − 1, c− 1, usage);

W ← Λ;
for n = 1 to L− 1 do

(·, l, ·, ·)← ωn;

W ← (W, ωn, O
(KI)
sig ((“d”, W, ωn), c · j + l);

for n = l to c− 1 do

SKP ← (SKP , O
(KI)
sec (“s”, j · c + n));

output (SKP , W );
else

output ⊥;

O
(PS)
Dlg (query)

if (query = (“d”,(j1, . . . , jL−1, jL), W, ω)))
(·, (PK jL−1 , l, l

′, usageL), ·)← W ; (·, L′, ·)← ω;
if (jL−1 = jL) then

if (l > l′ − L′) then % invalid warrant

output ⊥;
SKP = Λ;
for l′′ = l′ − L′ + 1 to l′

SKP ← (SKP , (jL−1, l
′′, O

(KI)
sec (“s”, jL−1 · c + l′′)));

ωL ← (PK , l′ − L′ + 1, l′, usageL);

output (W, ωL, O
(KI)
sig ((“d”, W, ωL), 1);

else

output (W, ω, O
(KI)
sig ((“d”, W, ω), c · jL−1));

else if (query = (“p”,(j1, . . . , jL))) then

output Λ;
else

output ⊥;

For the above PS, the adversary, and the oracles, it is easy to show from the
construction that the output σ = F KI(PK ) has the following properties.

– σ contains the list of signatures which can be verified by PK (KI).

– σ contains valid signature of SK
(KI)
i such that ΠKI is not (i, Q(KI))-composed

if the output of F PS meets the requirement of the adversary’s output.



Therefore, if the adversary FPS outputs the valid signature with probability εKI

then FKI outputs the valid signature with probability εPS. ut

Efficiency: The running time of GenPS, SignPS, VrfyPS, DlgDPS, DlgPPS, PSigPS

and PVrfPS in the construction of the above theorem, become as follows where
L denotes the length of the delegation chain.

τ
(PS)
Gen = τ

(KI)
Gen + c

(

τ
(KI)
Upd∗ + τ

(KI)
Upd

)

, τ
(PS)
Sign = τ

(KI)
Sign , τ

(PS)
Vrfy = τ

(KI)
Vrfy ,

τ
(PS)
DlgD

= τ
(KI)
Sign , τ

(PS)
DlgP

= O(1),

τ
(PS)
PSig = τ

(KI)
Sign , τ

(PS)
PVrf = L · τ

(KI)
Vrfy , τ

(PS)
ID = O(L)

4 The Hierarchy of Key Evolving Signatures

In this section we show the hierarchy among the key evolving signatures. Namely,
we show that intrusion-resilient signatures imply (N−1, N) key-insulated signa-
tures and vice versa, and that proxy signatures (and thus (N−1, N) key-insulated
signatures) imply forward-secure signatures. The results are summarized below,
each followed by a brief overview of the proof.

Theorem 3 (IR → KI). It is possible to construct KI from IR in such a way

that if there exists (τKI, εKI, q
sig
KI , q

sec
KI )-Adversary FKI which breaks KI then there

exists (τIR, εIR, q
sig
IR , qsec

IR )-Adversary FIR which breaks IR with τIR = τKI, εIR = εKI,

q
sig
IR = q

sig
KI and qsec

IR = qsec
KI .

The reduction is based on the following idea: all the initial data of IR is stored
in the base of KI and the signer of the KI only stores signer key of the current
period. Then the random access to the key is possible by simply computing the
signer key of any period from the initial state. The formal details are given below.

Proof. We construct (N − 1, N) key-insulated signature ΠKI = (GenKI, Upd∗KI,

UpdKI, SignKI, VrfyKI) from intrusion-resilient signature ΠIR = (GenIR, Upd∗IR, UpdIR,

Refr∗IR, RefrIR, SignIR, VrfyIR) as follows.

GenKI(1
k, N)

(SKB
(IR)
0.0 ,SKS

(IR)
0.0 ,PK (IR))← GenIR(1k, N);

SK ∗(KI) ← (SKS
(IR)
0.0 ,SKB

(IR)
0.0 ); SK

(KI)
0 ← SKS

(IR)
0.0 ; PK (KI) ← PK (IR);

output (SK ∗(KI),SK
(KI)
0 ,PK (KI));



Upd∗KI(SK ∗(KI), i, j)

(SKB ,SKS)← SK ∗(KI);
for n = 0 to j − 1 do

(SKB ,SKU )← Upd∗

IR(SKB);
SKS ← UpdIR(SKS ,SKU );
(SKB ,SKR)← Refr∗IR(SKB);
SKS ← RefrIR(SKS ,SKR);

SK
′(KI)
i,j ← SKS ;

output SK
′(KI)
i,j ;

UpdKI(SK
(KI)
i ,SK

′(KI)
i,j )

SK
(KI)
j ← SK

′(KI)
i,j ;

output SK
(KI)
j ;

SignKI(SK
(KI)
j , j, M)

output SignIR(SK
(KI)
j , j, M);

VrfyKI(PK (KI), M, 〈j, s〉)

output VrfyIR(PK (KI), M, 〈j, s〉);

We also construct the signing oracle O
(KI)
sig and the key exposure oracle O

(KI)
sec

of KI from O
(IR)
sig and O

(IR)
sec as follows.

O
(KI)
sig (M, j)

output O
(IR)
sig (M, j.1);

O
(KI)
sec (query)

if (query = (“s”, j)) then

output O
(IR)
sec (“s”, j.1);

else

output ⊥;

Then F
O

(IR)
sig

,O(IR)
sec

IR (PK (IR)) = F
O

(KI)
sig

,O(KI)
sec

KI (PK (IR)) is the adversary as desired. This

is because KI and two oracles for KI are constructed in such a way that SK
(KI)
j =

SK
(IR)
j.1 holds and the signing algorithm and the verification algorithm are exactly

the same as those of IR. Therefor, if FKI can produce a valid signature (M, 〈j, sig〉)
such that the scheme is not (j, QKI)-compromised and (M, j) is never queried to
OKI

sig then 〈j, sig〉 is also valid in IR and the scheme is not (j, QIR)-compromised

and (M, j.1) is never queried to OIR
sig. Further, the resulting KI is (N − 1, N) KI

since the key exposure of N −1 point in KI is corresponding to the key exposure
of N − 1 signer secret key of IR and no base key of IR is compromised. Therefore
the security of the remaining signing key can be guaranteed by the IR property.

ut

We note that this construction is in fact a consolidation of earlier proofs
we got regarding intermediate constructions, namely showing IR implies KI-FS
and KI-FS implies KI. This intermediate notion of KI-FS is defined, and the
corresponding reductions are proved, in the Appendix A.



Efficiency: The running time of GenKI, Upd∗KI, UpdKI, SignKI and VrfyKI in the
above construction become as follows.

τ
(KI)
Gen = τ

(IR)
Gen , τ

(KI)
Upd∗ = N ·

(

τ
(IR)
Upd∗ + τ

(IR)
Upd + τ

(IR)
Refr∗ + τ

(IR)
Refr

)

,

τ
(KI)
Upd = O(1), τ

(KI)
Sign = τ

(IR)
Sign , τ

(KI)
Vrfy = τ

(IR)
Vrfy .

Theorem 4 (KI → IR). It is possible to construct IR from (N − 1, N) KI in

such a way that if there exists (τIR, εIR, q
sig
IR , qsec

IR )-Adversary FIR which breaks IR

then there exists (τIR, εKI, q
sig
KI , q

sec
KI )-Adversary FIR which breaks KI with τKI = τIR,

εKI = εIR, q
sig
KI = q

sig
IR and qsec

KI = qsec
IR .

The reduction is constructed as follows. In key generation phase the key gen-
eration algorithm of KI outputs the secret keys SK 0, . . . ,SKN of all the time
periods. Then (SK 0,SK 1⊕R1,SK 2⊕R2, . . . ,SKN ⊕RN) is given to the signer
as the signing key SKS and (R1, R2, . . . , RN ) is given to the base as its base
key SKB where R1, R2, . . . , RN are random data. SKS and SKB for time pe-
riod j are of the form (SK j ,SK j+1 ⊕ Rj+1,SK j+2 ⊕ Rj+2,SKN ⊕ RN ) and
(Rj+1, Rj+2, . . . , RN ), respectively and the signature for the message M in the
time period j is simply computed by SignKI(SK j , M). Further, random date
Ris are updated by the refresh algorithms. By this simple construction we can
construct IR since

– The adversary knows only the secret key of the time period j if the adver-
sary can successfully attack the signer in the time period j. Further, the
knowledge of the signing key of the time period j does not help to forge the
signature for the other time period.

– The adversary knows no information about the signing key of any period
even if the adversary successfully attack the base.

– The adversary knows no information about the past key even if the adversary
successfully attack the signer and the base in the same time period.

Proof. We construct intrusion-resilient signature ΠIR = (GenIR, Upd∗

IR, UpdIR,

Refr∗IR, RefrIR, SignIR, VrfyIR) from (N−1, N) key-insulated signature ΠKI = (GenKI,

Upd∗KI, UpdKI, SignKI, VrfyKI) as follows.

GenIR(1k, N)

(SK ∗(KI),SK
(KI)
0 ,PK (KI))← GenKI(1

k, N);
for i = 1 to N do

SK ′ ← Upd∗KI(SK ∗(KI), i− 1, i);
SK i ← UpdKI(SK i−1,SK ′);
ri ←R {0, 1}k;

SKS
(IR)
0.0 ← (SK 0,SK 1 ⊕ r1,SK 2 ⊕ r2, . . . ,SKN ⊕ rN );

SKB
(IR)
0.0 ← (r1, r2, . . . , rN );

PK (IR) ← PK (KI);

output (SKS
(IR)
0.0 ,SKB

(IR)
0.0 ,PK (IR));



Upd∗IR(SKB
(IR)
(j−1).r)

(Rj , Rj+1, . . . , RN )← SKB
(IR)
(j−1).r;

SKB
(IR)
j.0 ← (Rj+1, Rj+2, . . . , RN );

SKU
(IR)
j−1 ← Rj ;

output (SKB
(IR)
j.0 ,SKU

(IR)
j−1;

erase (SKB
(IR)
(j−1).r ,SKU

(IR)
j−1);

UpdIR(SKS
(IR)
(j−1).r,SKU

(IR)
j−1)

(SK
(KI)
j−1, skj , . . . , skN )← SKS

(IR)
(j−1).r;

% where SKS
(IR)
(j−1).r = (SK

(KI)
j−1,SK

(KI)
j ⊕Rj ,SK

(KI)
j+1 ⊕Rj+1, . . . ,SK

(KI)
N ⊕RN )

SKS
(IR)
j.0 ← (skj ⊕ SKU j−1, skj+1, skj+2, . . . , skN );

output SKS
(IR)
j.0 ;

erase (SKU
(IR)
j−1,SKS

(IR)
(j−1).r);

Refr∗IR(SKB
(IR)
j.r )

(Rj+1, Rj+2, . . . , RN )← SKB
(IR)
j.r ;

for n = j + 1 to N do

R′

n ←R {0, 1}k;
Rn ← Rn ⊕R′

n;

SKB
(IR)
j.(r+1) ← (Rj+1, Rj+2, . . . , RN );

SKR
(IR)
j.r ← (R′

j+1, R
′

j+2, . . . , R
′

N)

output (SKB
(IR)
j.(r+1),SKR

(IR)
j.r );

erase (SKB
(IR)
j.r ,SKR

(IR)
j.r );

RefrIR(SKS
(IR)
j.r ,SKRj.r)

(SK j , skj+1, skj+2, . . . , skN )← SKS
(IR)
j.r ;

(R′

j+1, R
′

j+2, . . . , R
′

N )← SKR
(IR)
j.r ;

for n = j + 1 to N do

skn ← skn ⊕R′

n;

SKS
(IR)
j.(r+1) ← (SK j , skj+1, skj+2, . . . , skN );

output SKS
(IR)
j.(r+1);

erase (SKS
(IR)
j.r ,SKR

(IR)
j.r );



SignIR(SKS
(IR)
j.r , M)

(SK
(KI)
j , skj+1, . . . , skN )← SKS

(IR)
j.r ;

output SignKI(SK
(KI)
j , M);

VrfyIR(PK (IR), M, 〈j, s〉)

output VrfyKI(PK (IR), M, 〈j, s〉);

We also construct the signing oracle O
(IR)
sig and the key exposure oracle O

(IR)
sec from

O
(KI)
sig , O

(KI)
sec as follows.

O
(IR)
sig (M, j.r)

output O
(KI)
sig (M, j);

O
(IR)
sec (query)

if (query = (“s”, j.r)) then

j′ ← j; r′ ← r;
while (SKRj′.r′ ∈ Q or (r′ = RN (j′) and SKU j′ ∈ Q)) do

if (r′ = RN (j′)) then

j′ ← j′ + 1; r′ ← 0;
else

r′ ← r′ + 1;
if (SKB j′.r′ ∈ Q or SKS j′.r′ ∈ Q) then

break;
if (SKB j′ .r′ ∈ Q) then

(skbj′+1, skbj′+2, . . . , skbN)← SKB j′.r′ ;

sksj′ ← O
(KI)
sec (“s”, j′);

for n = j′ + 1 to N do

SK (KI)
n ← O

(KI)
sec (“s”, n); sksn ← SK (KI)

n ⊕ skbn;
SKS j′ .r′ ← (sksj′ , sksj′+1, . . . , sksN);

else if (SKS j′.r′ ∈ Q) then

(sksj′ , sksj′+1, . . . , sksN )← SKS j′ .r′ ;
else

sksj′ ← O
(KI)
sec (“s”, j′);

for n = j′ + 1 to N do

sksn ←R {0, 1}k;
SKS j′ .r′ ← (sksj′ , sksj′+1, . . . , sksN);

while ((j′, r′) 6= (j, r)) do

if (r′ = 0) then

j′ ← j′ − 1; r′ ← RN (j′);

sksj′ ← O
(KI)
sec (“s”, j′); sksj′+1 ← sksj′+1 ⊕ SKU j′ ;

else



r′ ← r′ − 1;
(skrj′+1, skrj′+2, . . . , skrN )← SKRj′.r′ ;
for n = j′ + 1 to N do

sksn ← sksn ⊕ skrn;
SKS j′ .r′ ← (sksj′ , sksj′+1, . . . , sksN);
Q← Q ∪ {SKS j′.r′};

output SKS j.r;

if (query = (“b”, j.r)) then

j′ ← j; r′ ← r;
while (SKRj′.r′ ∈ Q or (r′ = RN (j′) and SKU j′ ∈ Q)) do

if (r′ = RN (j′)) then

j′ ← j′ + 1; r′ ← 0;
else

r′ ← r′ + 1;
if (SKB j′.r′ ∈ Q or SKS j′.r′ ∈ Q) then

break;
if (SKS j′.r′ ∈ Q) then

(sksj′ , . . . , sksN )← SKS j′ .r′ ;
for n = j′ + 1 to N do

SK (KI)
n ← O

(KI)
sec (“s”, n); skbn ← SK (KI)

n ⊕ sksn;
SKB j′.r′ ← (skbj′+1, skbj′+2, . . . , skbN);

else if (SKB j′ .r′ ∈ Q) then

(skbj′+1, sksj′+2, . . . , sksN )← SKB j′.r′ ;
else

for n = j′ + 1 to N do

skbn ←R {0, 1}k;
SKB j′.r′ ← (skbj′+1, skbj′+2, . . . , skbN);

while ((j′, r′) 6= (j, r)) do

if (r′ = 0) then

j′ ← j′ − 1; r′ ← RN (j′);
skbj′+1 ← SKU j′ ;

else

r′ ← r′ − 1;
(skrj′+1, skrj′+2, . . . , skrN )← SKRj′.r′ ;
for n = j′ + 1 to N do

skbn ← skbn ⊕ skrn;
SKB j′.r′ ← (skbj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKB j′.r′};

output SKB j.r;

else

if (query = (“u”, j)) then

ĵ ← j; r̂ ← RN (j′);

j′ ← ĵ; r′ ← r̂ − 1;



else

ĵ ← j; r̂ ← r′;

j′ ← ĵ; r′ ← r̂ − 1;
while (SKRj′.r′ ∈ Q or (r′ = 0 and SKU j′ ∈ Q)) do

if (r′ = 0) then

j′ ← j′ − 1; r′ ← RN (j′);
else

r′ ← r′ − 1;
if (SKB j′.r′ ∈ Q or SKS j′.r′ ∈ Q) then

break;
if (SKB j′ .r′ ∈ Q) then

(skbj′+1, skbj′+2, . . . , skbN)← SKB j′.r′ ;

while ((j′, r′) 6= (ĵ, r̂)) do

if (r′ = RN (j′)) then

j′ ← j′ + 1; r′ ← 0;
SKB j′.r′ ← (skbj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKB j′ .r′};

else

(skrj′+1, skrj′+2, . . . , skrN )← SKRj′.r′ ;
r′ ← r′ + 1;
for n = j′ + 1 to N do

skbn ← skbn ⊕ skrn;
SKB j′.r′ ← (skbj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKB j′ .r′};

else if (SKS j′.r′ ∈ Q) then

(sksj′ , sksj′+1, . . . , sksN )← SKS j′ .r′ ;

while ((j′, r′) 6= (ĵ, r̂)) do

if (r′ = RN (j′)) then

j′ ← j′ + 1; r′ ← 0;
sksj′ ← sksj′ ⊕ SKU j′−1;
SKS j′.r′ ← (sksj′ , sksj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKS j′.r′};

else

(skrj′+1, skrj′+2, . . . , skrN )← SKRj′.r′ ;
r′ ← r′ + 1;
for n = j′ + 1 to N do

sksn ← sksn ⊕ skrn;
SKS j′.r′ ← (sksj′ , skbj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKS j′.r′};

if (query = (“u”, j)) then

ĵ ← j + 1; r̂ ← 1;

j′ ← ĵ; r′ ← r̂;
else

ĵ ← j; r̂ ← r′;



j′ ← ĵ; r′ ← r̂;
while (SKRj′.r′ ∈ Q or (r′ = RN (j′) and SKU j′ ∈ Q)) do

if (r′ = RN (j′)) then

j′ ← j′ + 1; r′ ← 0;
else

r′ ← r′ + 1;
if (SKB j′.r′ ∈ Q or SKS j′.r′ ∈ Q) then

break;
if (SKB j′ .r′ ∈ Q) then

(skbj′+1, skbj′+2, . . . , skbN)← SKB j′.r′ ;

while ((j′, r′) 6= (ĵ, r̂)) do

if (r′ = 0) then

j′ ← j′ − 1; r′ ← RN (j′);
skbj′+1 ← SKU j′ ;
SKB j′.r′ ← (skbj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKB j′ .r′};

else

r′ ← r′ − 1;
(skrj′+1, skrj′+2, . . . , skrN )← SKRj′.r′ ;
for n = j′ + 1 to N do

skbn ← skbn ⊕ skrn;
SKB j′.r′ ← (skbj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKB j′ .r′};

else if (SKS j′.r′ ∈ Q) then

(sksj′ , sksj′+1, . . . , sksN )← SKS j′ .r′ ;

while ((j′, r′) 6= (ĵ, r̂)) do

if (r′ = 0) then

j′ ← j′ − 1; r′ ← RN (j′);

sksj′ ← O
(KI)
sec (“s”, j′);

SKS j′.r′ ← (sksj′ , sksj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKS j′.r′};

else

r′ ← r′ − 1;
(skrj′+1, skrj′+2, . . . , skrN )← SKRj′.r′ ;
for n = j′ + 1 to N do

sksn ← sksn ⊕ skrn;
SKS j′.r′ ← (sksj′ , skbj′+1, skbj′+2, . . . , skbN);
Q← Q ∪ {SKS j′.r′};

if (query = (“u”,j)) then

if (SKS (j+1).1 ∈ Q and SKS j.RN(j) ∈ Q) then

(sksj+1, sksj+2, . . . , sksN )← SKS (j+1).1;
(sks′j , sks′j+1, . . . , sks′N )← SKS j.RN(j);
SKU j ← sksj+1 ⊕ sks′j+1;
SKR(j+1).0 ← (sksj+2 ⊕ sks′j+2, . . . , sksN ⊕ sks′N , );

else if (SKS (j+1).1 ∈ Q and SKB j.RN(j) ∈ Q) then



(sksj+1, sksj+2, . . . , sksN )← SKS (j+1).1;
(skbj+1, skbj+2, . . . , skbN)← SKB j.RN(j);
SKU j ← skbj+1;
for n = j + 2 to N do

SK (KI)
n ← O

(KI)
sec (“s”, n);

skrn ← SK (KI)
n ⊕ sksn ⊕ skbn;

SKR(j+1).0 ← (skrj+2, skrj+3, . . . , skrN );
else if (SKB (j+1).1 ∈ Q and SKS j.RN(j) ∈ Q) then

(skbj+2, skbj+3, . . . , skbN)← SKB (j+1).1;
(sksj , sksj+1, . . . , sksN )← SKS j.RN(j);

SK
(KI)
j+1 ← O

(KI)
sec (“s”, j + 1);

SKU j ← SK
(KI)
j+1 ⊕ sksj+1;

for n = j + 2 to N do

SK (KI)
n ← O

(KI)
sec (“s”, n);

skrn ← SK (KI)
n ⊕ sksn ⊕ skbn;

SKR(j+1).0 ← (skrj+2, skrj+3, . . . , skrN );
else if (SKB (j+1).1 ∈ Q and SKB j.RN(j) ∈ Q) then

(skbj+2, skbj+3, . . . , skbN)← SKB (j+1).1;
(skb′j+1, skb′j+2, . . . , skb′N)← SKB j.RN(j);
SKU j ← skb′j+1;
SKR(j+1).0 ← (skbj+2 ⊕ skb′j+2, . . . , skbN ⊕ skb′N , );

else if (SKB j.RN(j) ∈ Q) then

(skbj+1, skbj+2, . . . , skbN)← SKB j.RN(j);
SKU j ← skbj+1;
for n = j + 2 to N do

skrn ← {0, 1}k;
SKR(j+1).0 ← (skrj+2, skrj+3, . . . , skrN );

else

SKU j ←R {0, 1}k;
for n = j + 2 to N do

skrn ←R {0, 1}k;
SKR(j+1).0 ← (skrj+2, skrj+3, . . . , skrN );

Q← Q ∪ {SKU j ,SKR(j+1).0};

output (SKU j ,SKR(j+1).0);

if (query = (“r”,j.r)) then

if (SKS j.r ∈ Q and SKS j.(r+1) ∈ Q) then

(sksj , sksj+1, . . . , sksN )← SKS j.r;
(sks′j , sks′j+1, . . . , sks′N )← SKS j.(r+1);
SKRj.r ← (sksj+1 ⊕ sks′j+1, . . . , sksN ⊕ sks′N , );

else if (SKS j.r ∈ Q and SKB j.(r+1) ∈ Q) then

(sksj , sksj+1, . . . , sksN )← SKS j.r;
(skbj+1, skbj+2, . . . , skbN)← SKB j.(r+1);
for n = j + 1 to N do



SK (KI)
n ← O

(KI)
sec (“s”, n);

skrn ← SK (KI)
n ⊕ sksn ⊕ skbn;

SKRj.r ← (skrj+1, skrj+2, . . . , skrN );
else if (SKB j.r ∈ Q and SKS j.(r+1) ∈ Q) then

(skbj+1, skbj+2, . . . , sksN)← SKB j.r;
(sksj , sksj+1, . . . , sksN )← SKS j.(r+1);
for n = j + 1 to N do

SK (KI)
n ← O

(KI)
sec (“s”, n);

skrn ← SK (KI)
n ⊕ sksn ⊕ skbn;

SKRj.r ← (skrj+1, skrj+2, . . . , skrN );
else if (SKB j.r ∈ Q and SKB j.(r+1) ∈ Q) then

(skbj+1, skbj+2, . . . , sksN)← SKB j.r;
(skb′j+1, skb′j+2, . . . , skb′N)← SKB j.(r+1);
SKRj.r ← (skbj+1 ⊕ skb′j+1, . . . , skbN ⊕ skb′N , );

else

for n = j + 1 to N do

skrn ←R {0, 1}k;
SKRj.r ← (skrj+1, skrj+2, . . . , skrN );

Q← Q ∪ {SKRj.r};

output SKRj.r;

Then F
O

(KI)
sig

,O(KI)
sec

KI (PK (KI)) = F
O

(IR)
sig

,O(IR)
sec

IR (PK (KI)) is the adversary as desired. This
is because IR are constructed in such a way that the signing algorithm and the
verification algorithm are exactly the same as those of KI and two oracles are
constructed in such a way that KI is (j.QKI)-compromised if and only if IR is
(j.QIR)-compromised.

Therefor, if FIR can produce a valid signature (M, 〈j, sig〉) such that the
scheme is not (j, QIR)-compromised and (M, j.r) is never queried to OIR

sig then

〈j, sig〉 is also valid in KI and the scheme is not (j, QKI)-compromised and (M, j)
is never queried to OKI

sig. ut

Theorem 5 (PS → FS). It is possible to construct FS from PS in such a way

that if there exists (τFS, εFS, q
sig
FS , qsec

FS )-Adversary FFS against FS then there exists

(τPS, εPS, q
sig
PS, q

sec
PS , q

Dlg
PS )-Adversary FPS against PS with τPS = τFS, εPS = εPS,

q
sig
PS = q

sig
FS, qsec

PS = qsec
FS (= 1), q

Dlg
PS = qsec

FS (= 1).

The reduction is constructed in such a way that the signing key of the time
period j corresponds to the self-delegation key of delegation level j + 1. Though
this is a simple construction, forward-security can be achieved since an attacker
is not able to get the signing key of lower delegation level even if the attacker
gets the self delegation key of some delegation level.

Proof. We construct forward-secure signature ΠFS = (GenFS, UpdFS, SignFS, VrfyFS)
from proxy signature ΠPS = (GenPS, SignPS, VrfyPS, (DlgDPS, DlgPPS), PSigPS, PVrfPS,

IDPS) as follows.



GenFS(1
k, N)

(SK (PS)
∗

,PK (PS)
∗

)← GenPS(1
k);

(SKP (PS)
∗99K∗

, W )←

[

DlgDPS(PK (PS)
∗

,PK (PS)
∗

,SKP (PS), Λ, Λ),

DlgPPS(PK (PS)
∗

,PK (PS)
∗

, Λ)

]

;

SK
(FS)
0 ← (SKP (PS)

∗
, W );

PK (FS) ← PK (PS)
∗

;

output (SK
(FS)
0 ,PK (FS));

UpdFS(SK
(FS)
i )

(PK (PS)
∗

,SKP (PS)
∗99K∗

, W )← SK
(FS)
i ;

erase SK
(FS)
i ;

(SKP (PS)
∗99K∗

, W )←

[

DlgDPS(PK (PS)
∗

,PK (PS)
∗

,SKP (PS), W, Λ),

DlgPPS(PK (PS)
∗

,PK (PS)
∗

, Λ)

]

;

SK
(FS)
i+1 ← (SKP (PS)

∗99K∗
, W )

output SK
(KI)
i+1 ;

SignFS(SK
(FS)
j , j, M)

(SKP∗99K∗, W )← SK
(FS)
j ;

psig ← PSigPS(SKP (FS)
∗99K∗

, M, W );

output 〈j, (W, psig)〉;

VrfyFS(PK (FS), M, 〈j, s〉)

PK (PS)
∗
← PK (FS);

(W, psig)← s;

PK ∗ ← ID(PS)(Wj , psig);
if (PK ∗ 6= (PK ∗, . . . ,PK ∗

︸ ︷︷ ︸

j+2

) then

output 0;
else

output PVrfPS(PK (PS)
∗

, M, W, psig);

We also construct the signing oracle O
(FS)
sig and the key exposure oracle O

(FS)
sec

from O
(PS)
sig , Osec and O

(PS)
Dlg as follows.

O
(FS)
sig (M, j)

output O
(PS)
sig (“p”, (∗, ∗, . . . , ∗

︸ ︷︷ ︸

j+2

).M, W );

O
(FS)
sec (query)

if (query = (“s”, j)) then



SKP ← O
(PS)
sec (“sd”, ∗, j + 2, W );

SK
(FS)
j ← (SKP , W );

output SK j ;
else

output ⊥;

Then F
O

(PS)
sig ,O(PS)

sec ,O
(PS)
Dlg

PS (PK (PS)
∗

) = (M, W, σ,PK
(PS)
0 ) where (M, 〈j, (W, σ)〉) =

F
O

(FS)
sig

,O(FS)
sec

FS (PK (PS)
∗

) is the adversary as desired. This can be proved by similar
discussion to Theorem 1. ut

Efficiency: The running time of GenFS, UpdFS, SignFS and VrfyFS in the above
construction become as follows.

τ
(FS)
Gen = τ

(PS)
Gen + τ

(PS)
DlgD

+ τ
(PS)
DlgP

, τ
(FS)
Upd = τ

(PS)
DlgD

+ τ
(PS)
DlgP

,

τ
(FS)
Sign = τ

(PS)
PSig , τ

(FS)
Vrfy = τ

(PS)
PVrf + τ

(PS)
ID

The following corollary is immediate from Theorem 2 and Theorem 5.

Corollary 1 (KI → FS). It is possible to construct FS from KI in such a way

that if there exists (τFS, εFS, q
sig
FS , qsec

FS )-Adversary FFS against FS then there exists

(τKI, εKI, q
KI
KI , q

KI
KI)-Adversary FKI against KI with τKI = τFS, εKI = εFS, q

sig
KI =

q
sig
FS + qsec

FS and qsec
KI = N · qsec

FS .
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A Forward Secure Key-Insulated Signature

As noted in the definition, forward secure key-insulated signatures (KI-FS) is
very similar to key-insulated signatures except that the base of KI-FS can only
provide partial secret key (key update message) SK ′

i,j such that j = i+1. KI-FS
itself is interesting model as well as it is useful to clarify the proof IR → KI. In
this section, we will give the concrete security reduction among IR,KI-FS and KI.

A.1 IR → (N − 1, N)-KI-FS

We construct (N−1, N) forward-secure key-insulated signature ΠKI-FS = (GenKI-FS,

Upd∗KI-FS, UpdKI-FS, SignKI-FS, VrfyKI-FS) from intrusion-resilient signature ΠIR =
(GenIR, Upd∗IR, UpdIR, Refr∗IR, RefrIR, SignIR, VrfyIR) as follows.

GenKI-FS(1
k, N)

(SKB
(IR)
0.0 ,SKS

(IR)
0.0 ,PK (IR))← GenIR(1k, N);

(SK ∗(KI-FS),SK
(KI-FS)
0 ,PK (KI-FS))← (SKB0.0,SKS0.0,PK (IR));

output (SK ∗(KI-FS),SK
(KI-FS)
0 ,PK (KI-FS));



Upd∗KI-FS(SK ∗(KI-FS), i, j)

if (i = 0) then

SKB (IR) ← SK ∗(KI-FS);

% SKB (IR) is stored in Upd∗

KI-FS.

(SKB (IR),SKU (IR))← Upd∗IR(SKB (IR));

(SKB (IR),SKR(IR))← Refr∗IR(SKB (IR));

SK
′(KI-FS)
i,j ← (SKU (IR),SKR(IR));

output SK
′(KI-FS)
i,j ;

UpdKI-FS(SK
(KI-FS)
i ,SK

′(KI-FS)
i,j )

(SKU (IR),SKR(IR))← SK
′(KI-FS)
i,j ;

SK
(KI-FS)
j ← UpdIR(SK

(KI-FS)
i ,SKU (IR));

SK
(KI-FS)
j ← RefrIR(SK

(KI-FS)
j ,SKR(IR));

output SK
(KI-FS)
j ;

SignKI-FS(SK
(KI-FS)
j , j, M)

output SignIR(SK
(KI-FS)
j , j, M);

VrfyKI-FS(PK (KI-FS), M, 〈j, s〉)

output VrfyIR(PK (KI-FS), M, 〈j, s〉);

The following theorem holds for the above construction.

Theorem 6. Suppose there exists (τKI-FS, εKI-FS, q
sig
KI-FS, q

sec
KI-FS)-Adversary FKI-FS

which breaks KI-FS as constructed above then there exists (τIR, εIR, q
sig
IR , qsec

IR )-Adversary

FIR which breaks IR with τIR = τKI-FS, εIR = εKI-FS, q
sig
IR = q

sig
KI-FS and qsec

IR = qsec
KI-FS.

Proof. We construct the signing oracle O
(KI-FS)
sig and the key exposure oracle

O
(KI-FS)
sec of KI-FS from O

(IR)
sig and O

(IR)
sec as follows.

O
(KI-FS)
sig (M, j)

output O
(IR)
sig (M, j.1);

O
(KI-FS)
sec (query)

if (query = (“s”, j)) then

output O
(IR)
sec (“s”, j.1);

else

output ⊥;

Then F
O

(IR)
sig

,O(IR)
sec

IR (PK (IR)) = F
O

(KI-FS)
sig

,O(KI-FS)
sec

KI-FS (PK (IR)) is the adversary as desired.
This is because IR and two oracles for IR are constructed in such a way that

SK
(KI-FS)
j = SK

(IR)
j.1 holds and the signing algorithm and the verification algo-

rithm are exactly the same as those of KI-FS. Therefor, if FKI-FS can produce a
valid signature (M, 〈j, sig〉) such that the scheme is not (j, QKI-FS)-compromised
and (M, j) is never queried to OKI-FS

sig then 〈j, sig〉 is also valid in IR and the

scheme is not (j.1, QIR)-compromised and (M, j.1) is never queried to OIR
sig. ut

Further, the running time of GenKI-FS, Upd∗KI-FS, UpdKI-FS, SignKI-FS and VrfyKI-FS

become as follows, where τ
(SIG)
Alg denotes the running time of the algorithm Alg



for the signature scheme SIG.

τ
(KI-FS)
Gen = τ

(IR)
Gen , τ

(KI-FS)
Upd∗ = τ

(IR)
Upd∗ + τ

(IR)
Refr∗ ,

τ
(KI-FS)
Upd = τ

(IR)
Upd + τ

(IR)
Refr , τ

(KI-FS)
Sign = τ

(IR)
Sign , τ

(KI-FS)
Vrfy = τ

(IR)
Vrfy .

A.2 KI-FS → KI

We construct key-insulated signature ΠKI = (GenKI, Upd∗KI, UpdKI, SignKI, VrfyKI)
from forward-secure key-insulated signature ΠKI-FS = (GenKI-FS, Upd∗KI-FS, UpdKI-FS,

SignKI-FS, VrfyKI-FS) as follows.

GenKI(1
k, N)

(SK
(KI-FS)
0 ,SK ∗(KI-FS),PK (KI-FS))← GenKI-FS(1

k, N);

SK ∗(KI) ← (SK
(KI-FS)
0 ,SK ∗(KI-FS)), SK

(KI)
0 ← SK

(KI-FS)
0 , PK (KI) ← PK (KI-FS);

output (SK ∗(KI),SK
(KI)
0 ,PK (KI));

Upd∗KI(SK ∗(KI), i, j)

(SK
(KI-FS)
0 ,SK ∗(KI-FS))← SK ∗(KI);

SK ← SK
(KI-FS)
0 ;

for n = 0 to j − 1 do

SK ′ ← Upd∗KI-FS(SK ∗(KI-FS));
SK ← UpdKI-FS(SK ,SK ′, n, n + 1);

SK
′(KI)
i,j ← SK ;

output SK
′(KI)
i,j ;

UpdKI(SK
(KI)
i ,SK

′(KI)
i,j )

output SK
′(KI)
i,j ;

SignKI(SK
(KI)
j , j, M)

output SignKI-FS(SK
(KI)
j , j, M);

VrfyKI(PK (KI), M, 〈j, s〉)

output VrfyKI-FS(PK (KI), M, 〈j, s〉);

The following theorem holds for the above construction.

Theorem 7. Suppose there exists (τKI, εKI, q
sig
KI , q

sec
KI )-Adversary FKI-FS against KI

as constructed above then there exists (τKI-FS, εKI-FS, q
sig
KI-FS, q

sec
KI-FS)-Adversary FKI-FS

against KI-FS with τKI-FS = τKI, εKI-FS = εKI, q
sig
KI-FS = q

sig
KI , qsec

KI-FS = qsec
KI .

Proof. Simply let F
O

(KI-FS)
sig

,O(KI-FS)
sec

KI-FS (PK (KI-FS)) = F
O

(KI-FS)
sig

,O(KI-FS)
sec

KI (PK (KI-FS)). Then
FKI-FS is (τKI-FS, εKI-FS, qKI-FS)-Adversary against KI-FS. ut



The (worst case) running time of GenKI, Upd∗KI, UpdKI, SignKI and VrfyKI be-
come as follows.

τ
(KI)
Gen = τ

(KI-FS)
Gen , τ

(KI)
Upd∗ = (N − 1) ·

(

τ
(KI-FS)
Upd∗ + τ

(KI-FS)
Upd

)

,

τ
(KI)
Upd = O(1), τ

(KI)
Sign = τ

(KI-FS)
Sign , τ

(KI)
Vrfy = τ

(KI-FS)
Vrfy .


