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Abstract

Sequences with almost perfect linear complexity profile are defined by H. Niederre-
iter[4]. C.P. Xing and K.Y. Lam[5, 6] extended this concept from the case of single
sequences to the case of multi-sequences and furthermore proposed the concept of
d-perfect. In this paper, based on the technique of m-continued fractions due to Dai
et al, we investigate the property of d-perfect multi-sequences and obtain the suffi-
cient and necessary condition on d-perfect property. We show that multi-sequences
with d-perfect property are not always strongly d-perfect. In particular, we give
one example to disprove the conjecture on d-perfect property of multi-sequences
proposed by C.P. Xing in [6].
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1 Introduction

Stream ciphers are based on pseudorandom key streams, i. e. specially
on deterministically generated sequences of bits with acceptable of unpre-
dictability[1, 2]. From the cryptographic viewpoint, a useful measure for unpre-
dictability is the linear complexity profile (LCP) of pseudorandom sequences.
Many researchers contrived to construct pseudorandom sequences whose LCP
looks like the LCP of truly random sequences. H. Niederreiter[3, 4] introduced
the concept of almost perfect linear complexity profile (PLCP). C.P. Xing
and K.Y Lam[5, 6] extended the concept about almost PLCP from the case
of single sequences to the case of multi-sequences and furthermore proposed
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the concept of d-perfect. In this paper, based on the technique of m-continued
fractions[7, 8], we investigate the property of d perfect multi-sequences and
obtain the sufficient and necessary condition on d-perfect property. We show
that multi-sequences with d-perfect property are not always strongly d-perfect
and illustrate this with one example.

This paper is organized as follows. In section 2, we list the preliminary
knowledge including some known results about d-perfect multi-sequences and
m-continued fractions. In section 3, we discuss d-perfect multi-sequences and
get the main results. In section 4, further we disprove the conjecture on d-
perfect property of multi-sequences proposed by C.P. Xing with one counter-
example.

2 Preliminary

2.1 d-Perfect Multi-sequences

We first introduce some notations and definitions. Let Fq be an finite field
with q elements and s = {s1, s2, . . . , sn, . . .} be a sequence of elements of Fq.
Its linear complexity of the length n prefix is denoted by L(n). H. Nierderreiter
gave the following definition about PLCP.

Definition 1 A sequence s = {s1, s2, . . . , sn, . . .} has perfect linear complexity
profile if for all n(≥ 1), s.t.

L(n) = bn + 1

2
c (1)

Consider a multi-sequence of dimension m > 1:

S = {s1, s2, . . . , sm}

where sk ∈ F∞q , 1 ≤ k ≤ m. We yet denote by L(n) its linear complexity of the
length n prefix. C.P. Xing and K.Y. Lam[5, 6] investigated multi-sequences
with almost PLCP and further proposed the concepts of d-perfect and perfect.

Definition 2 A multi-sequence S = {s1, s2, . . . , sm} is called d-perfect for a
positive integer d if

L(n) ≥ m(n + 1)− d

m + 1
(2)

for all n ≥ 1. In particular, S is called perfect if S is an m-perfect sequence.
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In [6], C.P. Xing got the following theorem and proposed two conjectures ,
one of which is about d-perfect property of multi-sequences.

Theorem 1 [6] A multi-sequence S = {s1, s2, . . . , sm} is perfect if and only
if

L(n) = d mn

m + 1
e (3)

for all n ≥ 1.

Conjecture 1 [6] If a multi-sequence S = {s1, s2, . . . , sm} is d-perfect, then

m(n + 1)− d

m + 1
≤ L(n) ≤ mn + d

m + 1
(4)

for all n ≥ 1.

Definition 3 A multi-sequence S is called strongly d-perfect if (4) holds.

Obviously, if a multi-sequence S is strongly d-perfect, it must be d-perfect.

2.2 m-Continued Fractions

Denote by C a sequence [a0, h1, a1, h2, a2, · · · , hk, ak, · · ·], where 1 ≤ k < w,
w is a positive integer or ∞, hk is a positive integer and 1 ≤ hk ≤ m ,
ak = (ak,1, ak,2, . . . , ak,m) ∈ Fq[x]m and a0 = 0. We call w the length of C. In
the case when w < ∞, then C = [a0, h1, a1, h2, a2, · · · , hw−1, aw−1]. We always
associate it with the following quantities(for each 1 ≤ k < w):

tk = deg (ak,hk
)

dk =
∑

1≤i≤k ti, d0 = 0

vk,j =
∑

i≤k,hi=j ti, v0,j = 0, vk = vk,hk

nk = dk−1 + vk, n0 = 0

Definition 4 [8] A sequence C defined as above is called an m-continued
fraction if it satisfies:

(1) tk ≥ 1, 1 ≤ k < w;
(2) if hk < hk+1, then vk−1,hk

≤ vk+1; if hk > hk+1, then vk−1,hk
≤ vk+1 − 1,

where 1 ≤ k < w − 1;
(3) for k(1 ≤ k < w) and j(1 ≤ j ≤ m, j 6= hk), if hk < j, then deg (ak,j) ≤

vk,j − vk−1,hk
; if hk > j, then deg (ak,j) ≤ vk,j − vk−1,hk

− 1.
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Remmark 1 In fact, the conditions 1 and 2 are essential. This is because:
Given hk and tk, which satisfy conditions 1 and 2 for all k ≥ 1, we can always
construct an m-continued fraction C such that C also satisfies condition 3,
e.g. ak,j = 0 for j(j 6= hk), and ak,hk

is a polynomial with degree tk over Fq[x].

For an m-continued fraction C, a map ϕ from m-continued fractions to
multi-sequences is defined in [8]. We denote by ϕ(C) its image and call C
an m-continued fraction expansion of ϕ(C). And given a multi-sequence S =
{s1, s2, . . . , sm}, we denote by C(S) the set of all m-continued fraction expan-
sions of S. [8] indicates that C(S) is nonempty and can be got by an algorithm
called m-CF transform(for details, refer to [8]).

Lemma 1 [8] For a multi-sequence S, let C ∈ C(S), then L(n) = dk, where
nk ≤ n < nk+1 and k ≥ 1.

Therefore, we can immediately get the conclusion as below:

Propisition 1 For a multi-sequence S, let C ∈ C(S), we have

(1) S is d-perfect if and only if for all k ≥ 0, s.t.

mnk+1 − d

m + 1
≤ dk

(2) S is strongly d-perfect if and only if for all k ≥ 0, s.t.

mnk+1 − d

m + 1
≤ dk ≤ mnk + d

m + 1

Proof Here we only prove item 2) and item 1) can be got directly from the
procedure proving item 2).
⇒. Considering a given multi-sequence S, we check easily that Lemma 1 is
also correct when k = 0. For an integer k ≥ 0, if nk < nk+1, then for an
arbitrary integer n, s. t. nk ≤ n < nk+1, by Lemma 1, we have L(n) = dk.
Hence we can get

dk = L(nk+1 − 1) ≥ m((nk+1 − 1) + 1)− d

m + 1
=

mnk+1 − d

m + 1

and

dk = L(nk) ≤ mnk + d

m + 1

If nk = nk+1, let K0 such that nk = nk+1 = · · · = nK0−1 < nK0 , similarly we
have

dk < dK0−1 ≤ mnK0−1 + d

m + 1
=

mnk + d

m + 1
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and let k0 such that nk0 < nk0+1 = · · · = nk = nk+1, we have

dk > dk0 ≥
mnk0+1 − d

m + 1
=

mnk+1 − d

m + 1

⇐. For an arbitrary positive integer n, by Lemma 1, there exists an integer k,
s. t. nk ≤ n < nk+1 and L(n) = dk. So

m(n + 1)− d

m + 1
≤ m(nk+1)− d

m + 1
≤ dk ≤ mnk + d

m + 1
≤ mn + d

m + 1

and we get the conclusion. ¤

3 Multi-sequences with d-Perfect Property

We first introduce the following two useful notations before discussion:

• l(k, j) = max {i|hi = j, 1 ≤ i ≤ k}, if the i doesn’t exist, then l(k, j) = 0
• L(k, j) = min {i|hi = j, i ≥ k}, if the i doesn’t exist, then L(k, j) = 0

Definition 5 Given an m-continued fraction C, let J = {j|L(k, j) > 0, for ∀k ≥
1} and m′ = |J |. We call m′ the characteristic of C. C is called non-degenerate
if m′ = m; otherwise, C is called degenerate.

Definition 6 An m-continued fraction C is called bounded if there exists a
constant c, such that: for all k ≥ 1, tk ≤ c; otherwise, we say that it is
boundless.

Throughout this section, we denote by c the bound of all tk(k ≥ 1) if C is
bounded.

Lemma 2 For a multi-sequence S, let C ∈ C(S), then S is d-perfect if and
only if

tk +
∑

1≤j≤m

(vk − vk,j) ≤ d (5)

for all k ≥ 1.

Proof Since
∑

1≤j≤m vk,j = dk, we have

tk+
∑

1≤j≤m

(vk − vk,j) = tk+mvk−dk = tk+m(nk−dk−1)−dk = mnk−(m+1)dk−1

By Proposition 1, we can directly get the conclusion. ¤
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In order to evaluate vk,j − vk, we consider the sequence: {(j i, ki)}0≤i≤τ ,
which is defined iteratively as below: Initially set j0 = j, and k0 = l(k, j0).
Assume (j i, ki) is defined. If j i = hk, let τ = i, the procedure stops; if j i 6= hk,
let j i+1 = hki+1, and ki+1 = l(k, j i+1). It is clear that j i 6= j s for ∀s 6= i, hence
τ exists, and τ < m.

Lemma 3 If the sequence {(j i, ki)}0≤i≤τ is defined as above, then

vk,j − vk ≤ tk0 − tk +
τ−1∑

s=0

tks+1 (6)

Proof By the condition 2 of m-continued fractions, we have vk−1,hk
≤ vk+1.

That is
vk − vk,hk+1

≤ tk + tk+1

Notice that hki+1 = j i+1 = hki+1
, vk,j i

= vki
and vki+1

= vki+1−1,j i+1
+ tki+1

, we
have

vk,ji
− vk,ji+1

= vki
− vki+1

= vki
− vki+1−1,ji+1

− tki+1
.

By ki + 1 ≤ ki+1 and vk − vk,hk+1
≤ tk + tk+1, we get

vk,ji
−vk,j i+1

= vki
−vki+1−1,hki+1

−tki+1
≤ vki

−vki,hki+1
−tki+1

≤ tki
+tki+1−tki+1

So

vk,j − vk =
τ−1∑

s=0

(vk,js − vk,js+1) ≤
τ−1∑

s=0

(tks + tks+1 − tks+1) = tk0 − tk +
τ−1∑

s=0

tks+1

¤

Lemma 4 If an m-continued fraction C is bounded and non-degenerate, then

|vk − vk,j| ≤ mc (7)

for all k ≥ 1 and j(1 ≤ j ≤ m).

Proof When j = hk, it is obviously correct and we will consider the case of
j 6= hk. By lemma 3, for k ≥ 1 and j(1 ≤ j ≤ m, j 6= hk), we have

vk,j − vk ≤ tk0 − tk +
τ−1∑

s=0

tks+1 ≤ mc− tk < mc

Similarly, set K = L(k, j). Since C is non-degenerate, K > k. Note that
vk,j = vK−1,j = vK − tK , so

vk − vk,j = vk − vK−1,j ≤ vK,hk
− vK + tK ≤ mc
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Synthesize the above two aspects and we can get the desired result. ¤

We can now establish the main result of this section which gives the suffi-
cient and necessary condition on d-perfect property.

Theorem 2 For a multi-sequence S, let C ∈ C(S), then the following condi-
tions are equivalent to each other:

(1) S is d-perfect for some constant positive integer d;
(2) C is bounded and non-degenerate;
(3) S is strongly d′-perfect for some constant positive integer d′.

Proof 1⇒2. We first prove that C is bounded. For simplification, let t0 = 0.
In fact, we check easily that the inequality (5) is also correct when k = 0. For
every k(≥ 1) and h(1 ≤ h ≤ m), note that vl(k,h) = vk,h and vl(k,h),j ≤ vk,j(1 ≤
j ≤ m, j 6= h), by lemma 2, we have:

d ≥ tl(k,h) +
∑

1≤j≤m

(vl(k,h) − vl(k,h),j) ≥ tl(k,h) +
∑

1≤j≤m

(vk,h − vk,j)

Add two sides of the above m inequalities(h from 1 to m) together respectively
and get:

md ≥
m∑

h=1

tl(k,h) ≥ tk

so tk ≤ md for every k ≥ 1. Secondly, if C is degenerate, let m′ and J
be defined as definition 5, then m′ < m. Consider sufficient large k’s, i.e.
k À k0 = min {n|L(n, j) = 0, j 6∈ J}, and we have

d≥ tk +
∑

1≤j≤m

(vk − vk,j) = tk +
∑

j∈J

(vk − vk,j) +
∑

j 6∈J

(vk − vk,j)

= tk +
∑

j∈J

(vk − vk,j) + (m−m′)vk −
∑

j 6∈J

vk0,j (8)

By Lemma 4, we have

|∑
j∈J

(vk − vk,j)| ≤
∑

j∈J

|vk,j − vk| ≤ (m′ − 1)mc

Therefore only one term (m − m′)vk in the right side of (8) is infinite. A
contradiction.
2⇒3. By Lemma 4, we have

|dk −mvk| = | ∑

1≤j≤m,j 6=hk

(vk,j − vk)| ≤
∑

1≤j≤m,j 6=hk

|vk,j − vk| ≤ (m− 1)mc

set d′ = m2c, then

mnk+1 − (m + 1)dk = m(dk + vk+1)− (m + 1)dk
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= mvk+1 − dk = tk+1 + (mvk+1 − dk+1)

≤ c + m(m− 1)c < d′ (9)

and

(m + 1)dk −mnk = (m + 1)dk −m(dk + vk − tk)

= mtk + (dk −mvk)

≤mc + m(m− 1)c ≤ d′ (10)

Synthesize the above two inequalities and get that S is strongly d′-perfect.
3⇒1. Let d = d′ and S is obviously d-perfect. ¤

Remmark 2 Though the fact that a multi-sequence S is d-perfect implies that
there exists a constant d′ such that S is strongly d′-perfect, d′ isn’t usually equal
to d.

In particular, for perfect multi-sequences, we have:

Theorem 3 For a multi-sequence S, let C ∈ C(S), S is perfect if and only if

(1) for all k ≥ 1, tk = 1, and
(2) for ∀t ≥ 0, htm+1, htm+2, · · · , htm+m is pairwisely unequal.

Proof ⇒. Firstly, we prove that it is correct for 1 ≤ k ≤ m and t = 0. When
k = 1, mt1 ≤ d = m, so t1 = 1. Suppose that when k ≤ k0(k0 < m), tk = 1
and l(k − 1, hk) = 0. If l(k, hk+1) > 0, then

m≥ tk+1 +
∑

1≤j≤m,j 6=hk+1

(vk+1 − vk+1,j)

= tk+1 + (k − 1)tk+1 + (m− k)(tk+1 + 1)

> mtk+1 ≥ m

This leads to a contradiction. So l(k, hk+1) = 0 and

tk+1 +
∑

1≤j≤m,j 6=hk+1

(vk+1 − vk+1,j) = mtk+1 − k + 1 ≤ m

Therefore tk+1 ≤ m+k−1
m

< 2, it implies that tk+1 = 1.
Secondly, the process with k0m + 1 ≤ k ≤ k0m + m and t = k0(k0 ≥ 1) is

as same as the process with k0 = 0. It is because: for every j(1 ≤ j ≤ m), we
have vk0m,j = k0. So the partial of each vk0m+i,j before k0m is vanished when it
subtracts from others by formula (5) and it comes back to the state of k0 = 0.
Therefore we get the conclusion.
⇐. we can check inequations directly and get easily that m-continued fraction
is perfect. ¤

Remmark 3 By theorem 3, we can get the conclusion that multi-sequences
with PLCP are weak and easily predicable. It is a natural generalization of

8



theorem 2 in [4, sec 4] from the case of single sequences to the case of multi-
sequences.

Remmark 4 By theorem 3, if n = ntm+j(t ≥ 0 and 1 ≤ j ≤ m), we have
n = dtm+j + vtm+j−1,htm+j

= tm + j + t and L(n) = dtm+j = tm + j. It directly
leads to theorem 1.

4 Counterexample

In this section, we give one example and show that multi-sequences which
are d-perfect are not always strongly d-perfect. That is, the conjecture on
d-perfect property of multi-sequences proposed by C.P. Xing is not correct.

Example: Let

C = [0, h1, a1, h2, a2, · · · , hk, ak, · · ·]

where ak = (ak,1, ak,2, . . . , ak,m) ∈ Fq[x]m, m ≥ 2, ak,j =





xtk , j = hk

0, j 6= hk

, tk =





1, k = (2t + 1)m

3, k = (2t + 2)m

2, others

and htm+j = j, t ≥ 0, 1 ≤ j ≤ m.

We claim that C is an m-continued fraction and let S = ϕ(C), then S is d-
perfect but not strongly d-perfect, where d = 2m+1. This is because: Firstly,
we check easily that C is an m-continued fraction. In fact, for t ≥ 0, 1 ≤ i, j <

m, we have vtm+i,j =





2t, i < j

2(t + 1), i ≥ j
and vk,m =





4t + 1, k = (2t + 1)m

4(t + 1), k = (2t + 2)m
.

Then

vk+1 − vk−1,hk
=





1, k = (2t + 1)m− 1

4, k = (2t + 1)m

5, k = (2t + 2)m

2, others
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So vk+1 − vk−1,hk
≥ 1 and C is an m-continued fraction. Secondly, we have

tk+
∑

1≤j≤m

(vk − vk,j) =





2(m− i + 1), k = (2t + 1)m + i, 1 ≤ i ≤ m− 1

2(m− i + 1) + 1, k = (2t + 2)m + i, 1 ≤ i ≤ m− 1

2−m, k = (2t + 1)m

0, k = (2t + 2)m

Hence we immediately get

tk +
∑

1≤j≤m

(vk − vk,j) ≤ 2m + 1 = d

and by lemma 2, S is (2m + 1)-perfect. But when k = (2t + 2)m, we have:

(m + 1)dk −mnk = mtk +
∑

1≤j≤m

(vk,j − vk) = 3m > 2m + 1 = d

Therefore S is not strongly (2m + 1)-perfect.
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