
The CSQUARE Transform?

Tom St Denis

tomstdenis@iahu.ca

Abstract. In this paper we show how to combine the design concepts
of the SQUARE and CS block ciphers to produce a pseudo-random per-
mutation CSQUARE suitable for use in block cipher and hash design
with a very high multi-round trail weight. The new design inherits the
hardware efficiency of the SQUARE linear transform pattern as well as
the efficiency of the fast pseudo-Hadamard transform over a finite field.
We demonstrate the DMWT hash function which makes use of our new
results.

Keywords. Pseudo-Hadamard Transform, Branch Analysis, Pseudo-Random
Permutations.

1 Introduction

In the SQUARE block cipher [1] a new technique of combining a Maximum
Distance Separable (MDS) code along with the “SQUARE Propagation Pattern”
resulted in a design which had a high provable four round differential and linear
trail weight. Similarly in the CS-Cipher [3], the concept of a pseudo-Hadamard
transform was enhanced to raise the minimal eight round differential and linear
trail weight.

In this paper we take the results of FPHT analysis in [7] and apply them
to the SQUARE propagation pattern to derive a new permutation which has a
considerably higher minimal trail weight. Along with our successful design we
also demonstrate two similar design constructions which fail to achieve a trail
weight greater than the trail weight of the SQUARE design.

We shall conclude this paper with a section discussing implementation details
and our DMWT hash function. We prove that through our DMWT design any
minimal four round trail has a weight of at least 144 which compares favourably
to the minimal trail weight of WHIRLPOOL which is 81.

In section two we discuss the relevant background required for our new re-
sults. Section three discusses our new design as well as the two similar designs.
Section four discusses the design justification and section five discusses our new
DMWT design.

? Revised: February 2nd, 2004



2 Background Theory

2.1 SQUARE

The SQUARE [1] block cipher was a unique approach to cipher design when
it was first proposed. It was an efficient design that provided for a high and
provable minimal trail weight. The design would later change into the Rijndael
block cipher which became the American AES cipher.

The relevant design concepts of SQUARE are the following. Let θ represent a
transform which applies a non-linear substitution to all of the coordinates of the
input. Let ζ represent a length four MDS code over GF (2)[x]. Let γ represent the
sixteen coordinate input organized as a 4×4 matrix. Then the relevant portions
of the SQUARE round function can be expressed as the following.

γi+1 = ρ(γi, Ki) : γi ×Ki → (ζ ◦ θ ◦ (γi ⊕Ki))
T

(1)

While it was not proven in the SQUARE, paper the design has two provable
qualities which are proven in the subsequent Rijndael papers. Let β represent
the branch of the ζ transform.

Theorem. Every two rounds has at least β active columns.

Theorem. Every four rounds has at least β2 active coordinates.

For the purposes of this paper we are merely concerned with the first theorem.
This theorem is trivial to prove. If there are x active columns then through the
transposition there shall be one row with at least x active coordinates. Through
the subsequent ζ transform there shall be the greatest of (β − x, 1) active coor-
dinates. As a result there are x + β − x = β active columns.

2.2 CS-Cipher

The CS-Cipher [3] used non-linear multipermutations interconnected in a fashion
that promotes fast diffusion. Instead of placing the non-linear substitutions at the
boundaries of the linear transform they placed them throughout the transform.
In [4], the full eight round trail weight was counted by brute force to prove the
security of the design against differential and linear cryptanalysis. This design
in particular has several useful properties.

1. The round function can be computed in O(log n) time.

2. The mixing network is non-linear.

3. The branch of the round function is bounded.

We use all three properties in our new design by generalizing both the CS-
Cipher and SQUARE designs.



3 New Design - CSQUARE

3.1 Construction

Our new design permutes a block of data γ organized as a square matrix by
combining a CS-Cipher style mixing network with the SQUARE propagation
pattern. Let n = 2k for k ≥ 2 represent the width of γ. Let ζ represent the
mixing network made of a Hk transform implemented as in [7, Fig.1], with the
H1 transforms replaced by a non-linear (2, 3)-multipermutation θ [6]. Let βk

represent the branch of the ζ transform.
We note that with each application of θ within ζ the inputs are “keyed” by

some key K. This allows a Markov chain to be produced throughout the design.
Our new design is simply stated as

y = ρ(γ, K) : γ ×K →
(

ζ ◦ (ζ ◦ ζ ◦ γ)T
)T

(2)

Note that the three compositions of ζ require 3k·22k key words to be provided
by some form of key schedule. For the purposes of this paper we shall assume
some form of suitable key schedule has been provided. This design relies on two
theorems to achieve a provable four round trail weight bound.

3.2 Design Theory

Theorem 1. Two compositions of ρ will always have at least βk active columns.

Proof. This proof is simply an adaptation of the two round proof for the SQUARE
block cipher. If the input has x active columns then the transposition will have
one column with at most x active coordinates. Through the third ζ composition
of the ρ transform there shall be the largest of (βk − x, 1) active coordinates.
When the matrix is transposed again those active coordinates are placed in
unique columns. ut

The second theorem we are concerned with is concretely establishing the two
round trail weight of ζ.

Theorem 2. The two round trail weight for a ζ transform of dimension n = 2k

is at least 3 · 2k−1.

A general proof of this theorem is still being developed. However, we can show
that the theorem is true for k = {1, 2, 3, 4} and we shall provide an argument in
favour of the theorem.

Case k = 1. This case is fairly trivial. The branch of θ is three which immedi-
ately yields a minimum two round weight of three.

Corollary 3. Over two layers of ζ any active θ transform will be directly related

to at least three active coordinates.



Case k = 2. In both rounds at least one θ transform must be active. As a
result at least six active coordinates must be present. Therefore, the theorem is
true for k = 2 since 3 · 2k−1 = 6.

Case k = 3. In this case we rely on the branch of ζ3 which is provably [7] six.
As a result the minimal trail weight is caused by an input weight of two which
cause a minimal output weight of four after the first round. If the layers of the
two rounds are placed end-to-end it is obvious that over the first two layers there
is at least one active θ. Over the middle two rounds there are at least two and
over the last two at least one more active θ. Therefore, there are four active θ
transforms which produce the 3 · 2k−1 = 12 active coordinates.

Case k = 4. This proof is similar to the case of k = 3. Again the lowest weight
trail is caused by the input weight of two. For the first round, the first two
layers will have at least one active θ and the last two layers will have at least
three active θ transforms. The second round at the very least will be a mirror of
the first round. In total there shall be at least eight active θ transforms which
achieves the desired 3 · 2k−1 = 24 active coordinates.

Conjecture for k ≥ 5. Our conjecture for the general case lies in the topology
of the underlying mixing network. In every layer each of the θ transforms are
applied to a unique pairing of the input coordinates. As a result, in layer i of
a transform, any active θ transform will be connected to at least two active θ
transforms in at least one of layer i−1 or i+1. It seems very plausible that over
the k pairs of layers in the two rounds of ζk transforms there are at least 2k−1

active θ transforms.

3.3 Results

As a result of the two theorems the two round trail weight of the ρ transform is
at least the product of the branch of ζk and the two round trail weight of ζk. Let
σn denote the four round trail weight of the ρ construction with a dimension of
n× n.

σn = 6 · 8k, if n = 22k

σn = 18 · 8k, if n = 22k+1 (3)

The four round minimal trail weight of the SQUARE design is the branch
of the “MixColumn” transform squared. The trail weights for even dimension ζ
match the SQUARE trail weights at approximately the point k = 2.541814439
and at the point k = 2.169925002 for odd dimension ζ. As a result the new
design achieves a lower four round trail weight for all dimensions greater than
32× 32.



3.4 Related Designs

Through the course of this study two other design constructs have been analyzed
and both fail to achieve the desired level of trail weight. The first design construct
is based on the SQUARE design mixed with the CS-Cipher directly. That is,

y = ρ̂1(γ, K) : γ ×K → (ζ ◦ γ)T (4)

However, this design lacks2 an easy method of counting the trail weight over
multiple rounds. The second design was a straight adaptation of this design.

y = ρ̂2(γ, K) : γ ×K → (ζ ◦ ζ ◦ γ)T (5)

However, this design does not enforce a high enough active column count
over two rounds. Another modification we considered but rejected for efficiency
reasons is the construction:

y = ρ̂3(γ, K) : γ ×K →
(

ζ̂ ◦ (ζ ◦ ζ ◦ γ)
T
)T

(6)

Where ζ̂ is a 2k dimension MDS code. The resulting four round minimal trail
weight of this design would be σ3

n.

σ̂3
n = 3 ·

(

4k + 2k
)

, if n = 2k (7)

Which compares very well against the original SQUARE design. However,
the ρ̂3 approach involves using an MDS code which is something we are striving
to avoid since they are slower than the ζ transform to implement. Therefore, we
rejected this approach for this paper. The approach is still ideal if a very high
trail weight is sought.

As a remark even the SHARK design [8] which specified that the input be
a single column and each round has one MDS transform cannot compete with
the minimal trail weight of the ρ̂3 design. Any four round trail of SHARK must
have at least σS

n active coordinates.

σS

n = 2k+1 + 2, if n = 2k (8)

Since σ3
n > σS

n and the ρ3 design requires a square root of the time the
SHARK design the SHARK design is not scalable.

4 Design Justification

4.1 Security

The purpose of this new design is to modify the original SQUARE design and
produce a transform which has a higher multi-round trail weight. In doing so we
also removed much of the linearity from within the design using the approach of

2 As of the time of this writing.



Dimension Our Design: ρ̂3 Our Design: ρ SQUARE Design SHARK Design

4 × 4 60 48 25 34

8 × 8 216 144 81 130

16 × 16 816 384 289 514

32 × 32 3168 1152 1089 2050

64 × 64 12480 3072 4225 8194

Fig. 1. Four round minimal trail weights of ρ̂3, ρ, SQUARE and SHARK.

[3]. As a result, differential and linear cryptanalysis are easy to prove ineffective
after only a few rounds that use the CSQUARE design.

We have also applied a summation attack against a 8 × 8 implementation
of the ρ function. Using single and double coordinate input counters3 we have
found no useful characteristic that can break more than two rounds of the design.
The only known pattern is to use two counters in the zeroth coordinate of the
first and middle row of γ. After one round the EOR–sum of all of the outputs
will be zero which leads to a trivial two round attack.

4.2 Hardware Efficiency

The first property of this design that is immediately obvious is that it requires
more transformations than the SQUARE design. The ρ function applies three
transformations per round compared to the single transformation used in a
SQUARE round.

However, the saving grace of this design is that the ζ transform has an efficient
O(n) space and O(log n) time implementation. In fact the serious bottleneck of
this design is the non-linear transform applied within θ. The actual transform
that produces the (2, 3)−multipermutation quality desired can be accomplished
with a very small number of EOR gates. A further optimization is that since a
single ζ transform is likely to be very small4 it can be implemented in parallel
for every column of the input. As a result the critical path of the transform is
at least as long as three invocations of the ζ transform.

While no concrete implementation of this design exists it is not likely to be
much slower than the original SQUARE design for small dimensions and would
be much faster for large dimensions.

4.3 Software

In software this design would be much slower than the SQUARE approach for
small dimensions as table driven approaches cannot be used as effectively. How-

3 Over all 28 and 216 values respectively.
4 Given a reasonable dimension.



ever, the approach is not unreasonable and can be implemented using a very
small amount of code and data memory5.

5 Example Construction

We have taken the 8 × 8 ρ function and produced a 512−bit message digest
function named DMWT. Each coordinate of γ is an eight bit value. The non-
linear multipermutation θ is constructed by applying the substitution function
Σ from WHIRLPOOL6 [2] followed by the H1 FPHT over GF (2)[x]/(x8 + x4 +
x3 + x + 1).

To make the design simpler to implement we break convention and apply
the ζ transform across a row since the data is loaded in row-major order. Each
message is padded with a single 1 bit followed by enough zero bits to make the
message length congruent to 448 modulo 512 bits. The original message length
is stored in little endian fashion as a 64-bit integer at the end of the padding.

The 512−bit state is organized as 64 eight bit words S0..63 and is initially set
to the first 64 values of Σ. The message is compressed in blocks of 64 eight bit
words M0..63. The compression function is created by the synthetic approach [5,
Scheme 10].

1. M ′ ←M, S′ ← S

2. for x = 0 to 8 do

(a) M ′ ← ρ(M ′, S′)

(b) S′ ← ρ(S′, Σ24x)

3. M ′ ← ρ(M ′, S′)

4. S ← S ⊕M ⊕M ′

In step (2.a) the notation Σ24x implies using the values of Σ24x...24x+63 as
the key for the ρ function. The key schedule for the ρ function is equally simple.
We use the words of the 64 element key cyclically with the convention that ζ
is applied to the zeroth row first and the ζ network is computed in three layers
from top to bottom, left to right with the zero’th coordinate to the left.

5.1 Efficiency

Since this design could not be very fast the design was optimized to save space.
By using the Σ contents as the initial state and the keys for the key schedule
640 bytes of code space were saved. With GCC 3.3.2 optimizing for space on the
AMD Athlon processor the entire hash occupies 1, 836 bytes7.

5 Comparable to an implementation of the SQUARE design for equal dimensions.
6 We used the revised edition of the WHIRLPOOL design.
7 Which compares nicely to MD2 which with the same compiler options occupies 1, 484

bytes.



5.2 Security

Synthetic Approach The hash function is actually constructed by using a
512-bit block cipher in chaining mode. In this design we chose “Scheme 10” of
[5] since it was shown to resist all five dedicated attacks against hash function
constructions. It is also the same construction used in WHIRLPOOL.

Differential and Linear Cryptanalysis This design uses ten rounds of the ρ
function which means that over eight rounds there are at least 2·18·8 = 288 active
coordinates. We recall from [2] that the Σ was chosen to have a differential and
linear profile maximum of 2−5 and 2−3 respectively. As a result the probability
and deviation of the best eight round differential and linear attacks would be
2−1440 and 2−577 respectively.

The saturation attack was also applied to this design and could not break
more than two rounds. Due to the high trail weight along with the reasonably
strong Σ function we reason that the DMWT hash provides sufficient strength
to be used as a cryptographic one-way hash function.

6 Conclusion

We have presented a new data transformation CSQUARE, along with a strong
argument concerning the proof of the minimal multi-round trail weight. We
have shown that for several dimensions the CSQUARE design yields a higher
four round trail weight than the SQUARE design. We have also argued that
the CSQUARE design possesses the qualities of speed and space efficiency when
implemented in hardware.

As a demonstration of the design in use we have presented the DMWT 512-
bit cryptographic one-way hash function. Based on the minimal trail weight of
the CSQUARE design we have proven that DMWT emits no differential or linear
bias with a probability above uniformly random.

Future work should concentrate on proving the general case of k for the
second theorem as well as seeking a more efficient method of implementation.
I would like to thank Jean-Luc Cooke for some helpful comments during the
initial research period of this project.

References

[1] J. Daemen and L. Knudsen and V. Rijmen, “The Block Cipher SQUARE”,
Fast Software Encryption, v.1267 of Lecture Notes in Computer Science, pp.
149–165. Springer-Verlag, 1997

[2] P. Barreto and V. Rijmen, “The WHIRLPOOL Hashing Function”
[3] J. Stern and S. Vaudenay. CS-Cipher. In Fifth International Workshop on Fast

Software Encryption, Berlin, Germany, March 1998. Springer-Verlag.
[4] S.Vaudenay, “On the Security of the CS-Cipher”, Fast Software Encryption,

March 1999, Springer-Verlag, pp. 260-274



[5] B. Preneel, R. Govaerts and J. Vandewalle, “Hash Functions based on block
ciphers: a synthetic approach.”, Crypto ’93, Springer-Verlag, 1993, pp. 368–378

[6] S. Vaudenay, “On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER”, LIENS - 94 - 23, November 1994

[7] T. St Denis, “Fast Pseudo-Hadamard Transforms”, Cryptology ePrint Archive,
Report 2004-010

[8] A. Bossalaers, J. Daemen, B. Preneel, V. Rijmen, E. De Win, “The Cipher
SHARK”, Fast Software Encryption, pp. 99–111, 1996.



Appendix A - Test Vectors

The following are test vectors for our DMWT hash function.

""

df 5a ae f5 a8 7e 72 41

80 0b b0 6d db ce cc 1b

c6 4c 5f de ed fc bc 87

76 0e 8c 8e 70 c4 cb 99

1f 6b 1c 6a 59 01 05 20

a5 88 59 4e 89 93 07 65

22 e8 38 aa 30 27 ae f0

b6 38 dd fe f1 b3 3b 60

"abc"

8e 74 d6 f0 2f 41 bc f8

12 d3 86 2a c7 2a 54 3f

b6 32 0d 14 43 43 c4 a9

0c f6 f8 bb 87 f1 5f 9f

6b da 6b 0b 43 2e 8a fb

e7 78 81 b1 17 5c f0 00

7b b3 e2 e9 bf 64 bf ba

a2 d6 f3 f3 d5 3e b3 88

"aaaabbbb" x 12 times

e6 b1 b1 44 98 ca f6 ca

c6 ed 7c c2 a3 f2 b4 67

bb 02 d8 f6 4e 96 13 20

82 0b 7d 7a de 67 49 98

1b d1 85 ec ed 7e 3d 05

92 07 79 6c 8f ba d5 51

3b e0 d9 88 9e ca cc 09

2e 85 c6 a5 cf 82 c8 61

This article was processed using the LATEX macro package with LLNCS style


